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Abstract

This thesis is concerned with the kinematics of an robot arm, more precisely

with the flexibility of the 3-dimensional robot arm for a fixed robot hand posi-

tion. The main question of this thesis is: How can we move the robot arm if we

fix the two ends of the robot arm in a 3-dimensional space?

We want to solve the mathematical model of the kinematics of the robot arm

in an algebraical way. This mathematical model will be a system of polynomial

equations. Therefore we take a look at the theory of polynomial ideals, elimi-

nation theory, Gröbner basis and resultants. Especially the relations between

ideals and algebraic sets are essential in elimination theory, which in turn is

essential for solving systems of polynomial equations. In elimination theory

we have to consider two steps, the elimination step and the extension step.

Gröbner basis and resultants are two common elimination steps.

Before we can solve the system of polynomial equations we have to model it.

So we have to take a look how we can put the robot arm in a mathematical

model. Then we have to derive a polynomial model of the general model. Then

we construct a polynomial ideal of the polynomials in the model. On this ideal

we can use the elimination steps of the theory. Afterwards we should be able to

solve simple univariate polynomials and extend the solutions in the extension

step.

The thesis also contains a maple program to calculate and simulate a given

robot arm for a fix hand position. For a better perception the thesis is sup-

ported by examples of a Stanford Manipulator.
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1. General definitions

The first chapter of this thesis gives attention to the theory we need to solve

systems of polynomial equations. Therefore we start with an explanation of

polynomials and their properties.

1.1. Polynomials

Before we start with the details we have to clear some definitions. What are

polynomials? What is a polynomial ring?

The ideas for the following definitions are from the books [CLO04], [CLO96] by

Cox, Little and O’Shea and [Win96] by F. Winkler.

Definition 1.1

Let X = {x1, . . . , xn} be a set of n variables. A power product or term in X is

a product of the form:

xα = xα1
1 · x

α2
2 · · ·x

αn
n

where α = (α1, . . . , αn) is a multi-exponent of non-negative integers, i.e.,

αi ∈ N.

For the set of all terms or power products in n variables we write [X].

We can multiply two terms xα·xβ by adding the associate exponents αi+βi. With

this multiplication and the neutral element 1 = x01 ·x02 · · ·x0n w.r.t. multiplication,

[X] is a monoid.

Definition 1.2

Consider the term xα = xα1
1 · · ·xαnn . Then the total degree of this term (or

power product) is deg(xα) = |α| = α1 + · · ·+ αn and the partial degree in xi is

αi, we write degxi(x
α) = αi.
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We can divide two terms, xα and xβ, if and only if all partial degrees αi ≥ βi.

Then the result is
xα

xβ
= xα1−β1 · · ·xαn−βn .

Now we can define polynomials over a commutative ring.

Definition 1.3

A polynomial a in X = {x1, . . . , xn} with coefficients in a commutative ring R

(over R) is a finite sum of the form

a =
∑
α∈Nn

aαx
α

where the aα ∈ R and for all but finitely many α we have aα = 0.

The summands aαxα in a are denoted as monomials in a.

By R[X] we denote the set of all polynomials in X over R.

Definition 1.4

Let a =
∑

α aαx
α be a polynomial in R[X].

1. aα is called the coefficient of the term xα in a.

2. The total degree of f , deg(f), is the maximal degree of the terms in f

with a non-zero coefficient.

At the moment a polynomial is just an algebraic expression. If we want to do

calculations with polynomials, we need to define polynomial functions.

Definition 1.5

Let a be a polynomial over R in n variables, A ⊂ Nn the finite set of multi-

exponents with a non-zero coefficient in a and (b1, . . . , bn) a vector in Rn. Then
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the function

fa : Rn −→ R

fa(b1, . . . , bn) =
∑
α∈A

aαb
α1
1 . . . bαnn

is called the polynomial function of a.

Now we define some expressions and definitions of terms and polynomials.

Definition 1.6

Let s be a power product in [X], f a non-zero polynomial in R[X] and F ⊂

R[X]. By

coeff(f, s) we denote the coefficient of s in f

lpp(f) := max<{t ∈ [X]| coeff(f, t) 6= 0}

lc(f) := coeff(f, lpp(f))

lm(f) := lc(f)lpp(f)

red(f) := f − lm(f)

lpp(F ) := {lpp(f)|f ∈ F \ {0}}

lc(F ) := {lc(f)|f ∈ F \ {0}}

lm(F ) := {lm(f)|f ∈ F \ {0}}

red(F ) := {red(f)|f ∈ F \ {0}}

lpp is the acronym of "leading power product", lc of the "leading coefficient", lm

of "leading monomial" and red is the acronym of "reductum".
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Ring properties of polynomials

If we want to add two polynomials p, q we simply add the coefficients of the

associated terms.

Definition 1.7

Let a, b ∈ R[X] so that,

a(x) = aα(n)xα
(n)

+ · · ·+ aα(1)xα
(1)

b(x) = bα(m)xα
(m)

+ · · ·+ bα(1)xα
(1)
.

Then the sum of the two polynomials is

a(x) + b(x) = (aα(n) + bα(n))xα
(n)

+ · · ·+ (aα(1) + bα(1))xα
(1)
.

So the degree of the new polynomial is max(deg(p), deg(q)), if the leading mono-

mials are not cancelled each other, lm(p) = −lm(q).

The zero polynomial 0, the polynomial where all coefficients are 0 ∈ R, is the

neutral element w.r.t. addition. −a,the polynomial we get if we replace all non-

zero coefficients with their inverse in R, is the inverse polynomial of a w.r.t.

addition. Thus we see a + (−a) = 0. If R is commutative w.r.t. addition then

also the addition of two polynomials is commutative.

If we want to multiply two polynomials p, q we have to multiply each monomial

of p with each monomial of q.
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Definition 1.8

Let p, q ∈ R[X].

p(x) = aα(n)xα
(n)

+ · · ·+ aα(1)xα
(1)

q(x) = bα(m)xα
(m)

+ · · ·+ bα(1)xα
(1)

Then the product of the two polynomials

p(x) · q(x) =
n∑
i=1

m∑
j=1

aα(i) · bα(j) · xα
(i)+α(j)

So the degree of our new polynomial is deg(p) + deg(q).

The 1 polynomial where all coefficients of xα ∈ [X] \ 1 are 0 ∈ R and the coeffi-

cient of 1 ∈ [X] is 1 ∈ R is the neutral element w.r.t. multiplication.

The multiplication in R[X] inherits the properties of the multiplication in R.

Therefore we can derive the lemma:

Lemma 1.9

Let R be a commutative Ring with identity and [X] the set of n variables. Then

the set of all polynomials R[X] is a commutative ring with identity w.r.t. to

the addition and multiplication defined above.

Therefore R[X] is the polynomial ring in the variables X over R.

Properties of polynomials

Because we work over fields in this thesis we mainly write K[X] for the polyno-

mial ring over the field K.

Proposition 1.10

Let K be an infinite field, and let f ∈ K[X]. Then f = 0 in K[X] if and only if

f : Kn → K is the zero function.
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One important property of the polynomial ring is the noetherian property. We

call a relation Noetherian if it fulfils an ascending or decreasing chain condi-

tion. For instance in the natural numbers there is no infinite strictly decreasing

sequence.

Definition 1.11

Let R be a commutative ring. Then a subset I ⊆ R is called an ideal of R if

and only if

• 0 ∈ I,

• a, b ∈ I ⇒ a+ b ∈ I,

• a ∈ I, r ∈ R⇒ a · r ∈ I.

Definition 1.12

We say that the basis condition holds for a commutative ring with identity

R, if every ideal I ⊂ R has a finite basis. If the basis condition holds, we call

R a Noetherian ring.

Lemma 1.13

A commutative ring with identity R is a Noetherian Ring if and only if there

are no infinite strictly ascending chains of ideals in R. I.e., if

I1 ⊂ I2 ⊂ · · · ⊂ R,

then there is an index k such that

Ik = Ik+1 = . . . .

Proof : Assume R is a Noetherian Ring and let I1 ⊂ I2 ⊂ I3 ⊂ . . . be an ascending chain

of ideals in R.

I :=

∞⋃
i=0

Ii
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We know that I is an ideal in R, therefore it has a finite basis. This basis must be

contained in some Ik, so Ik = Ik+1 = . . . .

The other way round, assume that an ideal I is not finitely generated. Choose a

non-zero element r1 ∈ I, then I1 := 〈r1〉 6= I. Extend I1 by an element r2 ∈ I \ I1;

I2 := 〈r1, r2〉 6= I. This step can be repeated indefinitely to get an infinite strictly

ascending chain of ideals in R.

Theorem 1.14 (Hilbert’s basis theorem)

If R is a Noetherian ring, then also the univariate polynomial ring R[x] is

Noetherian.

Proof : A proof of the Hilbert’s basis theorem can be found in van der Waerden’s book

[vdW67, Ch. 15]

We can extend this theorem to the polynomial ring R[X]. To show this we just

have to do an induction on the number of variables n.

Because the only two ideals of a field K, 〈0〉, 〈1〉, are finitely generated, the

following corollary is true.

Corollary 1.15

For any finite set of variables X, K[X] is a Noetherian ring.

Now let us define a concept similar to prime numbers, the reducibility or rather

irreducibility of polynomials.

Definition 1.16

Let K ⊆ L be fields. A polynomial p ∈ K[X] is reducible over L if and only if

there are two non-constant polynomials f, g ∈ L[X] so that p = f · g.

Otherwise p is irreducible over L.

Note that irreducibility depends on the field. For instance x2 + 4 is irreducible

over the field R, but you can reduce it to x2 + 4 = (x− 2i) · (x+ 2i) over the field

C.
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Similar to prime factorization in the integers there is an irreducible factoriza-

tion of polynomials.

Theorem 1.17

Every non-constant p ∈ K[X] can be written as a product p = p1 · · · pr where

all pi ∈ K[X] are irreducible polynomials over K. Furthermore, this factor-

ization is unique up to permutation and multiplication by constants.

Proof : The first part of the proof we can do with induction on the degree of p. From

Definition 1.16 we see that polynomials of degree 0 are irreducible. Assume all poly-

nomials of degree ≤ n can be written as a product of irreducibles.

Then for a polynomial p of degree n+ 1, we have to consider two cases.

• p is irreducible. Then we are done.

• p = f ·g where f, g ∈ K[X] with degree ≤ n. By the induction hypothesis f, g can be

written as product of irreducible polynomials. And therefore also p can be written

as product of irreducible polynomials.

Thus every polynomial can be factorized into irreducible polynomials.

For the uniqueness we first need an additional theorem.

Proposition 1.18

Assume p ∈ K[X] is an irreducible polynomial over K. Furthermore p divides

the product g · h with g, h ∈ K[X]. Then p divides g or h.

Proof : A proof for this proposition can be found in [CLO96, p.147 Thm. 3.].

Proof CONTINUATION Thm. 1.17 : To proof the uniqueness of the factorization we as-

sume that p has two irreducible factorizations f1 · · · fr = p = g1 · · · gs for non-constant

fl and gk.

g1 divide p, thus by Thm. 1.18 has to divide some fj. Because g1 and fj are irreducible

they have to be equal up to a non-zero constant, g1 = c1fj.

We can apply the same approach to g2 · · · gs and f1 · · · fj−1fj+1 · · · fr.
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Thus there is a fj for every gi with gi = cifi. It is easy to see that r = s, otherwise the

degree of the two products would not be the same.

You can also show that the product c1 · · · cs = 1. This is left to the reader.

Algorithms to factorize polynomials over Q into irreducibles are well known and

implemented in common computer algebra systems. Factorizing polynomials

p ∈ Q[X] over R and C is also possible but much more difficult.

For every polynomial ring K[X] we can consider the quotient field K(X). Quo-

tient fields are the smallest polynomial fields where it is possible to divide

polynomials, regardless if the divisor is a factor of the dividend or not. For the

definition of quotient fields see [Win96, Ch. 2.3].

At last we consider a corollary to Thm. 1.18 and Gauss’s Lemma, which will

be useful if we work with resultants.

Corollary 1.19

Assume f, g ∈ K[X] have positive partial degrees in x1. Then f and g have

a common factor in K[X] of positive degree in x1 if and only if they have a

common factor in K(x2, . . . , xn)[x1].

1.2. Term orderings

We know that polynomials are sums of monomials, or more precisely terms.

So to arrange polynomials or compare two polynomials we have to compare

terms. Thus we have to introduce an ordering on the terms [X].

If we have polynomials in just one variable (K[x]) we order the term by the

degree, xt+1 > xt. If we have linear polynomials in K[x1, . . . , xn] we will choose

an ordering like x1 > x2 > · · · > xn. Of course we can permute the order of the

variables.
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For general polynomials in K[X] the terms have the form xα = xα1
1 · · · · · xαnn , so

the exponent α is a n-tuple in Nn. This means that there is an isomorphism

from the set of terms in n variables to Nn. So we can choose an ordering on Nn

and say xα > xβ if and only if α > β.

After some operations on polynomials the terms in the resulting polynomial

are not arranged. So it would be nice if we could rearrange this polynomial.

To arrange a polynomial in the correct order two arbitrary terms have to be

comparable. In other words, the ordering has to be total (or linear). An ordering

is total if for every pair of terms xα and xβ exactly one of the three statements

xα < xβ

xα = xβ

xα > xβ

is true.

Therefore we define a term ordering in the following way:

Definition 1.20

A term ordering on [X] is a relation < on the set of terms xα, α ∈ Nn (or

equivalently, a relation on Nn) , satisfying:

1. 1 = x01 . . . x
0
n < t for all t ∈ [X] \ {1},

2. s < t⇒ su < tu for all s, t, u ∈ [X].

3. < is a total ordering.

We see that a term ordering is compatible with the monoid structure. Therefore

a term ordering is also called admissible ordering.

The following lemma will be important when we want to show the termination

property of our algorithms, which uses a term ordering.
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Definition 1.21

An ordering > on a set A is a well-ordering if and only if every strictly de-

creasing sequence in A

a1 > a2 > a3 > . . . ai ∈ A

eventually terminates.

