

Using Symbolic Technology to Derive Inverse Kinematic Solutions for Actuator

Control Development

P. Goossens*. T. Richard**

*Maplesoft, Waterloo, ON N2V 1K8

Canada (Tel: 519-747-2373; e-mail: pgoossens@maplesoft.com).

**Maplesoft, Auf der Hüls 198 52068 Aachen, DE (e-mail:

trichard@maplesoft.com)

Abstract: In multibody mechanics, the motion analysis for a platform (the kinematics problem) can be

classified into two cases: the forward kinematics and the inverse kinematics problems. For the forward

kinematics problem, the trajectory of a point on a mechanism (for example, the end effector of a robot

arm or the center of a platform support by a parallel link manipulator) is computed as a function of the

joint motions. In the inverse kinematics case, the problem is reversed: the goal is to compute the joint

motions necessary to achieve a prescribed end effector trajectory.

In general, given the mechanism geometry, it is quite straightforward to solve the forward kinematics

problem both numerically and symbolically. In contrast, solving for the inverse kinematic problem

typically involves solving a nonlinear system or equation with trigonometric functions. Issues such as

singularity, multiple solutions (as in the case of “elbow up” and “elbow down” configurations for a robot

arm), and no solution (as in the case in which the specified trajectory goes beyond the workspace of the

mechanism) can often come up, further complicating the solution process. The complexity in the inverse

kinematics problem is compounded even more for parallel link manipulators.

Because of the complexity involved, the inverse kinematics problem is often solved numerically through

iterations, and is computationally expensive. With a numeric approach, however, information about the

motion of the mechanism is often lost. In this paper, we will describe how to obtain a symbolic solution

to the inverse kinematics problem for two real problems using tools available in MapleSim™. The first, a

2 degrees-of-freedom (DOF) tracking radar gimbal is used to show the principal steps in a relatively

simple mechanism. These principles are then demonstrated with a much more complex mechanism: a

Stewart-Gough hydraulic platform.

Furthermore, we will show how having access to the symbolic Jacobian of the constraint equations

allows us to inspect and exploit the underlying matrix structure, which leads to a simplified solution

process for obtaining the symbolic solution.

An advantage of having a symbolic solution to the inverse kinematics problem is the possibility of code-

generating the symbolic solution so that it can be embedded in real-time hardware-in-the-loop (HIL)

applications. This approach can be contrasted with a purely numerical approach where the iterative

solution process makes it difficult to use in real-time applications.

Keywords: inverse kinematic problems, kinematics, modeling, simulation, mechanical engineering,

mechanical systems, computer-aided engineering, computer-aided system design

1. INTRODUCTION

In multibody mechanics, the motion analysis for a platform

(the kinematics problem) can be classified into two cases: the

forward kinematics and the inverse kinematics problems. For

the forward kinematics problem, the trajectory of a point on a

mechanism (for example, the end effector of a robot arm or

the center of a platform support by a parallel link

manipulator) is computed as a function of the joint motions.

In the inverse kinematics case, the problem is reversed: the

goal is to compute the joint motions necessary to achieve a

prescribed end effector trajectory.

In general, given the mechanism geometry, it is quite

straightforward to solve the forward kinematics problem both

numerically and symbolically. In contrast, solving for the

inverse kinematic problem typically involves solving a

nonlinear system or equation with trigonometric functions.

Issues such as singularity, multiple solutions (as in the case

of “elbow up” and “elbow down” configurations for a robot

arm), and no solution (as in the case in which the specified

trajectory goes beyond the workspace of the mechanism) can

often come up, further complicating the solution process. The

complexity in the inverse kinematics problem is compounded

even more for parallel link manipulators.

Because of the complexity involved, the inverse kinematics

problem is often solved numerically through iterations, and is

computationally expensive. With a numeric approach,

however, information about the motion of the mechanism is

often lost. In this paper, we will describe how to obtain a

symbolic solution to the inverse kinematics problem for two

real problems using tools available in MapleSim™. The first,

a 2 degrees-of-freedom (DOF) tracking radar gimbal is used

to show the principal steps in a relatively simple mechanism.

These principles are then demonstrated with a much more

complex mechanism: a Stewart-Gough hydraulic platform.

Furthermore, we will show how having access to the

symbolic Jacobian of the constraint equations allows us to

inspect and exploit the underlying matrix structure, which

leads to a simplified solution process for obtaining the

symbolic solution.

