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Abstract  
    
Only the simulation of complete models allows the user to gain detailed insight into 
the often highly non-linear model behavior. The interactions between driver, combus-
tion engine, electric motors, battery, powertrain, chassis, and road conditions are im-
portant factors in finding the optimal parameter set. 
 
The model based design of a complete HEV requires extremely fast models when 
optimization strategies are applied, as they often require several hundred calls of the 
model to determine an optimal parameter set. This demand for high model speed 
causes many simulation tools to fail. 
 
In this paper, we demonstrate the integration of an extremely fast high-fidelity series-
HEV model with advanced optimization strategies. Besides determining an optimal 
parameter set, the analysis of sensitivities and the robustness while satisfying the 
model constraints are considered. 
   
 

Kurzfassung  
  
Nur die Simulation von vollständigen Modellen erlaubt es dem Anwender detaillierte 
Erkenntnisse über das häufig hoch nichtlineare Modell-Verhalten zu gewinnen. Die 
Interaktionen von Fahrer, Verbrennungsmotor, E-Motor, Batterie, Antriebstrag, Fahr-
werk und Straße sind wichtige Faktoren bei der Bestimmung des besten Parameter-
satzes. 
 
Die Modell-basierte Planung eines kompletten Hybridelektrofahrzeugs (HEV) erfor-
dert besonders schnelle Modelle, wenn Optimierungsstrategien zur Auslegung ver-
wendet werden, da diese häufig mehrere Hundert Auswertungen des Modells benö-
tigen, um eine optimale Parameterkombination zu finden. Durch die  Anforderung an 
die hohe Modellgeschwindigkeit  müssen viele Simulationstools bereits bei der Aus-
wahl ausgeschlossen werden. 
 
In diesem Vortrag wird ein Verfahren zur Kopplung von schnellen HEV Modellen mit 
effizienten Optimierungsalgorithmen vorgestellt. Dabei steht neben der Ermittlung 
einer geeigneten Parameterkombination auch die Untersuchung von Sensitivitäten 
und der Robustheit gegenüber der Erfüllung von Nebenbedingungen im Vorder-
grund.  
 
 



 

 

1.  Virtual Design of Hybrid Electrical Vehicle Devices  
 
In the past, automotive engineers could develop cars step by step by constantly im-
proving their knowledge. Today, vehicle design process usually requires an engineer 
to consider hundreds or even thousands of parameters to achieve an optimal design 
and ensure vehicle reliability and passenger comfort. It is also unavoidable to con-
sider the complete system in the very beginning since many parameters are related 
to one another.  
 
Only virtual systems allow comparing many different variants in a timely manner and 
with acceptable costs. However completing a high-fidelity vehicle model quickly 
reaches the performance limitation of most simulation tools.  
 
To be successful, fast models and an easy to access optimization solutions is a pre-
condition. An optimization process often requires a large number of experiments to 
determine the most relevant parameters. In this paper, we demonstrate the steps to 
generate the fastest virtual models and how to apply different simulation strategies. 
We also show how to use meta-models based on experimental data in case that a 
physical model is not available or FEA models are too slow for optimization.  
 
In this paper, an HEV model based on the series hybrid configuration will be present-
ed. Some of the key components in the model include: 

 Combustion engine 

 Electric motors/generators 

 Electrochemical battery pack that includes temperature effects 

 Driver model 

 3D chassis 

 Powertrain 

 Cooling system  
 
Comparing this model with older simulation models confirms that the computational 
complexity increases dramatically as soon as complete HEV models are required.  
 

 
Fig. 1 Emerging challenges demand for functions in simulation tools 

 
 
1.1  MapleSim Physical Modeling Tool 
 
One of the most promising approaches is to use the most efficient methods for sym-
bolic simplification. This approach is supported by MapleSim based on the Maple 



 

 

symbolic engine. The sophisticated simplification and model reduction techniques in 
MapleSim allow very complex yet fast model of a complete HEV to be built.  
 

 
Fig. 2 Traditional physical modeling requires time consuming and error prone manual 

creation of equations. 

 
Another advantage for many engineers and researchers is the ability to create highly 
complex physical models and then generate their symbolic equations.  
 

