
Equation-BasedModel Data Structure for High Level Physical
Modelling, Model Simplification and Modelica-Export

Hisahiro Ito1,∗ Akira Ohata1 Ken Butts2,∗∗

Jürgen Gerhard3,∗∗∗ Masoud Abbaszadeh3 David Linder3 Erik Postma3 Elena Shmoylova3

1Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka, 410-1193, Japan
∗ito@hisahiro.tec.toyota.co.jp

2Toyota Technical Centre, 1555 Woodridge Avenue, Ann Arbor, Michigan, 48105-9748, USA
∗∗ken.butts@tema.toyota.com

3Maplesoft, 615 Kumpf Drive, Waterloo, Ontario, N2V 1K8, Canada
∗∗∗jgerhard@maplesoft.com

Abstract
This paper proposes a novel data structure for equation-
based plant models. The data structure facilitates the plant
modelling process starting from physics-based component
creation through model simplification to Modelica model
export.

Keywords DAE, HLMD, HLMT, Maple, Modelica, Model
Simplification, MSModel, Symbolic Manipulation

1. Introduction
The importance of plant models has been increasing in the
automotive industry where control systems must address
more stringent requirements for emissions, fuel economy,
and functional safety than ever before. Moreover, compet-
itive business pressures dictate that development time and
effort are effectively managed. One key strategy to meet
these challenges is to embrace Model-Based Development
(MBD), thereby enabling concurrent development of the
plant and controller subsystems as opposed to the conven-
tional serial process where the plant is developed first and
the controller second.

Concurrent plant–controller development implies that
there is no hardware (i.e. target plant) available for exper-
iment. Thus, in order to service controller development,
it is critical that the plant model can be developed in a
timely manner. Although there are many plant model li-
braries available, they are not (and will never be) sufficient
to meet the new and more challenging requirements that
arise from new and more sophisticated control system de-
velopment projects. As a consequence, we conclude there
is always a need to create new plant models.

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

The traditional approach to build a plant model is to
first construct a set of equations to describe the dynamics
of the system. However, in this approach, it is the author’s
responsibility to ensure that the model adheres to physics-
based principles such as conservation and it is very difficult
for other people to check the quality of the model (i.e.
conformance to physics-based principles), especially when
the model is large and complex.

In order to overcome this problem, we developed the
High Level Modelling (HLM) framework [1, 5] wherein
a formalized and physics-based plant-model-development
process is defined. If one follows this process, a proper
description of the system in question can be created. We
call this description the High Level Model Description
(HLMD). With HLMD, those who are not the author of
the model can readily review and critique the design of
the model. In addition, HLMD-based models are easier to
reuse and/or modify than traditional equation-only models
due to the clear exposition of design intent.

To verify the feasibility of our HLM framework, we
also developed a software package called the High Level
Modelling Tool (HLMT). With HLMT, one can create an
HLMD of a system by following the formalized modelling
process and successively run a simulation. Due to the na-
ture of HLMD where the system is represented in highly re-
dundant, non-linear differential algebraic equations (DAE),
Maple’s [3] symbolic manipulation technology is used to
derive simulatable equations. To date, several application
models of various physical domains with different levels of
complexity have been successfully created and simulated
in HLMT. These models range from simple electric circuits
to an internal combustion engine with crankshaft angle re-
solved gas flow and mechanical dynamics.

With the aim of streamlining the plant modelling pro-
cess even further, we have developed a generalized data
structure calledMSModel to accommodate information
about an equation-based plant model. While this data struc-
ture can store information generated in HLMT, it is de-
signed to be flexible enough so that one can efficiently ap-

27



ply a variety of model simplification methods to the model.
Furthermore,MSModel contains sufficient information to
export the model to the Modelica language, which is be-
coming one of the most widely accepted plant modelling
languages [4].

This paper is organized as follows. In Section 2, the
HLM framework is briefly introduced. In Section 3, the
MSModel data structure is explained with some examples.
The full specification of theMSModel data structure is
described in Appendix A.

2. High Level Modelling Framework
As mentioned in Section 1, the HLM framework was devel-
oped to enable peer review of the design of a plant model
from the standpoint of adherence to physical principles and
to realize rapid modelling. In this section, HLM is briefly
introduced.