An advantage of having a symbolic solution to the inverse

kinematics problem is the possibility of code-generating the

symbolic solution so that it can be embedded in real-time

hardware-in-the-loop (HIL) applications. This approach can

be contrasted with a purely numerical approach where the

iterative solution process makes it difficult to use in real-time

applications.

2. SYMBOLIC INVERSE KINEMATICS: TRACKING

RADAR GIMBAL CONTROL

Fig. 1. Problem: How to define required elevation/azimuth

angles of gimbal to maintain contact with target while

aircraft is moving?

A tracking radar on an aircraft uses a 2 DOF gimbal

mechanism (elevation and azimuth) to position the radar dish

to point at a selected target, typically located by a global

positioning system that provides the latitude, longitude and

altitude (X, Y, Z) of the target. Since the aircraft can

approach the target from any position and altitude, and with

any orientation, determining the required azimuth and

elevation angles is a major challenge for the designers of the

servo drives for the gimbal.

A very innovative solution to this problem – and an excellent

demonstration of the power of symbolic technology – is the

use of Inverse Kinematics to provide an exact solution for the

azimuth and elevation angles, given the topology of the

mechanism and defining the line of sight between the radar

dish and the target as a constraint.

In general terms, Inverse Kinematics (IK) is a robotics

technique that is used to determine the required joint angles

to cause the end-effector to follow a predetermined path. In

this particular case, the aircraft and radar gimbal can be

considered as a robotic mechanism, with the line of sight

defining the path of the end-effector (the radar dish).

Fig. 2. Solution: Inverse Kinematics

In MapleSim, the “mechanism” can be described in three

parts: the aircraft, modeled as a 6-DOF platform; the gimbal,

modeled as a 2-DOF platform; and the target, defined as a

point in space as absolute X, Y, Z coordinates. The line of

sight is defined as a position constraint, connected between

the centre of the radar gimbal and a spherical joint at the

target, with a prismatic joint. This mechanically connects the

gimbal to the target, making the gimbal angles

mathematically deterministic.

Fig. 3. MapleSim model preparation

In a little more detail: the aircraft model uses MapleSim

multibody components - three prismatic joints to define the

X, Y and Z translation motion, and three revolute joints to

define the rotational motion (pitch, roll, yaw). Similarly, the

gimbal model uses two revolute joints for the azimuth and

elevation rotations.

Any of these joints can be used to drive the aircraft motion in

flight as well as the direction of the radar dish. Each joint is

uniquely named which helps to identify the required variables

when the equations of motion are generated. Furthermore, to

ensure the required variables appear in the equations, the

constraints need to be explicitly included in the model. This

can be achieved by setting the appropriate options for each of

the joints.

Once the mechanism model has been created in MapleSim,

the model can be accessed in Maple™ and, using its

multibody analysis tools, the equations of motion for the

mechanism can be automatically extracted.

Fig. 4. Inverse Kinematic solution in Maple

Figure 4 shows the resulting equations of motion in Maple.

The Multibody:-BuildEQs() command extracts the

relationships defined by the mechanism topology given in the

MapleSim model and combines them appropriately to

generate the dynamic and kinematic equations of motion.

This includes the mathematical expressions for the kinematic

constraints in terms of the rotational and translational joints.

The two constraint equations take the form:

, where is the vector (aircraft) body position and are

the body orientation angles. Also are the azimuth and

elevation angles of the gimbal, respectively.

Fig. 5. MapleSim custom component

To implement these symbolic constraint expressions in the

MapleSim model, the equations can be used to create a

custom component, taking the aircraft position and rotation as

input signals and returning the required Elevation and

Azimuth angles. The absolute coordinates of the target

position are entered as parameters. The Maple algebraic

solver will solve for the Elevation and Azimuth angles

automatically when the simulation is executed.

Fig. 6. Implementation of Inverse Kinematic solution in

MapleSim

The resulting custom component is used to modify the earlier

model (see Figure 2) by connecting the angle outputs to the

elevation and azimuth joints in the gimbal model by way of

1D rotational motion drivers. To drive the model, a file of

aircraft flight data can be used to provide the required

translational and rotational motions of the aircraft. However,

for the purpose of this initial test, a simple set of sine-wave

signals are used. These signals are sent to the aircraft

platform model as well as the inputs to the custom

component.

The line-of-sight position constraint can now be disabled

since the results from the custom component will now drive

the joint angles.

The best way of testing if the generated angles are correct is

to use MapleSim’s 3-D visualization capability to produce an

animation of the resulting simulation. A video about this

model can be found on the Maplesoft website. You will see

from this video that the tracking “beam” – a perpendicular

line that extends from the centre of the radar dish – always

goes through the target as the “aircraft” moves around.