 
Fig. 3 Automatic generation of the euqations saves time. 

 
 
1.2  Setup and HEV Model 
 
The modeling of a series-HEV in MapleSim was straightforward since all the compo-
nents were pre-created and available in MapleSim. The modeling process involves 
mainly connecting the existing components together and tunes the parameters to get 
preliminary results. 
 



 

 

 
Fig. 4 Overview HEV models as shown in MapleSim 

 
Unlike other causal modeling software that use complex signal flow block diagrams 
as shown in the comparison in Figure 2, MapleSim has an intuitive graphical user 
interface (GUI) that allows engineers to quickly create models with different configu-
rations. The C code generated from a MapleSim model is efficiently optimized using 
symbolic techniques. This allows the code to have the fast execution time, making it 
suitable for real-time applications and optimization solutions. In the following sections 
we will show the details for some key components of the series-HEV model. 
 
Combustion engine 
 

 
Fig. 5 Mean-value model for a combustion engine 

In this work, the mean-value engine model developed by Saeedi [9] has been used 
since this model is computationally efficient while capturing enough information about 
the physics of the engine system.  



 

 

The mathematic equations describing the engine model have been given by Moskwa 
[6] and Heywood [4]. The engine model is composed of three main subsystems: the 
throttle, intake manifold, and engine power generation from the fuel combustion. The 
rate of air mass flowing into the engine is determined based on the geometry and 
position of the throttle valve set by a simple PID controller which closes the loop be-
tween the actual and desired engine speeds. The intake manifold has a significant 
effect on the gas flow and pressure to the engine cylinders. The pressure of the 
air/fuel mixture in the intake manifold can be calculated based on the ideal gas equa-
tion: 

 ̇  
   
  

  ̇     ̇   
(1)  

where R is the gas constant, Tm and Vm are the temperature and volume of the intake 

manifold,  ̇    is the throttle mass flow rate, and  ̇  is the throttle mass outflow. 

The calculated air/fuel pressure and mass flow rate in the manifold are used to com-
pute the power generated from the engine through the combustion of the fuel in the 
gas mixture delivered to the cylinders, accounting for thermal efficiency, friction, and 
inertial losses in the engine and the inertial load at the drive shaft. The engine power 
is calculated based on the engine equations proposed by Hendricks et al. [3]:  

                      (2)  

where     ,      , and       are the indicated power, lost power, and load power, re-
spectively. 

The engine speed can be obtained from crank shaft speed equation as: 

 ̇  
 

   
     

(3)  

where    is engine inertia and n is the engine rotational speed. 
 
A complete description of the model can be found from the URL [5]. 
 
Power electronics 

In order to control the amount of power going from the battery to the motor during 
driving, or vice-versa during regenerative braking, a power controller is necessary. If 
the battery's voltage needs to be stepped-up to operate the motor, a boost converter 
is used.  If the voltage needs to be stepped-down, then a buck converter is used 
[2]. Both types of converters use non-linear electrical circuits with variable-duty high 
frequency switching transistors to convert one DC voltage level to another. 

Developing power electronic components in MapleSim is easy since most of the fre-
quently used elements are readily available in MapleSim’s component libraries. This 
allows for both switched and average networks to be easily modeled as shown in 
Figure 6. This gives modeling engineers the freedom to create models with different 
level of complexity and fidelity to suit their needs.  



 

 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

Fig. 6 MapleSim power electronic models: (a) Switched network (b) Average inverter (c) 
IGBT Inverter (d) Dynamo with power electronic components 



 

 

Electrochemical Battery Model With Thermal Effects 

Typically, the manufacturer will provide a variety of charge/discharge curves and pa-
rameters that give information on the dynamic behavior of a battery. The challenge 
for engineers is to model the dynamic behavior of a battery and fit the manufacturer 
data to the chosen model. Many of the available models are circuit-based and rely on 
dynamic components like resistors and capacitors whose values change in response 
to the operating conditions. However, purely circuit-based implementations do not 
implement the thermal characteristics of the battery, and very few circuit simulators 
allow for dynamic components with such complicated governing equations. Conse-
quently, existing models are inadequate predictors of battery behavior, and are there-
fore ill-suited for use in engine models where heat loss must be taken into account or 
in studies of overall energy efficiency. 