2.1 Formalized Modelling Process and HLMD

In the HLM framework, the process to create a plant model
is formalized as follows:

1. Partition the system in question into components

2. Define conserved quantities (CQ) in each component

3. Connect CQs to specify how they flow from one com-
ponent to another

4. Set physical constraints as needed

By following this process, a physical description called
HLMD of the system can be created.

As an example, let us consider a chemical reaction pro-
cess in a closed chamber where the mixture of hydrogen
gas and oxygen gas is burned, and water and heat are gen-
erated (Figure 1).

H2 +O2 → H2O +
1

2
O2 + c [J ]

Figure 1. Combustion inside a chamber.

In this case, homogeneous mixing is assumed, and also
the combustion is assumed to occur at a thin layer as in-
dicated in Figure 1 by the dashed line traveling inside the
chamber from right to left. When modelling of this system
is considered, the following constraints apply:

punb(t) = pbur(t)

Vunb(t) + Vbur(t) = V0 (const)

wherepunb(t) andpbur(t) are the pressures of the unburned
and burned gas, respectively.Vunb(t), Vbur(t) andV0 are the
volumes of the unburned gas, burned gas, and combustion
chamber, respectively.

The HLMD of this system is shown in Figure 2 where a
component (e.g. “unburned”, “flame front” and “burned”)
is represented as a square with rounded corners, a CQ is
represented as a circle, a flow of CQ is represented as an
arrow whose direction specifies the sign convention, and
constraints are represented as a square with dashed lines
connected to components.

Equations appearing in the HLMD are assembled to
form the system equations. (Note that some of the equa-
tions are omitted in Figure 2 for the sake of simplicity.) For
example, we have the number of moles of generated water
molecule when the conservation law is applied:

d

dt
NH2O,ff (t) =nH2toH2O,ff (t) + nO2toH2O,ff (t)

− nH2O,ff (t)− eff (t)

The HLM framework allows the use of intermediate
variables in addition to CQs and flows. For example, the
average degrees of freedom of the unburned gasfunb(t),
and burned gasfbur(t), the gas pressurep(t) which is used
instead of eitherpunb(t) or pbur(t), as well asVunb(t) and
Vbur(t), are defined as intermediate variables, from which
the energies of the unburned gasEunb(t), and burned gas
Ebur(t), are computed as CQs:

Ei(t) =
fi(t)

2
· p(t) · Vi(t)

wherei is “unb” or “bur”.
Since the system equations assembled from HLMD are

highly redundant and nonlinear, some pre-processing is
necessary in order to perform a simulation (i.e. numerical
integration). Redundancy removal is obviously needed, but
we also need to deal with non-linearities which may lead
to multiple solutions. Consequently, a more sophisticated
symbolic manipulation algorithm must be used to derive
the physically meaningful single solution. Although we
have a working algorithm, we consider that this is one of
the most challenging aspects of the HLM approach, and,
thus, it is still a research topic to improve the robustness
and scalability of the multiple solution algorithm.

Apart from the mathematical aspects of the HLMD, the
purpose of creating an HLMD is to enable peer review on
the design of the model at the physics level. For example,
by looking at the HLMD in Figure 2, one can notice that
no interaction between gas and chamber is considered. Al-
though it is possible to make such an analysis by only ex-
amining the equations, what is done in such a case is to
construct a kind of HLMD in the mind. Also, the accept-
ability of the current model design depends on the purpose
of the model. The HLMD allows a physics level examina-
tion in an efficient manner.

2.2 Tool Support for HLMD

To evaluate the feasibility of the HLMD and its mathe-
matical framework, a software package called the HLMT
was developed by Maplesoft and Toyota. The tool is still a
prototype and Toyota owns the intellectual property. With
HLMT, one can author an HLMD and perform simulation.

28



Figure 2. High Level Model Description (HLMD) example - hydrogen-oxygen combustion in a closed chamber.

HLMT also allows export of the model at the equation level
to Maple where symbolic model manipulation and numer-
ical simulation services can be applied.

A simulation result of the combustion model explained
above is shown in Figure 3. It can be confirmed that the
two algebraic constraints, one for pressure and the other
for volume, are met.