In other words, every non-empty subset of Nn has a smallest element under

<.

It is easy to see that the term ordering is a well-ordering. The following Lemma

provides some properties of orderings on [X]. We also connect the mathemati-

cal terms noetherian and well-ordered.

Lemma 1.22 ( [Win96, L. 8.2.3] )

Let < be a term ordering on [X].

1. If s, t ∈ [X] and s divides t then s ≤ t.

2. < is Noetherian and consequently every subset of [X] has a smallest

element.

There are many different term orderings on Nn but not all of them are effec-

tive. The most common ones are the lexicographic ordering and the graduated

lexicographic ordering.

Definition 1.23 (Lexicographic ordering)

Let α, β ∈ Nn and π be a permutation on [1..n]. We say α >lex,π β if

∃i ∈ [1..n] ∀j ∈ [1..i− 1] : απ(j) = βπ(j) and απ(i) > βπ(i)

With π = id we get the usual lexicographic ordering.

Definition 1.24 (Graduated lexicographic ordering)

Let α, β ∈ Nn, π be a permutation on [1..n] and w : [1..n] → R+ a weight
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function. We say α >glex β if

n∑
i=1

w(i)αi >

n∑
i=1

w(i)βi or
n∑
i=1

w(i)αi =

n∑
i=1

w(i)βi and α >lex,π β

For the usual graduated lexicographic ordering we choose w(i) = 1.

Definition 1.25 (Graduated reverse lexicographic ordering)

Let α, β ∈ Nn, π. We say α >grlex β if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi, or |α| = |β| and α >lex,π β

where π(i) = n− j − 1.

There are other term orderings. One also can connect different orderings on a

set of variables. We can do that by partitioning the set of variables and putting

an ordering on each partition. Then we define a sequence of the different or-

derings.

We summarize the previous definitions to introduce an ordering on polynomi-

als.

Definition 1.26

Any term ordering < on [X] induces a partial ordering � on R[X], the in-

duced ordering, for g 6= 0 in the following way:

f � g iff f = 0 and g 6= 0 or

lpp(f) < lpp(g) or

lpp(f) = lpp(g) and red(f)� red(g).

Lemma 1.27

� is a Noetherian partial ordering on R[X].

Later we will need to divide a polynomial in K[X] by a set of other polynomials
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in K[X]. Thus, we define division in K[X].

Theorem 1.28 (Division in K[X], [CLO96, p. 61])

Fix a term ordering > on [X] and let F = (f1, . . . , fs) be an ordered s-tuple of

polynomials in K[X]. Then every f ∈ K[X] can be written as

f = a1f1 + · · ·+ asfs + r,

where ai, r ∈ K[X], and either r = 0 or r is a linear combination, with coeffi-

cients in K, of terms which are not divisible by any of lpp(f1), . . . , lpp(fs). r is

called a remainder of f divided by F .

13



2. Algebraic sets and ideals

In this section we define algebraic sets, varieties and polynomial ideals. We

will show how they are generated by polynomials and the correlation between

them.

The main ideas are from the first chapter of the book Ideals,varieties and algo-

rithms [CLO96].

2.1. Definitions

Definition 2.1

Let K be a field and n a positive integer. Then we define the n-dimensional

affine space over K as the set

Kn = {(a1, . . . , an) | a1, . . . , an ∈ K}.

One specific (a1, . . . , an) ∈ Kn is called a point in the affine space of Kn.

In other literature Kn is also written as An(K). We call K1 the affine line and

K2 the affine plane.

Subsets of the affine space, which can be described by polynomials, are called

algebraic sets.

Definition 2.2

Let K be a field and f1, . . . , fs polynomials in K[X]. Then

V(f1, . . . , fs) = {(a1, . . . , an) ∈ Kn | fi(a1, . . . , an) = 0 for all i ∈ [1 . . . s]}

is called the algebraic set defined by f1, . . . , fs.

EXAMPLE:

Let K = R. The algebraic set defined by f1 = x21 + x22 + x23 − 1, f2 = x1 − x2 is a

circle in R3. See Figure 1.
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Figure 1: Example

Lemma 2.3

Assume V,W ⊆ Kn are algebraic sets. Then also V ∪ W and V ∩ W are

algebraic sets in Kn.

Proof : Let V = V(f1, . . . , fs), W = V(g1, . . . , gt) and a = (a1, . . . , an) be a point in Kn. We

set:

V ∩W =V(f1, . . . , fs, g1, . . . , gt)

V ∪W =V(fi · gj | s ∈ {1..s}, j ∈ {1..t}).

If we look at the definition of algebraic sets we see that for the intersection all f1, . . . , fs

and g1, . . . , gt have to be 0. And by definition V(f1, . . . , fs, g1, . . . , gt) is this algebraic set.

For the union either all fi or all gi have to be 0 for a point a ∈ V ∪W . So if all fi(a) = 0

then of course fi · gj = 0 for all gi, therefore a ∈ V(fi · gj) which implies V ⊆ V(fi · gj).

To show W ⊆ V(fi · gj) we proceed the same way.

On the other hand, to show V(fi · gj) ⊂ V ∪W we assume a 6∈ V . So if a ∈ V(fi · gj) then

gj(a) = 0 for j ∈ [1 . . . t] or in other words a ∈W . We conclude that V(fi · gj) ⊂ V ∪W .
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Definition 2.4

An algebraic set V ⊆ Kn is reducible if and only if there are two algebraic

sets V1, V2 ⊂ V , so that V = V1∪V2. Otherwise V is irreducible. An irreducible

algebraic set is called a variety.

A subset I ⊆ R[X] which fulfils the ideal conditions ( 0 ∈ I, closed under addi-

tion of ideal elements and multiplication with ring elements) is called polyno-

mial ideal.

Now the question rises, how we can represent or generate a polynomial ideal.

Lemma 2.5

Let f1, . . . , fs ∈ R[X]. Then

I = 〈f1, . . . , fn〉 = { p1f1 + · · ·+ psfs | pi ∈ R[X] for i ∈ [1 . . . s]}.

is a polynomial ideal.

Proof : We have to show that all 3 conditions of 1.11 are fulfilled.

1. If we set all pi = 0 we get 0.

2. Let p = p1f1 + · · ·+ psfs and q = q1f1 + · · ·+ qsfs.

Then p+q = (p1 +q1)f1 + · · ·+(ps +qs)fs is in I because pi +qi ∈ R[X] for i = 1, . . . , s.

3. Let f = p1f1 + · · ·+ psfs and h ∈ R[X].

Then hf = (hp1)f1 + · · ·+ (hps)fs is in I because hpi ∈ R[X] for i = 1, . . . , s.

Definition 2.6

We call I = 〈f1, . . . , fn〉 the ideal generated by {f1, . . . , fs}.

Definition 2.7

Let I = 〈f1, . . . , fn〉. Then we call {f1, . . . , fn} a basis of the ideal I.

The next lemma will show us that a non-zero constant generates the whole

polynomial ring K[X].
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Lemma 2.8

The ideal which is generated by a non-zero constant, is the whole polynomial

ring K[X].

Proof : Let c be in I then c · c−1 = 1 is also in the ideal. Then by 1.11 (3) all r ∈ K[X]

are also in the ideal. Thus I = K[X].

2.2. Correlation between ideals and algebraic sets

It also would be nice if we could find a connection between ideals and algebraic

sets. In the following we create such a connection.

Proposition 2.9

If {f1, . . . , fs} and {g1, . . . , gt} are bases of the same ideal in K[X], 〈f1, . . . , fs〉 =

〈g1, . . . , gt〉, then V(f1, . . . , fs) = V(g1, . . . , gt).

Proof : Assume a point a = (a1, . . . , an) ∈ V(f1, . . . , fs). Then fi(a) = 0 for i ∈ [1..s].

g1, . . . , gt are in the ideal generated by 〈f1, . . . , fs〉. Therefore we can write each gj as

gj =

s∑
i=1

cifi for ci ∈ K[X].

It is easy to see that then gj(a) = 0 for j ∈ [1..t] and thus a ∈ V(g1, . . . , gt).

We proceed the same way to show the other way round.

Definition 2.10

Let V ⊆ Kn be a subset of the affine space. We denote

I(V ) = {f ∈ K[X] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }

as the ideal of V .

It is easy to show that I(V ) is actually an ideal.
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Lemma 2.11

Let V ⊂ Kn then I(V ) ⊂ K[X] is an ideal.

Proof : It is easy to see that I(V ) ⊂ K[X] and 0 ∈ I(V ), because every point vanishes

on the zero polynomial. Let f, g ∈ K[X] be polynomials which vanish on V and an

arbitrary h ∈ K[X]. Then for a (a1, . . . , an) ∈ V :

f(a1, . . . , an) + g(a1, . . . , an) = 0 + 0 = 0.

h(a1, . . . , an) · g(a1, . . . , an) = h(a1, . . . , an) · 0 = 0.

Thus I(V ) is an ideal

For an algebraically closed field K, we can ask the question: What is the ideal

of V = Kn or V = ∅?

For V = Kn we need the polynomials which vanish on the whole algebraic

space Kn. By Prop. 1.10 we know that just the zero polynomial satisfies this

condition for infinite fields. We know algebraically closed fields are infinite, so

I(Kn) = 〈0〉 = {0}.

If V = ∅, we need the polynomials which do not have a zero. Constant polyno-

mials different from 0 fulfil this. But if we have a constant in the generator of

an ideal the whole polynomial ring is the ideal. So I(∅) = 〈1〉 = K[X].

This is a theorem called the Weak Nullstellensatz.

Theorem 2.12

Let K be an algebraic closed field and I ⊆ K[X] be an ideal satisfying V(I) =

∅. Then I = K[X]

Proof : In the Book [CLO96, P. 168] you find a detailed proof of this theorem.

Another question is: Is an ideal I equal to the ideal I(V(I))? The next lemma

gives us the answer.
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Lemma 2.13

If f1, . . . , fs ∈ K[X], then 〈f1, . . . , fs〉 ⊆ I(V(f1, . . . , fs)). Note they can be differ-

ent.

That inequality can occur because there are maybe smaller polynomials than

the fi where the algebraic set vanishes. For instance, this will occur if the fi’s

are not square-free. Take the ideal I = 〈(x2 + 2y2 − 2)2〉, then I ′ = I(V(I)) =

〈x2 + 2y2 − 2〉, because of course all points which vanish on I will also vanish

on I ′. We see that the second ideal contains more polynomials than the first

one. I ′ is called the radical ideal of I. But more on that later.

The following proposition shows some properties of the correspondence of ide-

als and algebraic sets.

Proposition 2.14

Let V and W be algebraic sets in Kn. Then:

• V ⊂W if and only if I(V ) ⊃ I(W ).

• V = W if and only if I(V ) = I(W ).

Lemma 2.15

Let I, J be ideals and {Iα}α∈A be an arbitrary family of ideals. Then

• V (
⋃
α∈A Iα) =

⋂
α∈A V (Iα).

In words, the intersection of arbitrary many algebraic sets is an alge-

braic set.

• V (I) ∪ V (J) = V (I ∩ J) = V ({f · g | f ∈ I and g ∈ I).

In words, every finite union of algebraic sets is an algebraic set

By the last lemma and the facts that V (0) = Kn and V (1) = ∅ we get a topology

on Kn by letting the algebraic sets be the closed sets. The necessary open sets

for a topology are the complements of the algebraic sets.
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Definition 2.16

We define a topology on Kn by choosing the closed sets of the topology as the

the algebraic sets in Kn. This topology is called the Zariski topology.

A further important question is:

Can we represent every ideal by a finite basis/generating set?

Theorem 2.17

Let X be a finite set of variables. Then every ideal I ⊂ K[X] has a finite basis.

So every ideal can be written as I = 〈g1, . . . , gt〉 for gi ∈ K[X].

Proof : The theorem is a direct consequence of the Hilbert’s basis theorem (1.14).

This can easily be shown by induction on the number of variables. K is a field and

therefore K is finitely generated. Then by the Hilbert’s basis theorem K[x1] is also

finitely generated. If we apply the Hilbert’s basis theorem again we get that K[x1][x2] =

K[x1, x2] is finitely generated.

So if we apply the Hilbert’s basis theorem n times, we see that every ideal in K[X] has

a finite basis.

Now we know that every polynomial ideal, over a field K in finite variables, has

a finite basis. We still have to clarify the relation between I and I(V(I)). From

Lemma 2.13 we know,

I ⊆ I(V(I)).

In some cases the two ideals are equal. But which conditions must an ideal I

fulfil to be equal with the ideal of the algebraic set defined by the ideal I?

To answer this question we have to define radical ideals.

Definition 2.18

Let k ≥ 1 be a positive integer and I ∈ K[X] be an ideal. If fk ∈ I implies that

f ∈ I then we call I radical.
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Let I ∈ K[X] be an ideal. The radical of I, denoted by
√
I, is the set

{f : fk ∈ I for some integer k ≥ 1}.

So we see that if we decompose polynomials f ∈ I into m irreducible factors fi,

f = fe11 f
e2
2 · · · f

em
m .

Then the radical of I,
√
I, contains the polynomials

f ′ = f1f2 · · · fm.

For completeness we have to show that
√
I is an ideal. Moreover

√
I is radical.

Lemma 2.19

Let
√
I be as in the definition above. Then

√
I is an ideal in K[X] containing

I and I is radical.

Proof : We can find a proof for this lemma in the book [CLO96, P. 174].

With this theory we can answer the question.

Theorem 2.20 (Strong Nullstellensatz)

Let K be an algebraically closed field and I ⊆ K[X] be an ideal. Then

√
I = I(V(I))

Proof : It is easy to see that
√
I ⊆ I(V(I)). Assume f ∈

√
I, then by definition fk

vanishes on V(I) for some k ≥ 1. f has the same zeros as fk therefore it also vanishes

on V(I). Thus f ∈ I(V(I)).

