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Abstract: In multibody mechanics, the motion analysis for a platform (the kinematics problem) can be 

classified into two cases: the forward kinematics and the inverse kinematics problems. For the forward 

kinematics problem, the trajectory of a point on a mechanism (for example, the end effector of a robot 

arm or the center of a platform support by a parallel link manipulator) is computed as a function of the 

joint motions. In the inverse kinematics case, the problem is reversed: the goal is to compute the joint 

motions necessary to achieve a prescribed end effector trajectory. 

In general, given the mechanism geometry, it is quite straightforward to solve the forward kinematics 

problem both numerically and symbolically. In contrast, solving for the inverse kinematic problem 

typically involves solving a nonlinear system or equation with trigonometric functions. Issues such as 

singularity, multiple solutions (as in the case of “elbow up” and “elbow down” configurations for a robot 

arm), and no solution (as in the case in which the specified trajectory goes beyond the workspace of the 

mechanism) can often come up, further complicating the solution process. The complexity in the inverse 

kinematics problem is compounded even more for parallel link manipulators. 

Because of the complexity involved, the inverse kinematics problem is often solved numerically through 

iterations, and is computationally expensive. With a numeric approach, however, information about the 

motion of the mechanism is often lost. In this paper, we will describe how to obtain a symbolic solution 

to the inverse kinematics problem for two real problems using tools available in MapleSim™. The first, a 

2 degrees-of-freedom (DOF) tracking radar gimbal is used to show the principal steps in a relatively 

simple mechanism. These principles are then demonstrated with a much more complex mechanism: a 

Stewart-Gough hydraulic platform. 

Furthermore, we will show how having access to the symbolic Jacobian of the constraint equations 

allows us to inspect and exploit the underlying matrix structure, which leads to a simplified solution 

process for obtaining the symbolic solution. 

An advantage of having a symbolic solution to the inverse kinematics problem is the possibility of code-

generating the symbolic solution so that it can be embedded in real-time hardware-in-the-loop (HIL) 

applications. This approach can be contrasted with a purely numerical approach where the iterative 

solution process makes it difficult to use in real-time applications. 
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1. INTRODUCTION 

In multibody mechanics, the motion analysis for a platform 

(the kinematics problem) can be classified into two cases: the 

forward kinematics and the inverse kinematics problems. For 

the forward kinematics problem, the trajectory of a point on a 

mechanism (for example, the end effector of a robot arm or 

the center of a platform support by a parallel link 

manipulator) is computed as a function of the joint motions. 

In the inverse kinematics case, the problem is reversed: the 

goal is to compute the joint motions necessary to achieve a 

prescribed end effector trajectory.  

In general, given the mechanism geometry, it is quite 

straightforward to solve the forward kinematics problem both 

numerically and symbolically. In contrast, solving for the 

inverse kinematic problem typically involves solving a 

nonlinear system or equation with trigonometric functions. 

Issues such as singularity, multiple solutions (as in the case 

of “elbow up” and “elbow down” configurations for a robot 

arm), and no solution (as in the case in which the specified 

trajectory goes beyond the workspace of the mechanism) can 

often come up, further complicating the solution process. The 

complexity in the inverse kinematics problem is compounded 

even more for parallel link manipulators. 



 

 

     

 

Because of the complexity involved, the inverse kinematics 

problem is often solved numerically through iterations, and is 

computationally expensive. With a numeric approach, 

however, information about the motion of the mechanism is 

often lost. In this paper, we will describe how to obtain a 

symbolic solution to the inverse kinematics problem for two 

real problems using tools available in MapleSim™. The first, 

a 2 degrees-of-freedom (DOF) tracking radar gimbal is used 

to show the principal steps in a relatively simple mechanism. 

These principles are then demonstrated with a much more 

complex mechanism: a Stewart-Gough hydraulic platform.  

Furthermore, we will show how having access to the 

symbolic Jacobian of the constraint equations allows us to 

inspect and exploit the underlying matrix structure, which 

leads to a simplified solution process for obtaining the 

symbolic solution.  

An advantage of having a symbolic solution to the inverse 

kinematics problem is the possibility of code-generating the 

symbolic solution so that it can be embedded in real-time 

hardware-in-the-loop (HIL) applications. This approach can 

be contrasted with a purely numerical approach where the 

iterative solution process makes it difficult to use in real-time 

applications. 

2. SYMBOLIC INVERSE KINEMATICS: TRACKING 

RADAR GIMBAL CONTROL 

 

Fig. 1. Problem: How to define required elevation/azimuth 

angles of gimbal to maintain contact with target while 

aircraft is moving? 