By exporting the model from HLMT to Maple, some
equation-level information about the model can be ob-
tained. For example, it can be known that, after our sim-
plification algorithm derived a single simulatable solution,
this model has 11 differential equations. Seven of those are
explicit for 7 differential variablesddtp(t),

d
dtNH2,unb(t),

d
dtNO2,unb(t), d

dtNH2O,ff (t), d
dtNH2O,bur(t), d

dtNO2,bur(t)

and d
dtfbur(t). Four other differential equations are implicit

interms of 1 differential variableddtVunb(t), and 3 algebraic
variableseunb(t), nO2,unb(t) andnO2,bur(t). It can also be
confirmed that there is 1 DAE constraint, and thatVbur(t)
which does not appear in the aforementioned variables is
calculated fromVunb(t).

Since there are not only statistics but also full access to
all of the equations once the model is exported to Maple,
it is also possible to perform other types of manipulation
such as applying additional model simplification methods
including approximation, or exporting to yet another mod-
elling and simulation environment.

Eventually, after successful modelling and simulation in
HLMT for models with different levels of complexity, to-
gether with research progress in Maple-based model sim-
plification for HLMT-generated models, we decided to de-
velop a flexible data structure by which the modelling pro-
cess including simplification can be facilitated.

3. Data Structure for Model Simplification
Requirements for the model simplification data structure
include 1) it can store information generated in HLMT, 2) it
can store a simplified set of equations, 3) it can provide
convenience for model simplification methods, and 4) it
can generate a Modelica representation of the stored model.

The third requirement may need more breakdown as
we develop our model simplification methods, but we now
have a realization of this data structure calledMSModel.
An MSModel data structure is captured as a Maple Record
and it serves as a modelling research artefact with which
more a thorough design of the data structure can be made.

In this section, the current implementation of theMSModel
is explained with some examples. For the complete cov-
erage of the specification ofMSModel, please see Ap-
pendix A.

3.1 Overview ofMSModel Data Structure

The MSModel data structure consists of the following
pieces of information.

• An independent variable (e.g. timet)

• Differential equations (DE) and variables (DV)

• Algebraic equations (AE) and variables (AV)

• Intermediate equations (IE) and variables (IV)

• Dependent equations and variables

• Parameters

• Inputs and outputs

• Name, type and value of variables

• Blackbox functions (e.g. lookup tables and user-defined
functions)

29



Volume of unburned gas

Volume of burned gas

Pressureof unburned gas

Pressureof burned gas

Figure 3. Simulation result of the combustion model, pro-
duced in HLMT.

These elements are stored in a Maple Record in a structured
manner. A fictitious example ofMSModel is shown in
Figure 4.

In this example, each Record entry is accessible by,
for instance,msm:-DE[1] for a list / array element or
msm:-variables[x1] for a table element. The name
msmis just an example and any Maple variable name is
fine.

The combination of differential equations,msm:-DE,
algebraic equations,msm:-AE, and intermediate equa-
tions, msm:-intermediate, comprise the minimum
set of equations (i.e.core equations) with which the time
evolution of the system can be computed.

msm := Record(MSMODEL,
DE=[

( diff(x1(t),t)=-a * x1(t)+u1(t) ),
...],

DV=[ ’x1’ , ...],
AE=[],
AV=[],
t=’t’,
intermediate=(Array(1..0,[])),
intermediateVariables=[],
dependent=(Array(1..3,{

1=[{ e1(t)=-1/2 * sin(x1(t)) },{e1(t)}],
2=[{ e2(t)=u1(t) * e1(t) },{e2(t)}],
3=[{ y(t)=e1(t)+e2(t) },{y(t)}] })),

dependentVariables=[ ’e1’ , ...],
parameters=[ ’a’ , ...],
inputs=[ ’u1’ , ...],
outputs=[ ’e1’ , ...],
variables=(table([

(x1)=Record(MSVARIABLE,
name=x1,
type="differential",
value=.9,
unit=(NULL)),

(a)=Record(MSVARIABLE,
name=a,
type="parameter",
value=2,
unit=(NULL)),

...])),
blackboxes=[]

);

Figure 4. MSModel data structure example.