Let f ∈ I(V(I)). Then by the Hilbert’s Nullstellensatz there is a k so that fk ∈ I. By

definition of the radical of I we see f ∈
√
I. We can follow I(V(I)) ⊆

√
I.
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So if I is radical then there is a bijection to an algebraic set.

By this theorem we can show the ideal-algebraic set correspondence.

Theorem 2.21

Let K be an algebraically closed field. Then there is a bijection between

algebraic sets and radical ideals. Moreover this bijections is exact I and V.

algebraic sets ←→ radical ideals

√
I

I−→

←−
V

V
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3. Elimination theory

In this section we will consider how to solve systems of polynomial equations

with elimination theory. Therefore we study two important concepts, the elim-

ination and the extension, and take a look at the geometric interpretation of

elimination and the Closure Theorem. The ideas, which are presented in this

chapter, are mainly from [CLO96, Ch. 3].

So the problem we want to solve is to develop an easy algorithm to calculate

the algebaric set V(I) to a corresponding ideal I.

3.1. Elimination step and extension step

When we talk about elimination, we want to reduce the number of variables

or rather the number of equations. For linear systems of polynomial equations

there is the comparatively simple Gaussian elimination algorithm. For general

systems of polynomial equations in K[X] elimination is a bit harder.

When an elimination algorithm is finished and just one equation or one vari-

able is left we can solve it and extend the the solutions to the polynomial

equations of more variables. That we call extension.

Thus we have to do two steps to solve polynomial equation systems:

• Elimination step: Find simpler equations in fewer variables which have

partial solutions of the original system of polynomial equations.

• Extension step: Extend this partial solutions to solutions of the original

system.

First we have a look at the elimination step. Therefore we need to clarify the

term elimination ideal.

Definition 3.1

Let I = 〈f1, . . . , fs〉 ⊆ K[X], then the j-th elimination ideal Ij is the ideal
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defined by

Ij = I ∩K[xj+1, . . . , xn]

So Ij just consists of the polynomials in I which are independent of the vari-

ables x1, . . . , xj. Note that the elimination ideal depends on the ordering of the

variables.

One way to get the elimination ideals are Gröbner Bases. Thus in the chapter

Gröbner Bases we will see a simple way to calculate elimination ideals with

Gröbner Bases.

Another approach to elimination theory is the theory of resultants. We will also

have a look on them in a later chapter.

If we have a dimensional smallest, non empty elimination ideal, we can calcu-

late the partial solutions, the algebraic set of this ideal.

So the basic idea is to construct the solutions coordinate by coordinate. So

if we have the so called partial solutions (aj+1, . . . , an) of the j-th elimination

ideal Ij we maybe can extend this solution to a greater elimination ideal Il

(l < j). The next theorem gives a mathematical description of this extension.

Theorem 3.2 (The extension theorem)

Let K be algebraically closed and I = 〈f1, . . . , fs〉 ⊆ K[X]. We can write each

fi, i ∈ [1..s], in the form

fi = gi(x2, . . . , xn)xNi1 − monomials of degree < Ni in x1,

where Ni ≥ 0 and gi ∈ K[x2, . . . , xn] is non-zero.

Suppose that we have a partial solution of the first elimination ideal I1 of I,

(a2, . . . , an) ∈ V(I1). If (a2, . . . , an) /∈ V(g1, . . . , gs), then there exists a a1 ∈ K

such that (a1, a2, . . . , an) ∈ V(I).
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Proof : A proof for the extension theorem by resultants is given in [CLO96, Ch. 3, §6]

Lets have a look at the properties of the extension theorem.

K has to be algebraically closed. If not we use the algebraic closure K̄ of K in

the theorem because every equation has to be solvable. For instance if we have

the equations f1 = x2 − y, f2 = y + 1 ∈ R[x, y], the partial solution of I1 is (−1) in

R[y]. If we extend it to I we get x2 + 1 = 0, what is unsolvable in R. But if we

use the algebraic closed field C instead of R we can extend the partial solution

(−1) to the solution (±i,−1).

We also assume that the leading coefficients gi are not zero in the partial so-

lutions. The need of this condition will be clear if we have a look at the ideal

I = 〈xy − 1, xz − 1〉 ⊂ C[x, y, z]. I1 = 〈y − z〉, thus we have the partial solution

(a, a). When we extend this partial solution we get ( 1a , a, a) except for the partial

solution (0, 0) where the leading coefficients y and z of I vanish.

So from the Extension theorem we see that the extension step can only fail

when the leading coefficients gi vanish simultaneously.

Sometimes we can change the variety V(g1, . . . , gs) by changing to a different

basis of the original ideal I. And we should also note, that if we work in the

projective space we can extend all partial solutions.

3.2. Geometric interpretation

In this section we will consider the geometric interpretations of the elimination

theorem and the extension theorem. We will work over the field K = C to sim-

plify this problem. In the geometrical way the elimination step is a projection

from the n-dimensional space to the n− 1-dimensional space.
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Definition 3.3

Let V ⊆ Cn be an affine variety. The projection map πk is defined by

πk : Cn 7→ Cn−k

(a1, . . . , an) → (ak+1, . . . , an)

If we apply πk(V ) we get the projection of the variety V into the affine space

Cn−k. So πk(V ) ⊆ Cn−k.

The following lemma links the projection πj(V ) and the j-th elimination ideal

Ij.

Lemma 3.4

Let Ij be the j-th elimination ideal of I = 〈f1, . . . , fs〉 ⊆ C[X]. Then in Cn−1, we

have

πj(V ) ⊆ V(Ij).

By the lemma we also can write πj(V ) in the following way

πj(V ) = {(aj+1, . . . , an) ∈ V(Ij) : ∃a1, . . . , aj ∈ C so that (a1, . . . , aj , aj+1, . . . , an) ∈ V }

In other words πj is exactly composed of the partial solutions that extend to

the complete solutions.

EXAMPLE:

Now we have a look at the example from above I = 〈xy−1, xz−1〉. As we already

know I1 = 〈y − z〉. Thus V(I1) is the line {(a, a)| a ∈ R} on the yz-plane though

the origin.

The projection of {(1/a, a, a)| a ∈ R \ 0} by eliminating the first coordinate x is

the line {(a, a)| a ∈ R \ 0} on the yz-plane excluding the origin (0, 0).

So we see that πj(V ) can be smaller than the algebraic set V(Ij). The following

theorem gives us a concrete picture of the missing parts.
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Theorem 3.5

Let I = 〈f1, . . . , fs〉 ⊆ C[X], and V = V(I) ⊆ Cn, with gi be as in the Extension

Theorem 3.2. If I1 is the first elimination ideal of I, then we have the equality

in Cn−1:

V(I1) = π1(V ) ∪ (V(g1, . . . , gs) ∩V(I1)),

where π1 : Cn → Cn−1 is the projection onto the last n− 1 components.

As we saw in the extension theorem we have to exclude the solutions of 〈g1, . . . , gs〉

from V(I1) to get the projection of V(I)

We can show some important connections between the projection and the elim-

ination ideals.

Theorem 3.6 (The closure theorem)

Let I = 〈f1, . . . , fs〉 ⊆ C[X], V = V(I) ⊆ Cn and let Ij be the j-th elimination

ideal of I. Then:

1. V(Ij) is the smallest affine variety containing πj(V ).

2. When V 6= 0, there is an affine variety W ⊂ V(Ij) such that V(Ij)−W ⊆

πj(V ).

Therefore we see that πj(V ) maybe omits some points of V(Ij) which are located

in a strictly smaller variety.

We showed the geometric interpretations and the Closure Theorem for the com-

plex numbers C. But we can show that this theorems and what follows from

them is true for any algebraically closed field.
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4. Gröbner bases

In a previous chapter we describe ideals and algebraic sets and see how they

are correlated. In this chapter we have a look at Gröbner basis. Gröbner

bases are special bases of ideals I ⊆ K[X], which make it easy to decide if a

polynomial in K[X] is in the ideal or not. Gröbner bases were introduced by

Bruno Buchberger who named them after his mentor W. Gröbner. [Buc65]

Gröbner bases are also useful for deciding many other problems in an ideal.

Amongst other things one is able to calculate the algebraic set to a correspond-

ing ideal in an easy way. In other words one can solve a polynomial equation

system with little effort.

Buchberger also developed an algorithm to calculate a Gröbner basis of an

ideal, given any finite basis in the polynomial ring K[X]. We will have a look at

this algorithm later in this chapter.

The ideas, definitions and theorems in this chapter are from Franz Winkler’s

book "Polynomial Algorithms in Computer Algebra" [Win96, Ch. 8].

4.1. Reduction of polynomials

To calculate a Gröbner basis we have to learn how to "reduce" polynomials.

For this purpose we have a look at reduction relations.

Definition 4.1

Let M be a set. Then we call a binary relation −→ on M a reduction relation

on M and write a −→ b if a can be reduced to b, or rather (a, b) ∈−→.

Let −→ and −→′ be two reduction relations on M , then we can define new

reduction relations on M ×M in the following way

• −→ ◦ −→′, the composition of two reduction relations. a −→ ◦ −→′ b if

and only if there exists a c ∈M such that a −→ c −→′ b.
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• −→−1 (or ←−) the inverse relation, is defined as a ←− b if and only if

b −→ a.

• −→sym (or ←→) the symmetric closure of −→, is defined as −→ ∪ ←−,i.e.

a←→ b if and only if a −→ b or a←− b.

• −→i, the i-th power of −→, is the reduction relation defined inductively

for i ∈ N0 as

−→0:= id ( a −→0 b if and only if a = b).

−→i:=−→ ◦ −→i−1 for i > 0

So a −→i b if and only if there exists c1, . . . , ci−1 such that a −→ c1 −→

. . . −→ ci−1 −→ b. We say a reduces to b in i steps.

• −→+:=
⋃∞
i=1 −→i, the transitive closure of −→.

• −→∗:=
⋃∞
i=0 −→i, the reflexive-transitive closure of −→.

• ←→∗, the reflexive-transitive-symmetric closure of −→.

Henceforth we assume that −→ is decidable, in other words one can decide

whether x −→ y or not.

When we take a look at the previous definition we see that ←→∗ is an equiva-

lence relation on M . By M/←→∗ we denote the set of equivalence classes modulo

←→∗. The basic problem for any equivalence relation is to decide if two objects

are equivalent. This problem is called the equivalence problem for the reduction

relation. In general, the equivalence problem might be hard to solve.

Now we define some properties of reduction relations to describe them.

Definition 4.2

Let x, y, z ∈M .

• x−→ means x is irreducible or in normal form w.r.t. −→, if and only if

there is not any y so that x −→ y.
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If the reduction relation −→ is clear from the context we just write x.

• x ↓ y represents that x and y have a common successor, i.e. x −→ z ←−

y for some z.

• x ↑ y represents that x and y have a common predecessor, i.e. x ←−

z −→ y for some z.

• x is a −→-normal form of y if and only if y −→∗ x and x is irreducible.

Note that in general there are more than one normal form for an element in M .

So usually the normal form is not unique.

Hereafter we assume that we are able to decide if x ∈ M is reducible and if so,

we are able to find a y ∈M so that x −→ y.

For the sake of usability we have to study some nice properties of reduction

relation. One of them is the termination property. A reduction relation has the

termination property if you have to get a normal form in finitely many steps.

The termination property of reduction relations is important if we use them in

algorithms. The uniqueness of the normal forms is another desirable property

of reduction relation and is also necessary in some applications of reduction

relation. The following definition defines the terms of these two properties.

Definition 4.3

a. −→ is Noetherian or has the termination property if and only if every

reduction sequence ends, i.e., there is no infinite sequence x1, x2, . . . in

M so that x1 −→ x2 −→ . . . .

b. −→ is Church-Rosser if and only if a←→∗ b⇒ a ↓∗ b.
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Theorem 4.4

If −→ is Noetherian and Church-Rosser, then the equivalence problem for

−→ is decidable.

Proof : Assume x, y ∈M and x̃, ỹ be normal forms relating to −→. Apparently x←→∗ y

if and only if x̃←→∗ ỹ. Because −→ is Church-Rosser, x̃←→∗ ỹ if and only if x̃ ↓∗ ỹ. We

know that x̃ and ỹ are irreducible, so by x̃ ↓∗ ỹ we can imply that x̃ = ỹ.

So x and y are in the same equivalence class modulo ←→∗ if and only if their normals

forms are equal.

So if the reduction relation is Noetherian and Church-Rosser then the normal

forms are unique.

The previous theorem does not work in both directions. It is possible that the

equivalence problem for −→ is decidable though it is not Church-Rosser or

Noetherian.

We can show the Church-Rosser property for a reduction relation if we can

connect two common predecessors below the parent element.

Definition 4.5

Assume > a partial ordering on M , x, y, z ∈M and −→ is a reduction relation

on the set M . x and y are connected below z (w.r.t. −→ and >) if and only if

there are w1, . . . , wn ∈ M such that x = w1 ←→ . . . ←→ wn = y and wi < z for

i ∈ [1..n]. We denote this by x←→∗(<z) y.

Theorem 4.6

Let −→ be a reduction relation on M and > a partial Noetherian ordering on

M such that −→ is a subset of > (−→ ⊂ >). Then −→ is Church Rosser if and

only if for all x, y, z ∈M :

x←− z −→ y ⇒ x←→∗(<z) y
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Proof : see [Win96, Thm 8.1.2, 8.1.3]

Eventually we define the polynomial reduction relation:

Definition 4.7

Let f, g, h ∈ K[X], F ⊆ K[X] and < a term ordering on [X]. We say that

g reduces to h w.r.t. f (g −→f h) if and only if there are power products

s, t ∈ [X] such that s has a non-vanishing coefficient c in g, s = lpp(f) · t and

h = g − c

lc(f)
· t · f. (1)

We say that g reduces to h w.r.t F ( g −→F h ) if and only if there are

f1, . . . , fk ∈ F such that g −→f1 . . . −→fk h.

In general the polynomial reduction do not have the Church-Rosser property.

To see the termination property we do an example.