The multiphysics and parametric nature of MapleSim makes it especially well-suited 
to implement a realistic battery model. Sources are also used to facilitate charging 
and discharging of the battery model. Since electrochemical battery models are 
developed based on the fundamentals of physics and chemistry, phenomina such as 
temperature effects, side reactions, or battery aging can be incorporated easily. In 
MapleSim, battery thermal effects can be modeled using thermal components as 
shown in Figure 7. This model also accounts for the temperature exchange with the 
air through a convection block. The model can also be parameterized easily by giving 
symbolic names for the parameters. These parameters will remain symbolic in the 
model equations until a numerical solver is called to solve the equations. 

                   

(a)                                                            (b)     
Fig. 7 Battery thermal modeling: (a) Thermal within a cell, (b) Temperature exchange be-

tween two cells 
 

Chassis dynamics 

The vehicle is represented as a simple 2D vehicle model with longitudinal dynamics. 
This model is sufficient to predict the handling and braking behaviors of an automo-
bile without the effort of modeling all of the small details such as suspensions, bush-
ings, linkage properties, etc.  



 

 

 

Fig. 8 Vehicle chassis 

The vehicle equations are given by: 
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(6)  

   
  

  
 

(7)  

where s is the longitudinal DOF of the vehicle, l is the vehicle wheel base, and a is 
the distance from the front axle to the projection point of the vehicle CG onto the line 
connecting the front and rear axles.  

The equation for the longitudinal motion is: 

                         (8)  

where    is the external force on the vehicle and    is the traction force and is defined 
by           .  

The air drag    is calculated as: 
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(9)  

The weight distribution for front and rear axles is calculated using the following equa-
tions: 

                                                (10)  

                                         (11)  

 
The vehicle model uses the Magic Formula developed by Pacejka et al. [1][8] for the 
longitudinal tire forces and relaxation lengths to model the tire transients. 



 

 

 
Powertrain 

In this model we use a simple reduction gear, but this could easily be replaced by 
several more complex gears from the power train library.  
 
Cooling system to see thermal effects 

The cooling system consist of and airflow a radiator and a circuit that connects the 
fan to the engine and the battery. 
 
 
1.3 Selected output parameters and their contradicting objectives 
 

Parameter Objective Range 

Fuel consumption Minimize 2-8 l/100 km 

Power loss Minimize 100 – 200  

Battery temperature Below 315 K < 315 K 

Battery current Keep below a threshold that can harm the 
battery life 

< X A (4.0e+007) 

 
 

2.  Automation and Process Integration  
 
Process automation is an important step in increasing the efficiency of a product de-
velopment process. Especially performing recurring simulations manually is very time 
consuming and can be automated very efficiently. Therefore the software tool 
 

 
 

Fig. 9 Three options to connect OPTIMUS to MapleSim. The most efficient connection is the 
direct connection. OPTIMUS will see the input and output parameters defined in the model. 



 

 

OPTIMUS is introduced to automatically start the MapleSim calculations and analyze 
the results. How the process integration was realized will be discussed in the follow-
ing sections. 
  
Integration in the Optimization Process 

OPTIMUS can exchange information with other simulation tool either with direct inter-
faces or using the open ASCII interface. MapleSim comes with an optional exporter 
to OPTIMUS. It is very simple to create an export file that can be used for the con-
nection in OPTIMUS. The input variables shown on the left side in Figure 10 are sub-
stituted in the MapleSim input file that contains MapleSim commands to call the pre-
compiled MapleSim procedure. In the output interface the MapleSim procedure is 
called and the produced responses on the right are extracted automatically from the 
result file. 
 