A tracking radar on an aircraft uses a 2 DOF gimbal 

mechanism (elevation and azimuth) to position the radar dish 

to point at a selected target, typically located by a global 

positioning system that provides the latitude, longitude and 

altitude (X, Y, Z) of the target. Since the aircraft can 

approach the target from any position and altitude, and with 

any orientation, determining the required azimuth and 

elevation angles is a major challenge for the designers of the 

servo drives for the gimbal. 

A very innovative solution to this problem – and an excellent 

demonstration of the power of symbolic technology – is the 

use of Inverse Kinematics to provide an exact solution for the 

azimuth and elevation angles, given the topology of the 

mechanism and defining the line of sight between the radar 

dish and the target as a constraint. 

In general terms, Inverse Kinematics (IK) is a robotics 

technique that is used to determine the required joint angles 

to cause the end-effector to follow a predetermined path. In 

this particular case, the aircraft and radar gimbal can be 

considered as a robotic mechanism, with the line of sight 

defining the path of the end-effector (the radar dish). 

 

Fig. 2. Solution: Inverse Kinematics 

In MapleSim, the “mechanism” can be described in three 

parts: the aircraft, modeled as a 6-DOF platform; the gimbal, 

modeled as a 2-DOF platform; and the target, defined as a 

point in space as absolute X, Y, Z coordinates. The line of 

sight is defined as a position constraint, connected between 

the centre of the radar gimbal and a spherical joint at the 

target, with a prismatic joint. This mechanically connects the 

gimbal to the target, making the gimbal angles 

mathematically deterministic. 

 

Fig. 3. MapleSim model preparation 

In a little more detail: the aircraft model uses MapleSim 

multibody components - three prismatic joints to define the 

X, Y and Z translation motion, and three revolute joints to 

define the rotational motion (pitch, roll, yaw). Similarly, the 

gimbal model uses two revolute joints for the azimuth and 

elevation rotations. 

Any of these joints can be used to drive the aircraft motion in 

flight as well as the direction of the radar dish. Each joint is 

uniquely named which helps to identify the required variables 

when the equations of motion are generated. Furthermore, to 

ensure the required variables appear in the equations, the 

constraints need to be explicitly included in the model. This 

can be achieved by setting the appropriate options for each of 

the joints.  

Once the mechanism model has been created in MapleSim, 

the model can be accessed in Maple™ and, using its 



 

 

     

 

multibody analysis tools, the equations of motion for the 

mechanism can be automatically extracted. 

 

Fig. 4. Inverse Kinematic solution in Maple 

Figure 4 shows the resulting equations of motion in Maple. 

The Multibody:-BuildEQs() command extracts the 

relationships defined by the mechanism topology given in the 

MapleSim model and combines them appropriately to 

generate the dynamic and kinematic equations of motion. 

This includes the mathematical expressions for the kinematic 

constraints in terms of the rotational and translational joints.  

The two constraint equations take the form: 

 

, where  is the vector (aircraft) body position and  are  

the body orientation angles.  Also  are the azimuth and 

elevation angles of the gimbal, respectively. 

 

Fig. 5. MapleSim custom component 

To implement these symbolic constraint expressions in the 

MapleSim model, the equations can be used to create a 

custom component, taking the aircraft position and rotation as 

input signals and returning the required Elevation and 

Azimuth angles. The absolute coordinates of the target 

position are entered as parameters.  The Maple algebraic 

solver will solve for the Elevation and Azimuth angles 

automatically when the simulation is executed. 

 

Fig. 6. Implementation of Inverse Kinematic solution in 

MapleSim 

The resulting custom component is used to modify the earlier 

model (see Figure 2) by connecting the angle outputs to the 

elevation and azimuth joints in the gimbal model by way of 

1D rotational motion drivers. To drive the model, a file of 

aircraft flight data can be used to provide the required 

translational and rotational motions of the aircraft. However, 

for the purpose of this initial test, a simple set of sine-wave 

signals are used. These signals are sent to the aircraft 

platform model as well as the inputs to the custom 

component. 

The line-of-sight position constraint can now be disabled 

since the results from the custom component will now drive 

the joint angles.  

The best way of testing if the generated angles are correct is 

to use MapleSim’s 3-D visualization capability to produce an 

animation of the resulting simulation.  A video about this 

model can be found on the Maplesoft website. You will see 

from this video that the tracking “beam” – a perpendicular 

line that extends from the centre of the radar dish – always 

goes through the target as the “aircraft” moves around. 