EXAMPLE:

Let

F = {x21 + 4x2x3 − x3, x2x23 + 2x2} ⊂ R[x1, x2, x3] (2)

g = −x21x2x3 − 2x22x
2
3 + x2x

2
3 + 4x22 + x2 (3)

and < be the graduated lexicographic ordering with x1 > x2 > x3. Then we can

reduce g with the first polynomial in F , (c = −1, t = x2x3).

g −→f1 h1 := 2x22x
2
3 + 4x22 + x2

Afterwards we reduce h1 by f2, (c = −2, t = x2).

h1 −→f2 h2 := x2

h2 is irreducible by F because the leading power products of F are bigger than

the leading power product of h2.

So g −→F x2, where x2 is a normal form of g w.r.t. −→F .
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From Definition 4.7 we follow that this reduction relation is almost compatible

with the operations in a polynomial ring.

g1 −→F g2 =⇒
s · g1 −→F s · g2

g1 + h ↓∗F g2 + h
, (4)

for s ∈ K[X] \ {0}, F ⊆ K[X] and g1, g2, h ∈ K[X].

Furthermore we can observe that if we reduce g −→F h then h is smaller than

g, w.r.t. >. Thus we can follow that the reduction relation −→F is Noetherian.

Additionally we can proof the equality of the reflexive-transitive-symmetric-

closure of the reduction relation −→F and the congruence modulo the ideal

generated by F .

Theorem 4.8

Let F ⊆ K[X]. The ideal congruence modulo 〈F 〉 equals the reflexive-

transitive-symmetric closure of −→F .

x ≡〈F 〉 y ⇐⇒ x←→∗F y

for all x, y ∈ K[X].

Proof : A proof for this theorem you can find in the solution of the exercise 8.2.3. in

the book Polynomial Algorithms in Computer Algebra [Win96, p. 247].

So by Thm. 4.4 and 4.8 the congruence ≡F can be decided if −→F has the

Church-Rosser property. A set of polynomials F which fulfil the Church-Rosser

property is called Gröbner basis.

4.2. Theory of Gröbner bases

From Hilbert’s basis theorem we derive that the multivariate polynomial ring

over a field, K[X], is Noetherian or rather every ideal I in K[X] has a finite
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basis. Now we want to know if there are also finite nice bases with Church-

Rosser property, so called Gröbner bases.

Definition 4.9

Let F be a subset of K[X] ,−→F a polynomial reduction w.r.t. term ordering

< on [X].

F is a Gröbner basis of 〈F 〉 if and only if −→F is Church-Rosser.

Literature sometimes define different but equivalent definition for Gröbner

bases . One of them is:

Definition 4.10

For a fixed monomial ordering <, a finite subset G = {g1, . . . , gs} of an ideal I

is a Gröbner basis if and only if

〈lm(g1), . . . , lm(gs)〉 = 〈lm(I)〉.

Such a Gröbner basis is not unique. If we have an ideal I ∈ K[X], (K infinite)

then actually there are infinitely many Gröbner bases. Because if there is a

Gröbner basis, one can add any f ∈ I and get another Gröbner basis.

To check if a basis F is a Gröbner basis we first have to define the notion of

subtraction polynomials, also called S-polynomials.

Definition 4.11

Let f, g ∈ K[X]∗, t = lcm(lpp(f), lpp(g)). Then

cp(f, g) = (t− t

lm(f)
· f, t− t

lm(g)
· g)

is called the critical pair of f and g.

And the difference of the two elements of a critical pair,

Spol(f, g) =
t

lm(f)
· f − t

lm(g)
· g

is denoted as the S-polynomial of f and g.
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With the definition of S-polynomials we can implement Buchberger’s theorem.

Theorem 4.12 (Buchberger’s theorem)

Let F be a subset of K[X] and −→F the polynomial reduction w.r.t. to a term

ordering <.

1. F is a Gröbner basis (of 〈F 〉) if and only if g1 ↓∗F g2 for all critical pairs

(g1, g2) of elements in F .

2. F is a Gröbner basis if and only if spol(f, g) −→∗F 0 for all f, g ∈ F .

Proof : A proof for Buchberger’s theorem you can find in Winkler’s book "Polynomial

Algorithms in Computer Algebra" [Win96, Thm 8.3.1].

As I mentioned at the beginning there are algorithms to find a Gröbner bases

G for an ideal I. With the previous theorem we have enough theory to intro-

duce such an algorithm. Buchberger implemented this algorithm by using the

S-polynomials. A modern version of Buchbergers algorithm is given by the

algorithm GRÖBNERBASIS. As input for the algorithm we need an arbitrary

basis F for the ideal I and an ordering on the polynomials.

The polynomials, which are constructed in this algorithm, are elements of the

ideal 〈F 〉. So G is a basis of 〈F 〉 at any step of the algorithm. We also see

that this algorithm has to terminate, by applying Hilbert’s basis theorem to

the leading term ideal.

The Gröbner basis algorithm is a constructive proof of the following theorem:

Theorem 4.13

Every ideal I in K[X] has a finite Gröbner basis.

EXAMPLE: Let F = {x21x3 + 4x2x3 − x3, x1x23 + 2x2} ⊂ R[x1, x2, x3], and < be the

graduated lexicographic ordering with x3 < x2 < x1.
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Algorithm 1 GRÖBNERBASIS (Input : F,< Output : G)

. where F is a finite subset of K[X]∗, < is a term ordering on [X] and G is a

Gröbner basis of 〈F 〉 w.r.t. <.

G := F ;

C := {{g1, g2} | g1, g2 ∈ G, g1 6= g2};

while C is not empty do

choose an element {g1, g2} from C;

C := C \ {g1, g2}

h := Spol(g1, g2)

h := normal form of h w.r.t. −→G;

if h 6= 0 then

C := C ∪ {{g, h} | g ∈ G};

G := G ∪ {h};

end if

end while
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Now we use the Gröbner basis algorithm to F :

1. f3 := spol(f1, f2) = zf1 − xf2 = 4x2x
2
3 − 2x1x2 − x23

f3 is irreducible so G = {f1, f2, f3}

2. f4 := spol(f2, f3) = 4yf2 − xf3 = 2x21x2 + x1x
2
3 + 8x22

we reduce f4 by f2 and divide by 2 to f4 := x21x2 + 4x22 − x2, so G =

{f1, f2, f3, f4}

3. f5 := spol(f1, f3) = 4x2x3f1 − x2f3 = 2x31x2 + x21x
2
3 + 16x22x

2
3 − 4x2x

2
3

we can reduce f5 to 0 by 0 = ((((f5− 2x1f4)− x3f1)− 4x2f3) + f3). So G = G.

... the remaining S-polynomials also reduce to 0. This calculation are left for

the reader.

So we get the Gröbner basis

G = {x21x3 + 4x2x3 − x3, x1x23 + 2x2, 4x2x
2
3 − 2x1x2 − x23, x21x2 + 4x22 − x2}.

Lets have a look at some additional characterizations of Gröbner bases.

Theorem 4.14

Let I be an ideal generated by F ⊆ K[X]. Then the following are equivalent.

1. F is a Gröbner basis for I.

2. f −→∗F 0 for every f ∈ I.

3. f −→F for every f ∈ I \ {0}.

4. For all g ∈ I, h ∈ K[X]: if g −→∗F h then h = 0.

5. For all g, h1, h2 ∈ K[X]: if g −→∗F h1 and g −→∗F h2 then h1 = h2.

6. 〈lm(F )〉 = 〈lm(I)〉.

Proof : For a proof of this theorem see [Win96, Thm. 8.3.4. ].
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Sometimes Gröbner bases are contain more polynomials than needed. The

next theorem tells us which polynomials can be removed from the Gröbner

basis.

Theorem 4.15

Let F be a Gröbner basis for an ideal I in K[X]. Let f, g ∈ F , f 6= g.

1. If lpp(f)|lpp(g) then F ′ = F \ {g} is also a Gröbner basis of I.

2. If g −→f g
′ then F ′ = (F \ {g}) ∪ {g′} is also a Gröbner basis of I.

The reductions of this theorem just can be done if F is a Gröbner basis. Thus

we can not do this reduction already in the Buchberger algorithm.

The previous theorem leads to some definitions of basic properties of Gröbner

basis.

Definition 4.16

Let F be a Gröbner basis in K[X].

• F is called minimal if and only if lpp(f) is not a factor of lpp(g) for all

f, g ∈ F so that f 6= g.

• F is called reduced if and only if it is not possible to reduce f by g for

all f, g ∈ F and f 6= g.

• F is called normed if and only if all leading coefficiets are 1, lc(f) = 1

for all f ∈ F .

Although there are infinitely many Gröbner bases for an ideal I there is an

unique normed and reduced Gröbner basis for the ideal I w.r.t.given a term

ordering. So if we compute a normed and reduced Gröbner basis of an ideal

we always get the same unique Gröbner basis.
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Theorem 4.17

Every ideal in K[X] has an unique, finite, normed and reduced Gröbner basis

w.r.t. a term ordering <.

Proof : You find a proof for the theorem in [Win96, Thm. 8.3.6.].

Common computer algebra systems, like maple, automatically calculate a re-

duced Gröbner basis for an ideal w.r.t. an ordering.

4.3. Solving systems of algebraic equations by Gröbner bases

The essential application of Gröbner bases for this thesis is to solve algebraic

equation systems.

Assume p1, . . . , pm ∈ K[X]. Then we call the system

P (X) = 0 ⇔

p1(x1, . . . , xn) = 0
...

pm(x1, . . . , xn) = 0

, (5)

a system of polynomial (or algebraic) equations in K[X].

We get a polynomial ideal of the polynomial system by I = 〈p1, . . . , pm〉. The cor-

responding algebraic set are the solutions of the polynomial equation system.

In other words V(p1, . . . , pm) = V(〈p1, . . . , pm〉).

A polynomial equation system may do not have common solutions. If one have

a Gröbner bases of ideal of the polynomial system over an algebraically closed

field, then there is an easy way to check if it has solutions or not.

Theorem 4.18

Let K be algebraically closed and G be a normed, reduced Gröbner basis of

〈p1, . . . , pm〉. P (X) = 0 is unsolvable in Kn if and only if G = {1}.
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Proof : Suppose 1 ∈ G, so 1 ∈ 〈G〉 = I. Thus every solution of P (X) = 0 is a solution of

1 = 0. So this system is unsolvable.

On the other hand, assume P (X) = 0 is unsolvable, or rather there are no common

roots.

So by Hilbert’s Nullstellensatz all polynomials who do not have a root must be in
√
I.

Thus 1 has to be in
√
I, what implies 1 ∈ I. Because 1 must be reducible by G, 1 ∈ G

and because we can reduce every other polynomial by 1, G = {1}.

Therefore we can decide whether P (X) = 0 has solutions over an algebraically

closed field. It would be also interesting to know how many solutions are

there. Is there a finite or infinite number of solutions? If finitely many, how

many solutions are there? The next theorem gives an answer to that questions.

Theorem 4.19

Let G be a Gröbner basis of I. Then P (X) = 0 has finitely many solutions

if and only if for every i ∈ {1; . . . , n} there is a polynomial gi ∈ G such that

lpp(gi) is a pure power of xi. Moreover, if I is 0-dimensional then the number

of zeros of I is equal to the vector space dimension of K[X]/I over K.

Proof : For a proof of the theorem see [Win96, Thm. 8.4.4.].

In the second part of this thesis we are interested in the case of infinitely many

solutions. We will call them flexible solutions. By the previous theorem it is

only possible to have flexible solutions if there is a variable xi so that there is

not any polynomial g ∈ G with lpp(g) a pure term of xi (lpp(g) = xki ).

If we use a lexicographical ordering, Gröbner bases are similar to Gaussian

elimination of linear polynomial systems. Both of them do a triangulation

of the system or in other words, they do an elimination process. Therefore

we can connect Gröbner bases to Elimination Theory, more precisely Gröbner

bases are an easy way to do the elimination step. In the following theorem the

41



elimination property of Gröbner bases is described.

Theorem 4.20 (Elimination property of Gröbner bases)

Let G be a Gröbner basis of I w.r.t. the lexicographic ordering x1 > · · · > xn.

Then

Ij = I ∩K[xj+1, . . . , xn] = 〈G ∩K[xj+1, . . . , xn]〉

where the ideal on the right-hand side is generated over the ring
K[xj+1, . . . , xn].

Proof : That the right side is included in the left one is trivial.

For the opposite direction, let f be a polynomial of the elimination ideal Ij. f reduces

to 0 w.r.t. to G, f −→∗G 0. Because of the lexicographic ordering the polynomials of G

which are used in this reduction depend only on the variables xj+1, . . . , xn. Thus f can

be represented by a linear combination f =
∑
higi, where gi ∈ G ∩K[xj+1, . . . , xn] and

hi ∈ K[xj+1, . . . , xn].

So the extension step will be done by solving the smallest polynomial in the

Gröbner basis and substituting the solutions in the remaining polynomials.

Then do the same step to the smallest element of the remaining polynomials

and so on.

If all polynomials can be solved, you get the solutions of the polynomial system.

EXAMPLE:

To understand the applicability of the theory in this thesis we view a simple

example in robotics. Lets have a look at the following robot hand which moves

in a plane.

The robot hand is from the book "Ideals, varieties and algorithms" [CLO96,

Page 169]. The modelling of the robot hand, which uses the unit circle ap-

proach, can be read in the mentioned book. Of course we study the modelling

of robot arms in the second part of the thesis.
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Figure 2: Example robot

As we can read in [CLO96, Page 175 (1)], we get the four polynomial equations:

x = l3(c1c2 − s1s2) + l2c1,

y = l3(c1s2 + c2s1) + l2s1,

0 = c21 + s21 − 1,

0 = c22 + s22 − 1

We fix the lengths of the segments to l1 = 0, l2 = l3 = 1. So we get polynomials

x = c1c2 − s1s2 + c1,

y = c1s2 + c2s1 + s1,

0 = c21 + s21 − 1,

0 = c22 + s22 − 1

in the variables s1, c1, s2, c2.

We choose the graded lexicographic ordering with c1 > s1 > c2 > s2.