 
Fig. 10 Visualization of HEV workflow in OPTIMUS with used input and output variables 

 
 

3.  Selection of Parameters  
 
At any stage of the design process the challenge is to choose suitable parameters for 
the optimization task from an often large design space. One possibility to automati-
cally support the parameter selection is to use knowledge from sensitivity analysis 
based on intelligent design tables. The aim of this process is to determine the most 
significant design variables with the greatest influence on the responses. The soft-
ware OPTIMUS supplies the user with different statistical measures to compute the 
correlation values between the variables of the system. As a result the most signifi-
cant factors can be determined and less important  parameters can be excluded from 
the further process, which leads to a reduction of dimensionality of the design space 
and therefore also to the reduction of the problem complexity. 

 
 
3.1  Design of Experiments 
 
Intelligent design tables or Design of Experiments (DOE) are a statistical method to 
systematically plan experiments and analyze technical systems. The purpose is to 
maximize the gain of information while keeping the number of evaluations at a mini-
mum. In the context of simulation processes different DOE methods are used for 



 

 

screening as there are often many design variables that do not have to be consid-
ered in a first step. 
 
In many use cases a Latin-Hypercube sampling is cho-
sen to achieve a complete and equally distributed cover-
ing of the design range for each variable. An additional 
advantage is that the number N of requested experi-
ments can be chosen independently from the number of 
variables. The method consists of separating the defini-
tion range of each variable in N intervals and drawing a 
probe in each interval as shown for a 2D example in 
Figure 11.                  

     Fig. 11 Latin-Hypercube Sampling 

 
3.2  Sensitivity Analysis for Initial Parameters 
 
The initial selection of parameters was determined by engineering experience and 
possible variations in the model. Starting with a set of 13 design variables a Latin-
Hypercube sampling is computed with 500 experiments. The ranges for each param-
eter are chosen in physically feasible ranges while not being too restrictive on the 
limits beforehand. 
 

Parameter Description [unit] Range 

MinSoCThreshold Minimum State of Charge Threshold 0.3 – 0.6  

ncell Number of battery cells 100 – 200  

Vmanifold Engine manifold volume [m3] 0.003 – 0.005  

Bore Engine bore [m] 0.0855 – 0.1  

Stroke Engine stroke [m] 0.0814 – 0.19 

Apos Area of battery positive electrode [cm2] 100 – 500  

Aneg Area of battery negative electrode [cm2] 100 – 500  

apos Specific surface area of battery positive elec-
trode [cm2/cm3] 

3000 – 5000  

aneg Specific surface area of battery negative 
electrode [cm2/cm3] 

2000 – 4000  

Va Nominal voltage of electric motor [V] 400 – 1000  

Ia Nominal current of electric motor [V] 50 – 100  

Vas Nominal voltage of electric motor [V] 50 – 150  

Ias Nominal current of electric motor [V] 50 – 150  



 

 

To determine the main factors with the greatest impact on the responses linear corre-
lation factors are considered as the main measurement factors. This value varies in a 
range of -1 to 1, while a correlation factor of 1 represents a direct linear influence on 
the considered response. Analyzing the correlation matrix reveals some design vari-
ables without any or only with minor influence on any of the responses. These pa-
rameters are consequently excluded from further computations and set to a constant 
value which was predefined as nominal value or can be chosen arbitrarily.  
 

 

Fig. 12 Linear correlation coefficients with significant input parameters highlighted 

 
Figure 12 shows the correlation matrix and highlights the parameters with significant 
correlation values with any of the chosen responses. Using this approach the dimen-
sions of the design space can be reduced to 5. Therefore only 5 parameters are cho-
sen to be considered during the optimization: MinSoCThreshold, ncells, Stroke, 
Apos, Vas. 
 
 

4.  Optimization Strategy  
 
To achieve optimal model characteristics the objective functions have to be defined, 
i.e. the responses that have to be minimized or maximized. Additionally the possibility 
is given to respect certain output variables as constraints during the optimization pro-
cess. The selection of a suitable optimization strategy and algorithm is influenced by 
many factors. Long simulation times of a single experiment, parallelization possibili-
ties and available solver licenses, number of design variables and behavior of the 
system have great influence on which strategy should be chosen. In this case simula-
tion time is not a limiting factor as a single analysis runs very fast. 
 
 
4.1  Response Surface Modeling  
 
Response Surface Models or mathematical models are computed based on simula-
tion data from DOEs or testing data. To achieve a good global quality for the model 
the sampling points have to be spread uniformly in the design space. This is why a 
Latin-Hypercube sampling is used in many cases with an arbitrary number of evalua-
tions. 