After testing that the angles from the IK solution are correct, 

they can then be used as set-point angles for the servo motors 

on the gimbal. 

 

Fig. 7. Implementation of servo drives 

In this example, the motors are modelled as torque drivers 

with the required torque being calculated by a PID controller. 

These replace the motion drivers in the model for the 

elevation and azimuth. 



 

 

     

 

After some tuning of the controllers, the resulting responses 

on Figure 8 show the actual joint angles stabilize very 

quickly and track the IK angles very closely thereafter. 

 

Fig. 8. Time response of servo controlled joint angles 

3. STEWART-GOUGH PLATFORM 

The second example we present in this paper is a parallel 

robot that once was considered one of the most difficult 

problems of robot kinematics, the Stewart-Gough platform. 

The Stewart-Gough manipulator is a six-DOF parallel linkage 

mechanism. There are several variations in the leg 

configurations of a Stewart-Gough platform. In this paper, we 

will be looking at a Stewart-Gough (see Figure 9) whose 

motion is provided through six prismatic joints; each is 

anchored with a universal joint (two cascaded revolute joints) 

on one end and a spherical joint on the other end as shown in 

Figure 10). Each of the platform legs is defined with five 

parameters, specifying the x-y offset of the two anchor points 

(Xg, Yg, Xp, and Yp) and the base anchor rotation angle 

offset (Ang). The inverse kinematics problem in this case is 

to find the length of each of the six prismatic joints that will 

result in a desired motion trajectory for the supported 

platform. 

 

Fig. 9. Screenshot of Stewart-Gough platform in MapleSim 

 

Fig. 10. Platform leg structure 

In a similar manner, we can use a specialized set of Maple 

commands to retrieve the symbolic system equations for the 

Stewart-Gough platform and then obtain a set of 18 constraint 

equations for the six prismatic joint lengths, plus 12 revolute 

joint angles for the orientation of the legs. In addition to 

being a nontrivial problem to solve, the sheer size of this 

inverse problem implies that even with numeric iterations, the 

calculations involved are still quite intense. Further, the 

numeric solution would not provide any insights into the 

structure of the problem that might be exploited for design or 

performance considerations.  

As it turns out, for this particular leg configuration, a 

structural property can be exploited to simplify the solution 

of the inverse kinematic problem so that a closed-form 

symbolic solution can be obtained. The 18 position constraint 

equations come from the spherical joints that are used to 

attach each leg to the platform, which result from enforcing 

the x, y, z position of each leg’s end to be coincident with a 

given point on the platform. Such structural properties can be 

observed from the definition of the state vector and the 18x24 

position constraint Jacobian matrix (for 18 constraints and 24 

generalized coordinates) that can be easily inspected using 

the matrix browser in the Maple template.  The constraint 

equations vector are bundled into six groups corresponding to 

the variables associated with each of the six legs in the 

system that can be solved independently. Doing so, we can 

transform the original problem of solving 18 nonlinear 

constraint equations into a problem of solving six sets of 

three nonlinear constraint equations independently. The 

overall inverse kinematic problem can be further stripped 

down to only solving a subset of three position constraint 

equations by taking advantage of the symmetry and 

parametric nature of the leg component. The reduced set of 

position constraint equations are shown in Figure 11. 

 

Fig. 11. A subset of position constraints 

With this simplified problem, we can now readily implement 

these equations as a custom component in MapleSim to 

obtain an inverse kinematics simulation. The result of the 

simulation is shown in Figure 12. 



 

 

     

 

 

Fig. 11. Inverse Kinematics solution 

4. CONCLUSION 

Inverse kinematics is a highly advanced approach to solving 

motion planning problems.  While there are many benefits to 

using an inverse kinematic approach, the difficulties in 

solving these problems manually mean that often non-robust 

and iterative techniques are used instead.  In this paper, we 

have shown how inverse kinematics problems can be solved 

by taking advantage of MapleSim’s ability to access the 

underlying symbolic system and exploit the symbolic 

structure of the Jacobian matrix.  It should be noted that the 

same problem can also be solved numerically within 

MapleSim by applying enforced motion to the system by 

using a Prescribed Translation motion driver component. 

However, such a purely numerical solution does not have the 

same flexibility as the symbolic solution presented in this 

paper. Using the symbolic solution obtained here and 

MapleSim’s code generation feature, efficient simulation 

code can be obtained and embedded into other platforms, 

unlocking the possibility for real-time applications. 
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