For instance if we want to reach the point (1, 1) we substitute x = 1, y = 1 and
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therefore use the basis:

F = [c1c2 − s1s2 + c1 − 1, c1s2 + c2s1 + s1 − 1, c21 + s21 − 1, c22 + s22 − 1].

To solve this polynomial system in an easy way we develop a Gröbner basis of

F . Therefore we apply the Buchberger Algorithm to F .

So we need to calculate the reduced S-polynomials. For example, we calculate

the S-Polynomial of the first critical pair or the first two polynomials in F .

Spol(c1c2 − s1s2 + c1 − 1, c1s2 + c2s1 + s1 − 1) = −c22s1 − s1s22 + c1s2 − c2s1 + c2 − s2

We can reduce this S-Polynomial with the second and fourth polynomial of F

to

−2c2s1 + c2 − 2s1 − s2 + 1.

This is not 0 therefore we have to add this polynomial to the basis and add the

additional critical pairs.

If we apply the algorithm GRÖBNERBASIS to the rest of the critical pairs, we

get the Gröbner basis:

{c1c2 − s1s2 + c1 − 1, c1s2 + c2s1 + s1 − 1,

c21 + s21 − 1, c22 + s22 − 1,−2c2s1 + c2 − 2s1 − s2 + 1,

−c1 + c2 − s1 + 1, 2s1s2 − c2 − s2 + 1,

−c2 + 2s1 + s2 − 1, s22 + c2 − 1,−c2}

If we reduce this basis to a reduced Gröbner basis we get:

{2c1 − s2 − 1, 2s1 + s2 − 1, s22 − 1, c2}. (6)

Now it is easily to see that we have to two solutions for 〈F 〉.

{c1 = 1, s1 = 0, c2 = 0, s2 = 1};

{c1 = 0, s1 = 1, c2 = 0, s2 = −1}.
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So for the first solution θ1 = 0, θ2 = π/2 and for the second solution θ1 = π/2, θ2 =

−π/2.

With a computer algebra system like Maple it is easy to compute a more general

Gröbner basis with unknown x, y, l2, l3.

{ (4l22l
2
3)s22 + (l42 − 2l22l

2
3 − 2l22x

2 − 2l22y
2 + l43 − 2l23x

2 − 2l23y
2 + x4 + 2x2y2 + y4),

(2l2l3)c2 + (l22 + l23 − x2 − y2),

(2l2x
2 + 2l2y

2)s1 + (2l3l2x)s2 − (l22y + l23y − x2y − y3),

(2l2x
2 + 2l2y

2)c1 − (2l2l3y)s2 − (l22x+ l23x− x3 − y2x)}.

If we substitute the values x = 1, y = 1, l2 = 1, l3 = 1 in this more general

Gröbner basis and cancel the coefficients we get the Gröbner basis (6).
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5. Resultants

In this chapter we have a look at the second main method to solve polynomial

equation systems by elimination theory. Resultants are older than the method

of Gröbner bases. The advantage of resultants is that they are faster than

Gröbner bases under some conditions. The disadvantage is that resultants

may just deliver candidates of solutions. So you have to check if the result is

truly a solution of the system.

The main ideas of this chapter are from the books [CLO04, Ch. 3] and [CLO96,

Ch. 3 (§5,6)]

Later in this chapter we will also see that resultants are so called "projection

operators".

So the algebraic operation of taking resultants of the basis of an ideal is closely

related to a projection map on the corresponding variety.
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5.1. Resultants of two polynomials

How to construct a resultant of two polynomials is already well known and also

implemented in all common computer algebra systems.

Definition 5.1

Assume you have two univariate polynomials f, g ∈ R[x], R an integral do-

main,

f = a0x
s + . . . as, a0 6= 0, s > 0

g = b0x
t + . . . bt, b0 6= 0, t > 0

Then the Silvester resultant of f and g, called Res(f, g), is the determinant

Res(f, g) = det



a0 b0

a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .
... a2

. . . a0
... b2

. . . b0

as
...

. . . a1 bt
...

. . . b1

as a2 bt b1
. . .

...
. . .

...

as bt


where we have t columns with the ai and s columns with the bi. (The blank

spaces are filled with zeros.)

EXAMPLE:

Res(2x2 − x+ 1, 3x3 + 5) = det



2 0 0 3 0

−1 2 0 0 3

1 −1 2 0 0

0 1 −1 5 0

0 0 1 0 5


= 134
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This definition of the silvester resultant has its seeds in the lemma:

Lemma 5.2

Let f, g ∈ K[x] be polynomials as above. Then f and g have a non-constant

common factor if and only if there are non-zero polynomials A,B ∈ K[x] with

deg(A) < deg(g), deg(B) < deg(f) so that Af −Bg = 0.

Therefore we get some properties of the resultants

• Res(f, g) = (−1)stRes(g, f)

• Res(f, g) = Af −Bg for some A,B in R[x].

• Res(f, g) = 0 if and only if f and g have a non-trivial common factor in

K[x]

• Res(f, g), A,B are integer polynomials in the coefficients of f and g.

• Res(f, g) ∈ 〈f, g〉 ∩R.

The proofs of these properties for polynomials over a field, you can find in

[CLO96, Ch. 3]. The results of these proofs can be extended to polynomials

over an integral domain.

Now we set up a connection between resultants and elimination theory. There-

fore we assume that we have two polynomials f, g in K[x, y] with positive degree

in x. We can calculate the the resultant according to x by Res(f, g)x. Because

of the properties of resultants, the result will be a polynomial in K[y].

EXAMPLE

Let f = x2y+ xy− 2y, g = 2xy+ 2 be polynomials in K[x, y]. We can rewrite them

as Polynomials in K[y][x], in other words we have univariate polynomials in x

with coefficients in K[y].

f = (y)x2 + (y)x+ (−2y)

g = (2y)x+ (2)
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So we get the resultant,

Res(f, g)x = det


y 2y 0

y 2 2y

−2y 0 2

 = 4y(−2y2 − y + 1)

As you see we eliminated x out of f, g.

Because of the fact that Af + Bg = Res(f, g), (A,B ∈ K[y][x]), Res(f, g)x =

4y(−2y2 − y + 1) lies in the elimination ideal 〈f, g〉 ∩K[y]. So Res(f, g)x vanishes

at any common solution of 〈f, g〉. In other words you get the y-coordinates of

the common solutions of 〈f, g〉 by solving Res(f, g)x = 4y(−2y2 − y + 1) = 0.

For 4y(−2y2 − y + 1) = 0 we get the solutions y = 0, 12 ,−1.

If we substitute y = 0 in f = g = 0 we get a contradiction in g with 0 = 2. In this

case the leading coefficients of f and g become 0 and therefore the elimination

step is not permitted by the Extension Theorem.

For the case y = 1
2 we get x = −2 and for y = −1 we get x = 1.

So the common solutions are (12 ,−2) and (−1, 1) for the ideal 〈f, g〉.

5.2. Multi-polynomial resultants

In this section we study the resultant of arbitrary many polynomials f0, . . . , fn

in K[x1, . . . , xn]. For this purpose we homogenize the polynomials.

Let di = deg(fi) be the total degree of fi

fi(x1, . . . , xn) =
∑
|α|≤di

aαx
α.

with α ∈ Zn are multivariate exponents.

Then the homogenization of fi is

Fi(x0, x1, . . . , xn) =

di∑
j=0

∑
|α|=j

aαx
αxdi−j0 .
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So we get the homogeneous polynomial equation system

F0(x0, . . . , xn) = 0

...

Fn(x0, . . . , xn) = 0

(7)

with the total degrees d0, . . . , dn.

This equation system has always the trivial solution (0, . . . , 0). So just the non-

trivial solutions are interesting for us.

Generally, the coefficients of the homogeneous polynomials Fi give us infor-

mation about the existence of such non-trivial solutions. Mostly there are no

non-trivial solutions but for some special values, there exist non-trivial solu-

tions.

For instance in the case of a linear equation system we know that there is a

non-trivial solution if and only if the determinant of the coefficient matrix is 0.

In general this determinant is a polynomial in the coefficients.

We will consider the case where we have n + 1 homogeneous polynomials Fi ∈

C[x0, . . . , xn] with the Basic Question: What conditions must the coefficients of

F0, . . . , Fn fulfil so that F0 = · · · = Fn = 0 have non-trivial solutions?

The homogenous polynomials F0, . . . , Fn can also be written like this:

Fi =
∑
|α|=di

ai,αx
α, α ∈ Zn+1.

If we replace each coefficient ai,α by a variable ui,α we get the universal poly-

nomials on CM × Cn where M is the number of coefficients.

We can answer our basic question with the following theorem.
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Theorem 5.3

Let d0, . . . , dn be fixed positive degrees, then there is a unique polynomial

Res ∈ Z[ui,α] which has the following properties:

1. If F0, . . . , Fn ∈ C[x0, . . . , xn] are homogeneous of degrees d0, . . . , dn, then

the equations (7) have a non-trivial solution over C if and only if
Res(F0, . . . , Fn) = 0.

2. Res(xd00 , . . . , x
dn
n ) = 1

3. Res is irreducible, even as a polynomial in C[ui,α].

Proof : A proof of this theorem can be found in Van der Warden’s book [vdW67, §78].

Definition 5.4

The unique polynomial Res(F0, . . . , Fn), from Theorem 5.3, is called the (mul-

tivariate) resultant of F0, . . . , Fn.

To outline the degrees of the Fi’s we can write Resd0,...,dn(F0, . . . , Fn).

So we know there exists a resultant which gives us information about the

solution of the system (7). There are many different ways to calculate such a

resultant. One of the most general ways, the Macaulay resultant, we will study

in Section 5.3.

One interesting application of resultants is to find a solution for the implici-

tization problem. Suppose, we are given a surface by parametric polynomial

equations

x = f(s, t)

y = g(s, t)

z = h(s, t)

(8)

and want to find the equation p(x, y, z) = 0 which describes this surface. We

denote the total degree of f(s, t), g(s, t), h(s, t) as df , dg, dh.
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To solve this problem with resultants we will homogenize the three polynomials

by adding the variable u. For instance, we homogenize f(s, t) by

F (s, t, u) = fdf (s, t) + fdf−1(s, t)u+ . . . f0(s, t)u
df ,

where fd is the sum of the terms of f with degree j in s, t.

Equivalently we homogenize g, h, to get the homogeneous system

F (s, t, u)− xudf = 0

G(s, t, u)− yudg = 0

H(s, t, u)− zudh = 0

(9)

Through the following proposition we get an idea how to solve the implicitiza-

tion problem:

Proposition 5.5 ([CLO04, §2 Prop 2.6 ])

With the above notation, assume that the system of homogeneous equations

fdf (s, t) = gdg(s, t) = hdh(s, t) = 0

has only the trivial solution. Then, for a given triple (x, y, z) ∈ C3, the equa-

tions (8) have a solution (s, t) ∈ C2 if and only if

Resdf ,dg ,dh(F − xudf , G− yudg , H − zudh) = 0.

So we get that,

p(x, y, z) = Resdf ,dg ,dh(F − xudf , G− yudg , H − zudh)

is the desired polynomial in x, y, z, because the resultant is a polynomial in

the coefficients of (9) and as we can see from Proposition 5.5, this polynomial

vanishes exactly on the points of the parametrization (8), if fdf (s, t) = gdg(s, t) =

hdh(s, t) = 0 has only the trivial solution.
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Degree of resultants

The main problem with multi-polynomial resultants is that they get very huge.

For instance, if you take 3 quadratic homogeneous polynomials in 3 variables

you have 18 coefficients and therefore 18 variables ui,α in in the resultant.

The total degree will be 12. So by calculations of Bernd Sturmfels, Res2,2,2 has

already 21894 terms.

Fortunately there are some more compact ways to compute resultants. One of

these methods is the Macaulay resultant, which we will consider later.

The next theorem will give us information about the degree of the resultants.

Theorem 5.6

Let F0, . . . , Fn be homogeneous polynomials with total degrees d0 . . . dn. Then

for j ∈ [0, .., n], Res is homogeneous in the variables uj,α, |α| = dj, of degree

d0 · · · dj−1dj+1 · · · dn. Hence we conclude,

Res(F0, . . . , λFj , . . . , Fn) = λd0···dj−1dj+1···dnRes(F0, . . . , Fn).

Moreover, the total degree of Res is

deg(Res(F0, . . . , Fn)) =

n∑
j=0

d0 · · · dj−1dj+1 · · · dn.

Proof : One can find a proof of this theorem in [GKZ94, Ch. 13].

So we see that the degree of the resultant is generally very high. With every

additional polynomial the degree of the resultant multiplies by the degree of

the additional polynomial and adds the product of the degrees of the other

polynomials. Therefore in general resultants are not very feasible for a larger

number of multivariate polynomials.
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5.3. Macaulay resultant

In this part we study a way to compute resultants, more precisely we deter-

mine how we calculate the Macaulay resultant. Therefore we consider some

definitions of [CLO04, Ch.3 §4].

First we suppose that we have homogeneous polynomials F0, . . . , Fn ∈ C[x0, . . . , xn]

of total degrees d0, . . . , dn. Then we define

d = 1 +

n∑
i=0

(di − 1) =

n∑
i=0

di − n.

For example if (d0, d1, d2) = (2, 1, 1) the we get d = 2.

If we have monomials xα = xα0
0 · · ·xαnn of degree d, we can divide them at least

by one xdii with i ∈ [0..n].

Hence we can partition the set of monomials with degree d into the following

disjoint sets

S0 = {xα : |α| = d and xd00 divides xα}

S1 = {xα : |α| = d and xd11 divides xα} \ S0
...

Sn = {xα : |α| = d and xdnn divides xα} \
⋃

i∈[0..n−1]

Si

Remark: if xα ∈ Si, we can write xα = xdii ·
xα

x
di
i

, where xα

x
di
i

is a monomial of degree

d− di.