After testing that the angles from the IK solution are correct,

they can then be used as set-point angles for the servo motors

on the gimbal.

Fig. 7. Implementation of servo drives

In this example, the motors are modelled as torque drivers

with the required torque being calculated by a PID controller.

These replace the motion drivers in the model for the

elevation and azimuth.

After some tuning of the controllers, the resulting responses

on Figure 8 show the actual joint angles stabilize very

quickly and track the IK angles very closely thereafter.

Fig. 8. Time response of servo controlled joint angles

3. STEWART-GOUGH PLATFORM

The second example we present in this paper is a parallel

robot that once was considered one of the most difficult

problems of robot kinematics, the Stewart-Gough platform.

The Stewart-Gough manipulator is a six-DOF parallel linkage

mechanism. There are several variations in the leg

configurations of a Stewart-Gough platform. In this paper, we

will be looking at a Stewart-Gough (see Figure 9) whose

motion is provided through six prismatic joints; each is

anchored with a universal joint (two cascaded revolute joints)

on one end and a spherical joint on the other end as shown in

Figure 10). Each of the platform legs is defined with five

parameters, specifying the x-y offset of the two anchor points

(Xg, Yg, Xp, and Yp) and the base anchor rotation angle

offset (Ang). The inverse kinematics problem in this case is

to find the length of each of the six prismatic joints that will

result in a desired motion trajectory for the supported

platform.

Fig. 9. Screenshot of Stewart-Gough platform in MapleSim

Fig. 10. Platform leg structure

In a similar manner, we can use a specialized set of Maple

commands to retrieve the symbolic system equations for the

Stewart-Gough platform and then obtain a set of 18 constraint

equations for the six prismatic joint lengths, plus 12 revolute

joint angles for the orientation of the legs. In addition to

being a nontrivial problem to solve, the sheer size of this

inverse problem implies that even with numeric iterations, the

calculations involved are still quite intense. Further, the

numeric solution would not provide any insights into the

structure of the problem that might be exploited for design or

performance considerations.

As it turns out, for this particular leg configuration, a

structural property can be exploited to simplify the solution

of the inverse kinematic problem so that a closed-form

symbolic solution can be obtained. The 18 position constraint

equations come from the spherical joints that are used to

attach each leg to the platform, which result from enforcing

the x, y, z position of each leg’s end to be coincident with a

given point on the platform. Such structural properties can be

observed from the definition of the state vector and the 18x24

position constraint Jacobian matrix (for 18 constraints and 24

generalized coordinates) that can be easily inspected using

the matrix browser in the Maple template. The constraint

equations vector are bundled into six groups corresponding to

the variables associated with each of the six legs in the

system that can be solved independently. Doing so, we can

transform the original problem of solving 18 nonlinear

constraint equations into a problem of solving six sets of

three nonlinear constraint equations independently. The

overall inverse kinematic problem can be further stripped

down to only solving a subset of three position constraint

equations by taking advantage of the symmetry and

parametric nature of the leg component. The reduced set of

position constraint equations are shown in Figure 11.

Fig. 11. A subset of position constraints

With this simplified problem, we can now readily implement

these equations as a custom component in MapleSim to

obtain an inverse kinematics simulation. The result of the

simulation is shown in Figure 12.

Fig. 11. Inverse Kinematics solution

4. CONCLUSION

Inverse kinematics is a highly advanced approach to solving

motion planning problems. While there are many benefits to

using an inverse kinematic approach, the difficulties in

solving these problems manually mean that often non-robust

and iterative techniques are used instead. In this paper, we

have shown how inverse kinematics problems can be solved

by taking advantage of MapleSim’s ability to access the

underlying symbolic system and exploit the symbolic

structure of the Jacobian matrix. It should be noted that the

same problem can also be solved numerically within

MapleSim by applying enforced motion to the system by

using a Prescribed Translation motion driver component.

However, such a purely numerical solution does not have the

same flexibility as the symbolic solution presented in this

paper. Using the symbolic solution obtained here and

MapleSim’s code generation feature, efficient simulation

code can be obtained and embedded into other platforms,

unlocking the possibility for real-time applications.

5. REFERENCES

Solving inverse kinematic problems: tracking-radar motion

control. (Online), November 15, 2011.

http://www.maplesoft.com/products/maplesim/demo/inv

erse_kinematic_gimbal.aspx.