While msm:-DE andmsm:-AE are a list of equations
in no particular order,msm:-intermediate is an array
ordered in a straight-line causal arrangement. The example
in Figure 4 has no element in themsm:-intermediate
field, but the examplemsm:-dependent field contains
an array of such an arrangement with 3 elements. In both
msm:-intermediate and msm:-dependent , each
element has two sub-elements. The first sub-element is
the equation, the second is the variable to be determined
by that equation. There are two significant differences
betweenmsm:-intermediate and msm:-depend-
ent . 1) In msm:-intermediate, there are no deriva-
tives contained whereas inmsm:-dependent , equa-
tions can be implicit and/or differential. 2) equations in
msm:-intermediate must be computed at every inte-
gration step time while those inmsm:-dependent have
to be computed only when necessary.

Differential, algebraic, intermediate and dependent vari-
ables are stored inmsm:-DV, msm:-AV , msm:-inter-
mediateVariables , andmsm:-dependentVari-
ables as a list of variable names, respectively. Variables
in these lists are stored, not as a function of the independent
variable, but just as a name.

30



A single independent variable by which all other vari-
ables may be parameterized is stored atmsm:-t .

Parameters, inputs and outputs are stored inmsm:-para-
meters, msm:-inputs andmsm:-outputs as a list
of their names, respectively.

TheMSModel Record has an entry calledvariables
which is a table of all the variables including parameters
described above with their type, initial value and unit in-
formation. In the example Record in Figure 4, the unit has
not been assigned to any variable.

To deal with special types of functions, specifically
lookup table functions and user-defined functions, the
MSModel Record has an entry calledblackboxes . It
can store information such as the dimension and the data
of a lookup table, or the definition of a user-defined Maple
procedure.

3.2 Workflow Example for HLMT, MSModel,
Simplification and Modelica-Export

To illustrate the use of anMSModel data structure as
part of the plant modeling process, here the hydrogen-
oxygen combustion model mentioned in the previous sec-
tion will be exported from HLMT to Maple, and stored in
MSModel. Then simplification methods will be applied to
it, and the reduced model will be exported to Modelica, and
finally run in a Modelica-based simulation tool.

After the first equation-based simplification algorithm
was applied to the HLMD of the system, the model con-
sisted of 11 DEs for 8 DVs and 3 AVs (see Section 2.2)
with 0 IEs. It also has 32 dependent equations and the
same number of dependent variables. Once this model is
stored inMSModel, other symbolic simplification algo-
rithms which Maplesoft and Toyota developed were ap-
plied to it. As a result, 10 DEs for 7 DVs and 3 AVs with
4 new IEs for 4 new IVs consisted of the core equations
while 1 DE for d

dtNH2O,ff (t) was categorized as one of the
8 dependent equations.

From thisMSModel, a Modelica language file was gen-
erated, and it was simulated in OpenModelica [2] with the
dassl solver as shown in Figure 5.

4. Conclusion
Part of a plant modelling process for Model Based Devel-
opment was introduced. A physics-based modelling frame-
work as well as a novel data structure for model simplifi-
cation and Modelica-export were developed. It was shown
that these tools and data structure can greatly streamline the
plant modelling process.

References
[1] Bakus J. Bernardin L. Gerhard J. Kowalska K. Léger M.

Wittkopf A. High-Level Physical Modeling Description and
Symbolic Computing.IFAC Proceedings of the 17th World
Congress, pages 1054–1055, 2008.

[2] Fritzson P.et al. http://www.openmodelica.org/.The
OpenModelica Project.

[3] Maplesoft. Maple 11 User Guide. 2007.

Volumes of unburned gas and burned gas

Pressureof unburned gas

Pressureof burned gas

Figure 5. Simulation result of the combustion model, pro-
duced in OpenModelica.

[4] Modelica Tools. http://www.modelica.org/tools.Modelica
Association, 2011.

[5] Ohata A. Ito H. Gopalswamy S. Furuta K. Plant Modeling
Environment Based on Conservation Laws and Projection
Method for Automotive Control Systems.SICE Journal of
Control, Measurement and System Integration, 1(3):227–234,
2008.

A. Appendix - The MSModel Data
Structure

The MSModel data structure is implemented as a Maple
Record, described in Section A.1. The Record structure
is designed as a general container whose nested contents
may be efficiently accessed for both reading and writing.
A Record has a number of exports, or fields, which can be
arbitrary Maple objects. A given field can itself be, for ex-

31



ample,a list of lists or a table of Records. In particular, two
types of sub-Records occur inside theMSModel Record:
the MSVariable Record used to give detailed informa-
tion about variables and described in Section A.2, and the
MSBlackBox Record, used to give detailed information
about black box functions and described in Section A.3.