For our example (d0, d1, d2) = (2, 1, 1) we have

S0 = {x20}

S1 = {x0x1, x21, x1x2}

S2 = {x0x2, x22}
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Lets have a look at the equation system:

xα

xd00
· F0 = 0 for all xα ∈ S0

...

xα

xdnn
· Fn = 0 for all xα ∈ Sn

(10)

All equations have are total degree d, because Fi has the total degree di and
xα

x
di
i

has the total degree d − di. So the polynomials on the left-hand side are

homogeneous polynomials of degree d. It is easy to see that there are

N =

d+ n

n


such different monomials in

⋃
i∈[0..n] Si and therefore there are N polynomials

in (10). So if we see in each monomial of (10) one "unknown variable" we have

a linear system of N linear equations in N unknowns.

Definition 5.7

The determinant of the coefficient matrix of the N × N system of equations

given by (10) is denoted by Dn.

So in our example we have the polynomials

F0 = a1x
2
0 + a2x

2
1 + a3x

2
2 + a4x0x1 + a5x0x2 + a6x1x2

F1 = b1x0 + b2x1 + b3x2

F2 = c1x0 + c2x1 + c3x2

which will become

1 · F0 = a1x
2
0 +a2x

2
1 +a3x

2
2 +a4x0x1 +a5x0x2 +a6x1x2 = 0

x0 · F1 = b1x
2
0 +0 +0 +b2x0x1 +b3x0x2 +0 = 0

x1 · F1 = 0 +b2x
2
1 +0 +b1x0x1 +0 +b3x1x2 = 0

x2 · F1 = 0 +0 +b3x
2
2 +0 +b1x0x2 +b2x1x2 = 0

x0 · F2 = c1x
2
0 +0 +0 +c2x0x1 +c3x0x2 +0 = 0

x2 · F2 = 0 +0 +c3x
2
2 +0 +c1x0x2 +c2x1x2 = 0
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and therefore

D2 = det



a1 a2 a3 a4 a5 a6

b1 0 0 b2 b3 0

0 b2 0 b1 0 b3

0 0 b3 0 b1 b2

c1 0 0 c2 c3 0

0 0 c3 0 c1 c2


Let us consider some properties of Dn

• Dn is a polynomial in the coefficients of Fi.

• For a fixed i ∈ [0..n], Dn is homogeneous in the coefficients of Fi of degree

equal to the number of elements in Si.

• Dn vanishes whenever F0 = · · · = Fn = 0 has a non-trivial solution

• Dn is divisible by the resultant Res(F0, . . . , Fn).

Proofs for this properties can be found in [CLO04, Ch. 3 §4].

These properties imply that

Dn = Res(F0, . . . , Fn) · extraneous factor. (11)

So we almost have a resultant. The next proposition will bring us one step

closer to the resultant.

Proposition 5.8

The extraneous factor in (11) is an integer polynomial in the coefficients of

F̄0, . . . , F̄n−1, where F̄i = Fi(x0, . . . , xn−1, 0).

Note that this extraneous factor does not contain any coefficients of Fn.

Unfortunately Dn can have a much larger degree than the actual resultant.

Proposition 5.8 provides a method to compute the resultant of Dn, namely to

factor Dn in irreducible factors. Then only the irreducible ones in which all

variables appear are parts of the resultant.
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The next proposition gives a formula for the appliance of this algorithm.

Proposition 5.9

The resultant is the greatest common divisor of the polynomials D0, . . . , Dn

in the ring Z[ui,α],

Res = ±GCD(D0, . . . , Dn).

But the factorization of large multivariate polynomials is very time-consuming,

so this algorithm is impractical.

Macaulay showed that the extraneous factor is a minor (i.e. the determinant

of a sub-matrix) of the N ×N coefficient matrix of (10).

Definition 5.10

Assume d0, . . . , dn and d are degrees as above.

1. A monomial xα of total degree d is reduced if xdii divides xα for exactly

one i.

2. If we eliminate all rows and columns corresponding to reduced mono-

mial xα of the coefficient matrix of (10), we get a sub-matrix of the

coefficients matrix. The determinant of this sub-matrix we denote as

D′n.

The following theorem by Macaulay shows that the extraneous factor is pre-

cisely D′n up to a sign.

Theorem 5.11

When F0, . . . , Fn are universal polynomials, the resultant is given by

Res(F0, . . . , Fn) = ±Dn

D′n
.

Further, if K is any field and F0, . . . , Fn ∈ K[x0, . . . , xn], then the above formula

for resultants holds whenever D′n 6= 0.
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Proof : This theorem was first proven by Macaulay in [Mac02].

If we calculate the multivariate resultant in this way we speak of the Macaulay

resultant.

One big disadvantage of Theorem 5.11 is that you have to divide two very large

polynomials in the universal case, which can be very costly in terms of time.

Another disadvantage is that it is possible that both Dn and D′n vanish in the

numerical case.

So it would be great if we could get the resultant in a single determinant. If this

is possible in general is not enlightened until now, but there are some special

cases where it is possible. One of this special cases is considered in [CLO04,

page 109 f.], where every polynomial in (7) has the same degree d.

Dr. Manfred Minimair implemented a Maple package for the Macauley resul-

tant of Theorem 5.11, which we will use in the second main part about mod-

elling robot arms. This package can be found at http://minimair.org/MR.mpl.

5.4. Projection operator

As mentioned in the beginning, resultants are projection operators. Now we

will define the term Projection operator and show this property for some resul-

tants.

Definition 5.12 (Projection operator)

Let f1, . . . , fn ∈ C[a1, . . . , ak][x1, . . . , xn−1].

S : (C[a1, . . . , ak][x1, . . . , xn−1])
n → C[a1, . . . , ak]

is a projection operator if and only if

∀(b1, . . . , bk) ∈ Ck : f1|ai=bi , . . . , fn|ai=bi having a common root over C

⇒ S(f1, . . . , fm)|ai=bi = 0.
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So a projection operator reduces the number of variables in an ideal and

thereby the dimensions of the corresponding algebraic sets. Thus the alge-

braic set of solutions of polynomials f1, . . . , fn is reduced to partial solutions,

i.e. solutions of S(f1, . . . , fm). These partial solutions can be extended to full

solutions in a following extension step.

Corollary 5.13

Let f1, . . . , fn ∈ K = C[x1, . . . , xn−1, xn], and S : Kn → C[xn] a projection opera-

tor.

If f1, . . . , fn have a common root (a1, . . . , an)then

S(f1, . . . , fn)(an) = 0

We can consider the projection operator as the geometrical projection.

Proposition 5.14

The Sylvester, Macaulay and Dixon resultant are projection operators.

Proof : For the Macaulay resultant the theorem follows from Theorem 5.3. The Sylvester

resultant is a special case of Macaulay, so it is also true for it.

For the Dixon resultants Theorem 3.1.2 out of [Sax97, p.44] deliver the result.

Actually there are ways to show that other resultants are projection operators,

but we do not consider them in this thesis.
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6. Modelling of a robot arm

Nowadays robots appear in many different fields. There are various industrial

robots, bigger ones which build cars and smaller ones which are used to pro-

duce microprocessors. Other mentionable robots are exploring robots, like the

mars rovers or the PackBot. In big logistic centres robots support human pack-

ers. In the future we will develop nano robots which will be used in medicine

or robotic limbs which replace amputated human limbs. We see that robots

are very important for the technological progress. Therefore we have to develop

them further and further.

In this chapter we learn how to model the kinematics of a robot arm. We

especially consider robot arms which are fixed at a platform. As we see in

Figure 3 a simple robot arm consists of joints and segments. The first segment,

which is fixed at the platform, is called anchor and the last one is called robot

hand. The anchor is fixed in position. The hand holds the tool which is used

by the robot.

Figure 3:

Segments are the rigid body parts of the robot arm. In the model we have to

include the dimensions of this rigid body, especially the length of a segment.

Joints are the movable links between the segments, which make the robot

flexible. So at a joint we have to consider the rotations and translations in this
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joint.

To control the robot arm one has to set up a mathematical model of it. This

thesis just considers possible movements of the robot arm. The forces which

are used to move or affect an actual robot are not interesting for the studies in

this thesis.

So the purpose is to find a mathematical model of the kinematics of a robot

arm. Especially the position and orientation of the robot hand will be an issue.

All movements, or so called transformations, are composed of rotations and

translations in the joints.

6.1. Modelling of a 2-D robot

For an introduction in modelling robots we take a look at two dimensional

robots which operate in a plane. The robot in Figure 3 is such a robot. We first

study 2-dimensional robots because it is easier to understand their modelling.

Later we have a look at 3-dimensional robots which are more common in the

real world.

We find a good description of modelling 2-dimensional robots in the book Ide-

als,Varieties and Algorithms [CLO96, Ch. 6.]. This subsection is based on this

chapter. The figures are also copied from that book.

Robots in 2-dimensional space use 2 different joints, revolute joints and pris-

matic joints, whose motions just happens in a 2-dimensional plane.

A revolute joint connects two segments and varies the angle of this connection

(see Figure 4). Therefore it is mathematically described by an angle θ. This θ is

the counterclockwise angle between line along the actual segment and the next

segment. Depending on the freedom of the revolute joint it is parametrizied by

a subset of the real interval [0..2π]. Of course the rotation axis is perpendicular

to the plane.
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Figure 4: revolute joint

With a prismatic joint we describe an adjustable length of a segment (Figure 5).

So we can extend a robot segment by a length d. So we do a translation along a

segment. We parametrize a prismatic joint by a real interval [dmin..dmax], where

dmin is the length when the prismatic joint is retracted and dmax is the length

when the joint is fully extended.

Figure 5: prismatic joint

The robot in Figure 3 has three revolute joints and one prismatic joint.

But how does the mathematical model of a 2-dimensional robot arm look like?

Primarily we are interested in the position and orientation of the robot hand.

First we put a global coordinate system at the first joint (Figure 6), so that the

y-axis is put along the anchor segment and the x-axis is perpendicular to it.

We denote (x, y) as the global coordinates of the hand position and let a vector
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Figure 6: global coordinate system

o = (o1, o2) be the orientation of the hand.

To get the global coordinates we have to visit each joint i. There we set up a

local coordinate system (Figure 7), calculate the local coordinates (xi, yi) of the

hand in the joint i and transform them to the previous local coordinate system

in joint i− 1.

Figure 7: local coordinate system

To get the local coordinates of the hand position in the last joint m should be

easy. Normally it is (lm, 0), where lm is the length of the hand segment. Then

we calculate the hand position w.r.t. the previous local coordinate system in

joint m− 1 by a simple transformation.
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In a planar robot such a transformation is described by:xi
yi

 =

cos θi − sin θi

sin θi cos θi

 ·
xi+1

yi+1

 +

li
0

 , (12)

where θi is the rotation angle around the joint i and li is the length of the

segment i.

We see that this is an affine transformation.

So two different matrix operations have to be done for a transformation from

one local coordinate system to another. It would be nice if it could be done with

one matrix and the transformation matrices of the different joints were similar.

If we work with projective vectors, we write the transformation (12) in just one

3× 3-matrix:


xi

yi

1

 =


cos θi − sin θi li

sin θi cos θi 0

0 0 1

 ·

xi+1

yi+1

1

 .

We denote the transformation matrix in the i-th joint by

Ai =


cos θi − sin θi li

sin θi cos θi 0

0 0 1

 .

If we apply this to the robot arm in Figure 3 we get:


x1

y1

1

 = A1 ·A2 ·A3 ·A4 ·


x4

y4

1

 .

Form A1, A2, A3 we get the three rotation angels θ1, θ2, θ3 as variables. A4 creates

the variable l4. Which leads us to the formula:
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x1
y1

 = f(θ1, θ2, θ3, l4)

=

l4 cos(θ1 + θ2 + θ3) + l3 cos(θ1 + θ2) + l2 cos(θ1)

l4 sin(θ1 + θ2 + θ3) + l3 sin(θ1 + θ2) + l2 sin(θ1)

 ,

where l2, l3 are fixed parameters.

Now we have an algorithm to find a mathematical model for robots in a plane.

This model contains trigonometric functions. Later we find a way to get rid of

them. But first we have a look at the 3-dimensional case.

6.2. Modelling of a 3-D robot

Modelling a robot arm in 3-dimensional space is more complicate than in

the 2-dimensional space, but it works the same way. The difficulty in the

3-dimensional space is due to the much more complex joints. To explicate the

theory of 3-dimensional joints we use the ideas of the book Robot manipulators

by Richard Paul [Pau86].

As in the plane we consider the transformation matrices in projective space by

adding a 4-th row and column to the rotation matrices. So we are able to put

rotations and translations into one transformation matrix. Therefore we will

work with projective vectors (x, y, z, 1).

In 3-dimensional space we can rotate around each axis and translate by a

vector (x, y, z). Thus in the 3-dimensional space we have the following 4 base

transformations.

rotx(θ) =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 (13)
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roty(θ) =


cos θ 0 − sin θ 0

0 1 0 0

sin θ 0 cos θ 0

0 0 0 1

 (14)

rotz(θ) =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

 (15)

trans(x, y, z) =


1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1

 (16)

It is possible to describe all joints in 3-dimensional space by a combination of

these 4 transformations.

For the sake of completeness, we also quote the rotation around an arbitrary

line through the origin with the unit direction vector v =


vx

vy

vz

.

rotv(θ) =


v2x vers θ cos θ vxvy vers θ − vz sin θ vxvz vers θ + vy sin θ 0

vxvy vers θ + vz sin θ v2y vers θ + cos θ vyvz vers θ − vx sin θ 0

vxvz vers θ − vy sin θ vyvz vers θ + vx sin θ v2z vers θ + cos θ 0

0 0 0 1


where vers θ = 1− cos θ.

The derivation of this formula you can find in [Pau86, Page 26 ff.].

Of course it is possible to gain this rotation by a combination of the base

rotations defined above.
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Before we use these transformations on joints in a 3-dimensional robot arm,

we have to define how the coordinate frames are placed on the different joints.

Especially the orientation of the axes have to be specified. We denote the x-

axis along the segment which holds the joint. So the x-axis is the approach

direction of the joint.

The axis are rotated by rotation matrices in every joint between the anchor and

the actual joint, where the local coordinate system is placed. For instance for

the directions of the y-axis in the new local coordinate axis the following has

to apply:


yxi

yyi

yzi

0

 = R1 . . . Ri−1.