 

 

 
The software OPTIMUS provides two different techniques to create meta-models. 
The user can either choose manually from a list of different methods or make use of 
the automated computation of the best fitting model on the data for each response. 
Dependent on the systems behavior and the purpose of the model a certain method 
can be chosen directly. In case of high nonlinearities a Kriging model is often a good 
choice to create a continuous representation of the functions behavior. Once a model 
is created it can be used for running algorithms on the analytic model, given a suffi-
cient model quality. 
 
The quality of the analytical models can be assessed with different available criteria 
that are computed automatically during model creation. One method to determine the 
quality of the response surface is based on cross validation. The procedure is to ex-
clude subsets of the results from creating the meta-model and compare the results in 
the left out set with the predicted values on the model. The cumulated and normal-
ized error R2Press can then be used as criteria for the model quality. In this case 
only an R2Press value of 0.8 – 0.9 can be achieved on the best model for the objec-
tive functions based on 1000 evaluations. In Figure 13 three cuts through the created 
models are displayed which shows the differences between the models on the same 
data set. 
 

 
Fig. 13 Comparing different response surface models 

 
The biggest advantage of this approach is that no additional simulations have to be 
evaluated. Due to the not sufficient model quality (R2Press < 0.95) and fast simula-
tion times the optimization for the discussed application example was not performed 
on the model. Instead the optimization algorithm was run directly on the simulation 
sequence calling MapleSim. 
 
 
4.2   Multi-Objective Optimization 
 
In this application example more than one objective function has to be fulfilled simul-
taneously. When considering two conflicting objectives one optimum for both func-
tions can not be found. Instead the goal is to determine the complete set of compro-
mise solutions, also known as Pareto front. To detect the Pareto points the evolu-



 

 

tionary algorithm NSEA+ is used. Figure 14 displays the optimal points lying on the 
Pareto front. 
 

 
Fig. 14 Visualization of the optimization results 

 
 
4.3   Robustness of the found Optimum 
 
To reach a decision, which of the found compromise solutions should be defined as 
solution for the HEV model, the sensitivity in each of the Pareto points is evaluated. 
This means taking into account small perturbations on the input side and measuring 
the Sigma values for the objectives on the output side.  
 

 
 

Fig. 15 Comparison of Sigma values for 5 Pareto points 

 



 

 

 
The goal is to identify one point with robust behavior when considering distributed 
input variables, which means determining the Pareto point with smallest Sigma val-
ues. In Figure 15 the normalized Sigma values for 5 Pareto points are shown. To 
achieve the best robustness and consequently the best predictive quality for the re-
sponses the optimal point for the power loss Opt_Ploss_5 should be selected. 
 
 

5.  Conclusion and Results  
 
In this paper a new and efficient approach for automating and optimizing the design 
parameters of a complete hybrid electric vehicle was shown. The goal was not only 
to handle a complex vehicle model in an easy and intuitive way, but also to detect 
coherences and perform advanced optimizations without much additional effort for 
the user.  
 
The following table shows the results of the optimized design compared to the initial 
design. For the two objective functions fuel consumption and power loss a great im-
provement could be achieved. Also both constraints on battery current (< 4.0e+007) 
and the maximum temperature (< 315 K) could be fulfilled in the final design. 
 

  

obj1            
fuel 

obj2          
ploss 

constr1     
bcurr 

constr2     
maxTemp 

(K) 

mean_FC 
(l/100km) 

Initial Design   12302.77 145218.92 12542666.38 316.37 2.10 

Optimal Design   1498.60 4505.82 9990640.07 301.28 1.56 

Absolute  
Improvement   

-10804.16 -140713.10 -2552026.31 -15.09 -0.54 

Relative  
Improvement   

-87.82% -96.90% -20.35% -4.77% -25.53% 

 
 
The complete model setup including all features was realized using the software 
MapleSim. All described optimization algorithms and used techniques to create DOE 
tables, response surface models or robustness analyses are included in the software 
OPTIMUS [7]. 
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