A.1 MSModel Record type

The MSModel data structure is implemented as a Maple
Record. The particular structure and purpose of the indi-
vidual fields of anMSModel Record are described below.
The fields are references to someMSModel record named
model.

model:-DE

A list of the core differential equations of the model.
There is no additional structure or order to the appearance
of the equations in this list. Together with the algebraic
equationsmodel:-AE and the intermediate equations
model:-intermediate, these equations comprise the
set ofcore equations which capture the characteristic dy-
namics of the system.

model:-DV

A list whose elements are of typename. This list des-
ignates the full set of differential variables present in the
equations in either theDE,AE, orintermediate fields.
In particular, the derivative of each variable inDVoccurs in
DE.

model:-AE

A list of the core algebraic equations of the model. Equa-
tions appear in this field by virtue of not being core differ-
ential or intermediate equations of the model. There is no
additional structure or order to the appearance of the equa-
tions in this list.

model:-AV

A list whose elements are of typename. This list des-
ignates the full set of the algebraic variables present in
the equations in eithermodel:-DE, model:-AE, or
model:-intermediate, but excludes the input and
intermediate variables. These variables do not occur differ-
entiated anywhere in the model.

model:-t

This field is a single name, which designates the indepen-
dent variable (e.g., time) by which all other variables may
be parameterized.

model:-intermediate

An Array specifying the intermediate equations. These
equations are grouped into subgroups, each subgroup giv-
ing the equations to determine a certain subset of the in-
termediate variables. The elements of theArray are lists
consisting of two sets: first a set of explicit equations, then
the set of intermediate variables determined by those equa-
tions (represented as functions ofmodel:-t); in other

words, the second set forms the left hand sides of the equa-
tions making up the first set.

These lists are ordered in a straight-line causal arrange-
ment; that is, the only variables occurring in right-hand
sides of equations are either input variables, or differen-
tial variables, or they are intermediate variables that have
been defined in earlier elements of theArray. Further-
more,model:-intermediate contains no derivatives.

The equations could be substituted into each other and
then intomodel:-DE andmodel:-AE to obtain the core
equations in a more explicit form.

model:-intermediateVariables

This is a list of the variable names appearing in all the sec-
ond sets of the elements ofmodel:-intermediate , or
equivalently, on the left hand side of the equations in that
field. These variables do not occur differentiated anywhere
in the model.

model:-dependent

This is a list of differential or algebraic equations which
are not part of the core dynamics of the model. Like
model:-intermediate, the equations are given by
an Array of lists consisting of two sets, where each first
set specifies algebraic or differential equations or expres-
sions determining the values of the dependent variables
specified (as functions ofmodel:-t) in the correspond-
ing second set. Also, likemodel:-intermediate , the
lists are ordered in a straight-line causal arrangement; in
this case, that only means that dependent variables occur-
ring in the equations are never defined in later elements of
theArray (algebraic and differential core variables, inter-
mediate variables, and input variables can occur throughout
model:-dependent ).

A difference betweenmodel:-dependent andmodel-
:-intermediate is that equations in the former can be
implicit or even differential.

Dependent equations can be solved after the core vari-
ables have been solved.

model:-dependentVariables

This is a list of all dependent variable names. That is, it
is the list of variables that are not part of the core system
or input or intermediate variables. They are to be solved in
terms of core variables, and correspond to the entries of the
second set of each list inmodel:-dependent.

model:-parameters

A list of parameter names. This list designates the full set
of parameters of the model. A parameter is understood to
be a quantity that, by design, does not vary over time.

model:-inputs

A list of input variable names. If the model is considered
as a subsystem, then these variables are the input ports.

model:-outputs

A list of output variable names. If the model is considered
as a subsystem, then these variables are the output ports.

32



Eachoutput variable also occurs in exactly one of the fields
DV, AV, intermediateVariables, dependent-
Variables, and inputs.

model:-variables

A table whose indices are of type name and whose cor-
responding entries are themselves Records. The indices
are precisely the names of the variables, parameters, and
blackbox functions occurring in the model. That is, the in-
dices are precisely those names occurring in the fieldsDV,
AV, intermediateVariables, dependentVari-
ables, inputs, parameters, and blackboxes .
Again in other words, the name of every function called in
model:-DE, model:-AE, model:-intermediate ,
andmodel:-dependent that is not a function built-in
to Maple is an index into themodel:-variables table.