0

1

0

0

 ,

where Rj are the rotation matrices of the joint between the anchor and the

actual local coordinate system.


yxi

yyi

yzi

 is the direction of the y-axis in the new

actual coordinate system.

Then we get the direction of each axis by applying the rotation matrices to the

unit vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0).

3D joints

Of course there are also revolute and prismatic joints in the 3-dimensional

space. The transformation matrices for revolute joints are built up by a trans-

lation trans(l, 0, 0) for the fixed segment length l on which the joint is placed,
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followed by one of the above defined rotations rotx(θ), roty(θ), rotz(θ).

rjx(θ) = trans(l, 0, 0) rotx(θ),

rjy(θ) = trans(l, 0, 0) roty(θ),

rjz(θ) = trans(l, 0, 0) rotz(θ).

The prismatic joint is described by a translation

prj(d) = trans(d, 0, 0),

where d is restricted to the interval [dmin..dmax].

If we just want to put a special segment in our robot arm, we do that by

seg(x, y, z) = trans(x, y, z),

where x, y, z is the endpoint of the segment w.r.t. the local coordinate system

of the joint on which you place the segment.

Cylindrical joint

First we consider a cylindrical joint. A cylindrical joint has two variables, an

angle θ and a length d and a fixed length r.

Cyl(d, θ) = trans(d, 0, 0) rotx(θ) trans(0, 0, r) (17)

So a cylindrical joint can be extended by the length d along the x-axis and

rotated around it by an angle θ. Therefore we can also interpret a cylindrical

joint my a prismatic joint, a revolute joint around the x-axis and a segment of

length r.

Spherical/ball joint

In a spherical joint, or ball joint, you have two variable angles α, β.

Sph(α, β) = trans(l, 0, 0) rotx(α) roty(β) (18)
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We first rotate the whole system behind the the joint around the x-axis by α, so

that the point we want to reach lies on the plane xy. Then we rotate the point

by β in this plane.

Figure 8: Ball joint

Euler joint

An euler joint is similar to the spherical joint. Additionally we have a third

angle γ. As in the spherical joint we first rotate the y-axis in the right direction,

then bend the joint around this y-axis by β. Additionally we screw along the

following segment, the x-axis of the following local coordinate system.

Eul(α, β) = trans(l, 0, 0) rotx(α) roty(β) rotx(γ) (19)

Roll, pitch, yaw joint

A roll, pitch, yaw joint is comparable to an aeroplane flying along the x-axis.

With the vertical stabilizer you can control if the aeroplane rotates left or right,

the so called yaw. This is the same as the rotation around the z-axis. The

horizontal stabilizer controls if the plane goes up or down, which is also called

pitch. This is nothing else than a rotation around the y-axis. The roll around

the x-axis is comparable to bring the aeroplane upside down by a screw (with-

out changing the flight direction).
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For this joint we first roll the joint by α, then pitch it by β and finally yaw it by

γ.

RPY (α, β) = trans(l, 0, 0) rotx(α) roty(β) rotz(γ) (20)

EXAMPLE:

Now we try to model a 3-dimensional robot arm with this theory. We choose the

well-known Stanford manipulator (Figure 9). This robot arm was developed by

V.D. Scheinman in the book [Sch69].

Figure 9: Stanford manipulator

A stanford manipulator is built up by two revolute joints, a prismatic joint and

an euler joint. The first joint is a revolute joint around the x-axis , the second

one is a rotation around the y axis, the third one is the prismatic joint and the

last one is the euler joint.

Therefore we get the following transformation matrices:

A1 =


1 0 0 l1

0 cos θ1 − sin θ1 0

0 sin θ1 cos θ1 0

0 0 0 1



A2 =


cos θ2 0 − sin θ2 l2

0 1 0 0

sin θ2 0 cos θ2 0

0 0 0 1



71



A3 =


1 0 0 d3

0 1 0 0

0 0 1 0

0 0 0 1



A4 =


cosβ4 − sinβ4 sin γ4 − sinβ4 cos γ4 l4

− sinα4 sinβ4 cosα4 cos γ4 − sinα4 cosβ4 sin γ4 − cosα4 sin γ4 − sinα4 cosβ4 cos γ4 0

cosα4 sinβ4 sinα4 cos γ4 + cosα4 cosβ4 sin γ4 − sinα4 sin γ4 − cosα4 cosβ4 cos γ4 0

0 0 0 1


Let us choose some values for the constants l1, l2, l4 and a segment with the

vector v for the hand.

l1 = 0

l2 = 1

l4 = 0

v =


1

0

0


For d3 we need some restrictions. Let d3 ∈ [2..4]. This means if the prismatic

joint is fully extended then d3 = 4, if it is fully retracted than d3 = 2.

By multiplying the transformation matrices and the hand vector we get the

following formulas for the hand position:
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
x

y

z

1

 =A1.A2.A3.A4.v =


cos θ2 cosβ4 − sin θ2 cosα4 sinβ4 + d3 cos θ2 + 1

− sin θ1 sin θ2 cosβ4 − cos θ1 sinα4 sinβ4 − sin θ1 cos θ2 cosα4 sinβ4 − d3 sin θ1 sin θ2

cos θ1 sin θ2 cosβ4 − sin θ1 sinα4 sinβ4 + cos θ1 cos θ2 cosα4 sinβ4 + d3 cos θ1 sin θ2

1


(21)

Note that the last angle γ4 does not occur in the formulas. That is because the

last rotation does not effect the hand position.

As before these formulas contain trigonometric functions. If we want to calcu-

late algebraic solutions we have to get rid of these functions. The next section

will provide 2 ways to do this.

6.3. Orientation of the robot hand

A model for the orientation of the robot hand is simply made. It is the dot

product the rotation matrices. Rotation matrices look almost the same as the

transformation matrices above. If we set the lengths of the transformation

matrix to 0 we get the corresponding rotation matrix.

Thus for the example of the Stanford manipulator we have the rotation matri-

ces

O1 =


1 0 0 0

0 cos θ1 − sin θ1 0

0 sin θ1 cos θ1 0

0 0 0 1


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O2 =


cos θ2 0 − sin θ2 0

0 1 0 0

sin θ2 0 cos θ2 0

0 0 0 1



O3 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



O4 =


cosβ4 − sinβ4 sin γ4 − sinβ4 cos γ4 0

− sinα4 sinβ4 cosα4 cos γ4 − sinα4 cosβ4 sin γ4 − cosα4 sin γ4 − sinα4 cosβ4 cos γ4 0

cosα4 sinβ4 sinα4 cos γ4 + cosα4 cosβ4 sin γ4 − sinα4 sin γ4 − cosα4 cosβ4 cos γ4 0

0 0 0 1



Then the orientation matrix is

O = R1.R2.R3.R4

The first column of the orientation matrix is the direction of the local x-axis in

the robot hand and the second and third column are the corresponding local y

and z axes.
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7. Polynomial formulation of robot equations

The mathematical model of a robot arm contains the trigonometric functions

sin and cos. To solve equations with trigonometric functions is much harder

than to solve pure polynomial equations. Therefore it would be nice if we could

transform trigonometric equations to polynomial ones.

We describe two methods to reach polynomial equations: the more common

unit circle approach and the tangent half-angle substitution.

7.1. Unit circle approach

The unit circle approach is the simpler method to get rid of sin and cos in

equation systems. It uses the fact that

cos θ

sin θ

 is a point on the unit circle.

The other way round we can parametrize the whole unit circle by

cos θ

sin θ

 , θ ∈

[0..2π].

Therefore we can choose

cθi = cos(θi)

sθi = sin(θi).

We substitute cθi for cos(θi) and sθi for sin(θi) in the formulas of the hand posi-

tion to get a polynomial equation system. Obviously we get two variables of one

angle. Thus we need an additional equation for each substitution. The above

mentioned fact causes this additional equation, a restriction to cθi and sθi, the

unit circle equation:

c2θi + s2θi − 1 = 0

EXAMPLE:

We apply this theory to the result of the Stanford manipulator example (21).
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In the trigonometric formula for the hand position occur 4 angles θ1, θ2, α4, β4.

Thus we choose:

cθ1 = cos(θ1) sθ1 = sin(θ1)

cθ2 = cos(θ2) sθ2 = sin(θ2)

cα4 = cos(α4) sα4 = sin(α4)

cβ4 = cos(β4) sβ4 = sin(β4)

We substitute these variables in (21) and we get:

x

y

z

=

=

=

cθ2cβ4 − sθ2cα4sβ4 + d3cθ2 + 1

−sθ1sθ2cβ4 − cθ1sα4sβ4 − sθ1cθ2cα4sβ4 − d3sθ1sθ2
cθ1sθ2cβ4 − sθ1sα4sβ4 + cθ1cθ2cα4sβ4 + d3cθ1sθ2

(22)

Additionally we have to add the 4 restrictions

c2θ1 + s2θ1 − 1 = 0

c2θ2 + s2θ2 − 1 = 0

c2α4
+ s2α4

− 1 = 0

c2β4 + s2β4 − 1 = 0

Summarizing we have 7 equations in 9 variables d3, cθ1 , sθ1 , cθ2 , sθ2 , sα4 , cα4 , cβ4 , sβ4.

As we see the polynomial equations are similar to the trigonometric equations.

They have the same degree. Of course, the solutions of the polynomial equa-

tions can be easily transformed to solutions of the trigonometric equations.

The disadvantage of the unit circle approach is that the number of variables

increases and therefore also the number of equations has to increase.
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7.2. Tangent half-angle substitution

Another method to get rid of trigonometric functions is the tangent half-angle

substitution. It is also known under the name Weierstrass substitution.

Here we use trigonometric identities to gain a polynomial form for the trigono-

metric functions. More precisely we use the double-angle formulae of sin and

cos or rather the half-angle formula of tan.

For this purpose let

ui = tan(
θi
2

).

Then we derive by the double angle formulae:

cos(θi) =
1− u2i
1 + u2i

sin(θi) =
2ui

1 + u2i

Here we do not need an additional restriction because the number of variables

does not increase. But we see that we substitute fractions for sin and cos,

therefore we properly will not get a polynomial equation system in the first

place. To get one we have to multiply the rational formulas with their least

common divisor.

EXAMPLE:

Similar to above we apply the tangent half-angle substitution to the result of

the example about 3-dimensional joints (21).

In the trigonometric formula for the hand position 4 angles θ1, θ2, α4, β4 occur.
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Thus we choose:

1− u2θ1
1 + u2θ1

=cos(θ1)
2uθ1

1 + u2θ1
= sin(θ1)

1− u2θ2
1 + u2θ2

=cos(θ2)
2uθ2

1 + u2θ2
= sin(θ2)

1− u2α4

1 + u2α4

=cos(α4)
2uα4

1 + u2α4

= sin(α4)

1− u2β4
1 + u2β4

=cos(β4)
2uβ4

1 + u2β4
= sin(β4)

We substitute these variables in (21) and we get:

x

y

z

=

=

=

1−u2θ2
1+u2θ2

1−u2β4
1+u2β4

− 2uθ2
1+u2θ2

1−u2α4
1+u2α4

2uβ4
1+u2β4

+
1−u2θ2
1+u2θ2

d3 + 1

− 2uθ1
1+u2θ1

2uθ2
1+u2θ2

1−u2β4
1+u2β4

−
1−u2θ1
1+u2θ1

2uα4
1+u2α4

2uβ4
1+u2β4

− 2uθ1
1+u2θ1

1−u2θ2
1+u2θ2

1−u2α4
1+u2α4

2uβ4
1+u2β4

− 2uθ1
1+u2θ1

2uθ2
1+u2θ2

d3

1−u2θ1
1+u2θ1

2uθ2
1+u2θ2

1−u2β4
1+u2β4

− 2uθ1
1+u2θ1

2uα4
1+u2α4

2uβ4
1+u2β4

+
1−u2θ1
1+u2θ1

1−u2θ2
1+u2θ2

1−u2α4
1+u2α4

2uβ4
1+u2β4

+
1−u2θ1
1+u2θ1

2uθ2
1+u2θ2

d3

(23)

This is not a polynomial equation system jet. We have to multiply these equa-

tions by there least common divisor, e.q. (1 +u2θ1)(1 +u2θ2)(1 +u2α4
)(1 +u2β4). If we

do that, the first equation in (23) is transformed into the polynomial equation:

(x+ d3 − 2)u2α4
u2β4u

2
θ2 + (x− d3)u2α4

u2β4 + (x+ d3)u
2
α4
u2θ2 + (x+ d3 − 2)u2β4u

2
θ2 − 4u2α4

uβ4uθ2

+(x− d3 − 2)u2α4
+ (x− d3)u2β4 + (x− d3)u2θ2 + 4uβ4uθ2 + x− d3 − 2 = 0.

We see that the tangent half-angle substitution delivers polynomials of high

degree. To solve them by Gröbner bases will take some time or overload the

computer. But the number of variables and equations stays the same after the

substitution.

Note that if θi = (2n + 1)π then we have a singularity in ui, but there are no

singularities in 1−u2i
1+u2i

and 2ui
1+u2i

.
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Comparison

Unit circle approach Tangent half-angle substitution

• polynomial form

• additional variables

• additional equations

• same degree

• rational form

• same number of variables

• same amount of equations

• higher degree
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8. Properties of the mathematical model

If we calculate a mathematical model of a robot arm we can use it in two

different ways. We can consider the so-called Forward Kinematic Problem or

the so called Inverse Kinematic Problem.

We use the Forward Kinematic Problem if the angles of the joints and the

lengths of the segments and prismatic joints are given. So if there is a fix

configuration for all joints in the robot arm we can calculate the hand position

to this configuration.

If we look at the model from above we see that the Forward Kinematic Problem

is easy to solve. We simply substitute the angles and lengths and get the hand

position.

The Inverse Kinematic Problem works in the opposite direction. There is a

point in space (sometimes also an orientation) and the goal is to calculate a

configuration to reach this point. So we are interested in the configuration of

the robot arm, the angles and lengths of the joints.