Each entry in the table indexed by the name of a variable
or parameter is a Record ofMSVariable type, which is
described below. Each entry in this table indexed by the
name of a blackbox function has as its entry a Record of
MSBlackBox type, which is also described below.

model:-blackboxes

A list of undefined names representing lookup table func-
tions and user defined functions, which may occur in
any equation of the model. For example, asz23(t) =
L1(z35(t)), where the right hand side is an unevaluated
function call.

A.2 MSVariable Record type

This type of Record is used to store detailed information
about any variable or parameter of the model. This includes
core, input, dependent, and intermediate variables, and pa-
rameters. Such Records appear as entries of the variables
field of the parentMSModel Record.

The fields of anMSVariable Record, named here as
variable, are as follows:

variable:-name

The name of the variable described by the Record. This is
the same as the index of the Record in themodel:-vari-
ables table.

variable:-type

The role of the variable, given by one of the strings “al-
gebraic”, “differential”, “intermediate”, “dependent”, “pa-
rameter”, or “input”. This corresponds to the field of the
MSModel Record thatvariable:-name occurs in, as
follows:

variable occurs inmodel:- variable:-type

AV “algebraic”
DV “dif ferential”
intermediateVariables “intermediate”
dependentVariables “dependent”
parameters “parameter”
inputs “input”

variable:-value

For parameters, this field holds the value for this param-
eter. For differential variables (those inmodel:-DV and
the differential ones inmodel:-dependent), it con-
tains the initial value, expressed as a numerical value or an
expression in terms of the parameters. For algebraic vari-
ables, an initial value can also be given; this may contribute
to determining the initial conditions. For input variables
this entry will be a function of the independent variable
(model:-t). This field may be empty.

variable:-unit

The unit in which the variable is measured. This field may
be empty.

A.3 MSBlackBox Record type

This type of Record is used to store the particular informa-
tion of any implicit lookup table function in the model, and
for storing user-defined functions. The otherwise implicit
blackbox functions are listed by name in theblackboxes
field of the parent Record.

The MSBlackBox Record for a lookup table function
contains the original numeric data, stored in tabular form.
This allows for easy exporting of a lookup table to corre-
sponding fields of a Modelica representation of the parent
model.

The MSBlackBox Record for a user-defined function
is similar, but it contains the Maple procedure that imple-
ments the user-defined function.

The fields of aMSBlackBox Record, named here as
blackbox, are as follows:

blackbox:-name

The name of the blackbox function call described by the
Record. This is the same as the index of the Record in the
model:-variables table.

blackbox:-type

This string is the type of the black box function: either
"lookup" for a lookup table, or"procedure" for a
user-defined function.

blackbox:-dimension

The number of arguments of the blackbox function as oc-
curring in the equations. For lookup table functions, this
number corresponds to the dimension of the lookup table,
and it must currently be either 1 or 2, which corresponds to
the current support for lookup tables in MapleSim’s imple-
mentation of Modelica.

blackbox:-data

For lookup table functions, this field is a list of lists of in-
dependent data points; each list contains all values for one
of the arguments in strictly increasing order. The number
of such lists is equal toblackbox:-dimension . The
order of the lists corresponds to the order in which the ar-
guments to the lookup table are given. The number of data
points in each sublist must agree with the number of points

33



in the dependentblackbox:-value list for the given
lookup table.

For user-defined functions, this field is not used; it may
have any value.

blackbox:-value

For lookup table functions, this field contains the depen-
dent values that the function attains at the respective data
points; that is, the values corresponding to measurements
of the dependent variable or quantity. These should either
be given as one long list of numerical values, or a list of
sublists each containing numerical values. If the lookup
table is one-dimensional, then the list should simply con-
tain the dependent values at the points in the same order as
given in blackbox:-data . If the lookup table is two-
dimensional, then the first entry ofblackbox:-value
should be a list of all dependent values where the first co-
ordinate is the lowest value, ordered by increasing value of
the second coordinate; the second entry should be a simi-
lar list for the second lowest value of the first coordinate,
and so on. Alternatively,blackbox:-value may be the
concatenation of these lists.

For user-defined functions, this field should contain the
Maple language procedure that is to be used to evaluate the
function.

34