If we substitute a point which describes a hand position in the model we get

a system of polynomials. Therefore we have to solve this system to get the

configurations which are valid for the given hand position.

As we already know, a polynomial equation system can have no solutions,

finitely many solutions or infinitely many solutions. This thesis mainly consid-

ers the last options. More precisely we consider if there is a continues curve of

solutions, on which we can move the robot arm.

If the system of polynomial equations of a robot arm has no solutions, or espe-

cially no real solution, then there is no chance to reach the given point by the

robot arm. When there are finitely many solutions for the mathematical model

then we know that there are finitely many isolated configurations to reach the

given point. And therefore we cannot move continuously between solutions.
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But if there are infinitely many solutions then properly most of them are on a

continuous curve or surface in the affine space over a field K.

The title of the thesis contains the phrase "flexible solutions". In the next

definition we finally clarify what this means.

Definition 8.1

A system of polynomial equations P (X) = 0 has flexible solutions over K

if and only if it has two different solutions X0, X1, such that there exists a

continuous function:

γ : [0, 1]→ Kn

with

X0 = γ(0) and X1 = γ(1)

and

P (γ(t)) = 0 for t ∈ [0, 1].

So flexible solutions mean that there is at least a curve of solutions in Kn of

the system of polynomial equations. On this curve we can move continuously

between two solutions.

Note that in addition to flexible solutions there also can occur isolated inflexible

solutions.

From the definition of flexible solutions we observe the following.

Lemma 8.2

If a system of polynomial equations has flexible solutions over R it has in-

finitely many real solutions.

Lemma 8.3

If a system of polynomial equations has flexible solutions over R or C it has

infinitely many solutions over the complex numbers.

For the application in robotics this means that we can move the robot arm
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without changing the position of the robot hand if we have flexible solutions

over R.

It would be nice if we could decide if a system of polynomial equations has

flexible solutions or not. For algebraically closed fields K Theorem 4.19 gives

us a way to decide if there are flexible solutions or not.

As we know the algebraic set of the ideal of the system of polynomial equations

is equal to the solutions of the system of polynomial equations. The conse-

quence is that if there exists a xi which do not have a polynomial with a pure

leading power product of xi in the Gröbnerbasis of P (X) = 0, P (X) = 0 has to

have flexible solutions over C.

Another way to decide if there are flexible solutions of a system of polynomial

equations over a field K is via resultants. Professor Lewis stated the idea for

the following theorem in his paper "Algorithmic Search for Flexibility Using

Resultants of Polynomial Systems" [LC07].

The paper only considers non-degenerate situations where the flexible solu-

tions are not parallel to the projection axis. To deal with such degenerate

cases we added the perturbation matrix M in the following theorem statement.

A system of polynomial equations is degenerated if the system of polynomial

equations and therefore the solutions are independent of the variable which is

eliminated in the resultants algorithm.

Theorem 8.4

Let (p1, . . . , pn) polynomials in C[x1, . . . , xn] with flexible solutions over Cn and

M : Cn → Cn an invertible affine transformation in Cn.

Then for almost all M ,

Resx1,...,xn−1(p1 ◦M, . . . , pn ◦M) = 0

Proof : In the following we write R = Resx1,...,xn−1
(p1 ◦M, . . . , pm ◦M). We will show the
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Theorem by contradiction.

The resultant R is a polynomial in C[xn]. Assume R 6= 0. We distinguish two cases:

Case 1: R is a constant different from 0. If that is the case there is no solution for P (X) ◦

M = 0 per definition of resultants, so there is no flexible solution.

Case 2: R is a non-constant polynomial in C[xn]. This polynomial has finitely many so-

lutions. We know that the resultant is a Projection Operator. Thus we look at

resultants in a geometrical way.

In a non-degenerate situation, infinitely many points in Cn were projected to

infinitely many points in Cn−1. Consequentially, finitely many solutions of R

imply finitely many solutions of P (X) = 0. Thus P (X) = 0 has no flexible solutions

if there is not an infinite-to-finite projection.

Infinite to finite projection just occurs if the variety of the solutions is parallel to

the projection axis. So for the special case of degenerate projection we transform

the polynomials and thereby their common solution by M . A hyperplane in Cn

has 2 rotation transformations around an axis which are parallel to this axis, but

infinitely many which are not parallel. Thus for almost all transformations there

is no degenerate projection.

Remark: This theorem works for all invertible transformations but the essential

transformations are rotations to get rid of the degenerate situation. It is easy

to choose a suitable affine transformation to get rid of a degenerate situation.

Example: We consider the 3 polynomials in C[x, y, z]:

f = 2x+ 3y + 5

g = x− 7y + 2

h = 3x− 4y + 7

their common solution is


−41

17

− 1
17

z

 with z ∈ C.
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Because they are constant in z it is a degenerative system, so the resultant

respective z is 1.

If we transform the polynomials with the Matrix M :

M =


1 0 1

0 1 1

0 0 1


we get:

fM = 2x+ 3y + 5z + 5

gM = x− 7y − 6z + 2

hM = 3x− 4y − z + 7

These polynomials are not constant in z any more. If we calculate the resultant

of these new polynomials w.r.t. z and another variable we will get 0. This works

for almost all invertible transformations. �

Nevertheless we do not know a way to decide if a system of polynomial equa-

tions over R has flexible solutions or not.

So for the applications in robotics we have to calculate the algebraic set of

a system of polynomial equations in the algebraic closure C to see if flexible

solutions over C occur. Afterwards we filter the interesting real solutions of the

complex ones.
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9. Solution methods

To get a solution for our mathematical model we have to solve a system of

polynomial equations. In theory we learned 2 ways to do this, Gröbner basis

and resultants.

9.1. Solving by Gröbner bases

One way to solve a system of polynomial equations are Gröbner bases. All com-

mon computer algebra systems provide functions to calculate Gröbner bases.

In Maple these functions are contained in the package groebner. To calculate

a Gröbner basis of a polynomial ideal over K[X] in Maple, we need an arbitrary

basis F of the ideal and an ordering < on the terms [X]. Then the command

Basis( F, <) returns the corresponding reduced Gröbner basis.

We will see that if we apply the Gröbner basis algorithm to the polynomials

we get from the unit circle approach, we mostly get a nice Gröbner basis,

depending on the term ordering we choose. But if we apply the algorithm to

the polynomials we get from the tangent half-angle substitution the calculation

may take some time, especially if the degree of the polynomials in the model is

high. This reflects the fact that the complexity of Gröbner basis computation

depends heavily on the degree of the initial basis polynomials.

The term ordering on the polynomials is very important at the calculation of a

Gröbner basis. If we chose the wrong ordering the calculation runs a very long

time or the computer algebra system crashes. Some experiments showed that

many term orderings bring problems in the computation of Gröbner bases of

the robot arm models.

Of course we have to choose a lexicographical ordering to do a proper elimina-

tion step. Because the length variables di just occur in the polynomials of the

hand position, the length variables should be eliminated first, and therefore
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they should be the highest variables. The angle variables si, ci then should be

ordered ascending or decreasing, according to their occurrence in the robot

arm. Some tests showed that in general a decreasing order delivers a nicer

Gröbner basis.

Therefore we order the polynomials so that the length variables are greater

than the angle variables. The length variables just as angle variables are order

decreasing, according to their occurrence in the robot arm. For example for

the Stanford manipulator we choose the lexicographical ordering:

d3 > cθ1 > sθ1 > cθ2 > sθ2 > cα4 > sα4 > cβ4 > sβ4 . (24)

Next we discuss the application of Gröbner bases to the model of the Stanford

manipulator we derived above. We apply the Buchberger algorithm to the above

equations (22) w.r.t. the lexicographical ordering (24). We get a Gröbner basis

with 10 polynomials of total degrees less or equal to 7 in the variables.

Basis((22), plex(d3, cθ1 , sθ1 , cθ2 , sθ2 , cα4 , sα4 , cβ4 , sβ4)) = (25)

1: c2β4 + s2β4 − 1,

2: c2α4
+ s2α4

− 1,

3: (−2x+ 4)sθ2cα4sβ4 + s2α4
s2β4s

2
θ2 − s

2
β4 + (−x2 − y2 − z2 + 4x− 4)s2θ2 + y2 + z2,

4: c2θ2 + s2θ2 − 1,

5: ycα4cθ2s
2
α4
s3β4 + (x2y − y3 − yz2 − 4xy + 4y)cθ2cα4sβ4 + (−xy + 2y)cθ2s

2
α4
s2β4sθ2+

(x3y + xy3 + xyz2 − 6x2y − 2y3 − 2yz2 + 12xy − 8y)sθ2cθ2 + zs3α4
s3β4+

(y2 + z2)s2α4
s2β4sθ1 − zsα4s

3
β4 + (x2z − 4xz + 4z)sα4sβ4 + (−y2 − z2)sθ1s2β4+

(x2y2 + x2z2 − 4xy2 − 4xz2 + 4y2 + 4z2)sθ1 ,

6: zcα4sα4s
2
β4 + (y2 + z2)cα4sβ4sθ1 − ycθ2s2α4

s2β4 + (y3 + yz2)cθ2 + (xz − 2z)sα4sβ4sθ2+

(xy2 + xz2 − 2y2 − 2z2)sθ1sθ2 ,

7: ycα4sβ4 + zcθ2sα4sβ4 + (y2 + z2)sθ1cθ2 + (xy − 2y)sθ2 ,
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8: s2α4
s2β4 + 2zsα4sβ4sθ1 + (y2 + z2)s2θ1 − y

2,

9: ycθ1 + zsθ1 + sα4sβ4 ,

10: − zcα4sα4s
2
β4 + (−y2 − z2)cα4sβ4sθ1 + (xy − 2y)cβ4 + ycθ2s

2
α4
s2β4+

(−x2y − y3 − yz2 + 4xy − 4y)cθ2 + (xy − 2y)d3 + xy − 2y.

If we apply the same algorithm to a half-angle approach (23), we get a Gröbner

basis with 17 polynomials of total degrees greater or equal to 10 in the vari-

ables.

Basis((23), plex(d3, uθ1 , uθ2 , uα4 , uβ4)).

Also the calculation of the Gröbner basis in this example from the tangent

half-angle substitution takes more than 50 times longer than the unit circle

approach. Other calculations also show that the unit circle approach is in

general much faster than the tangent half-angle substitution for Gröbner basis.

Thus in the following we assume that we model the robot with the unit circle

approach for Gröbner basis calculations.

After we have calculated a Gröbner basis the solutions of the equation system

can be found easily. Later we discuss the extension step of Grobner bases

in detail. Before that we have a look at another method to solve systems of

polynomial equations.

9.2. Solving by resultants

Alternatively to Gröbner bases we can calculate multivariate resultants of the

polynomial model. For the calculation of multivariate Macaulay resultants we

use the package mr.mpl by Minimayr. In the following we do the example of

the Stanford manipulator to study the application of resultants for the problem

in this thesis.
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As we already know, calculation of the resultant of many polynomials needs a

vast amount of time and delivers very huge polynomials. Thus it is impractical

to apply resultants to the model of the unit circle approach. We also see the

infeasibility of resultants on the unit circle approach when we try to calculate a

Macaulay resultant of the simple model of the Stanford manipulator (22). The

computer algebra system Maple requires enormous amount of time to do the

calculations. Most of the time the system crashes.

Another issue we have to deal with when we work with resultants on the unit

circle approach is that we may have a degenerate projection. For practical

reasons one could just calculate a resultant of the three hand position polyno-

mials and manually choose values which fulfil the unit circle equations. But

this can be complicated and is hard to program.

So we use the resultant method if we use the tangent half-angle substitution.

But we will also see that the Gröbner basis algorithm on the unit circle ap-

proach is more useful than resultants for the needs of robotic simulation.

First we use the Macaulay resultant by Minimayr on the tangent half-angle

substitution model of the Stanford manipulator (23). This delivers a huge poly-

nomial.

R:= MR:-MResultant(F, [d[3], u[theta[1]]])

= −16(y2 + z2)yu22θ2u
22
α4
u20β4 + . . . 5638 terms...− 16(y2 + z2)y

The gained resultant has 6 indeterminates. The 3 indeterminates x, y, z are the

coordinates of the hand position and therefore the parameters to be chosen.

For example we choose the hand position (3, 2, 2).

The rest are variables and the total degree of the resultant w.r.t. these variables

ui is 64. The degrees w.r.t. to the single variables ui is 22. To solve the resultant

we freely choose 2 of the 3 ui in the allowed interval and substitute the values.

For the example we choose uβ4 = tan(1.01772 ), uα4 = tan(2.03542 ).
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After some calculations we get the simplified resultant:

(uθ2+2.2869)(uθ2+1)2(uθ2+0.4373)(uθ2−0.5796)(uθ2−1)2(uθ2−1.7253)(u2θ2+0.0164uθ2+

1.0009)(u2θ2 +0.0059uθ2 +0.9848)(u2θ2 +0.0043uθ2 +1.016)(u2θ2−0.0127uθ2 +0.9897)(u2θ2−

0.0139uθ2 + 1.009)(u2θ2 − 0.2001uθ2 + 0.04988)(u2θ2 − 4.0125uθ2 + 20.0484)

Afterwards we solve this resultant of degree 22.

The calculations so far take only little time.

Now we have to filter the real solutions out of all solutions of the resultant and

choose one.

{−2.2869,−1,−1,−0.4373, 0.5796, 1, 1, 1.7253}

These are now real solution candidates for uθ2. If we choose the wrong can-

didate we would not get a valid solution. So we probably have to calculate a

whole solution which each candidate. uθ2 = −0.4373 will deliver a valid solu-

tions so we choose this value.

To get solution values for the eliminated variables, in the above example d3 and

uθ1, we need further elimination steps. First we have to substitute the solution

into the original basis. Then one way, is to calculate other resultants which

eliminate all remaining variables but one. In the example we eliminate d3. We

have 3 polynomials but just one variable to eliminate. So we have to take 2

polynomials of the three and calculate the resultant. So we get two resultants.

(uθ1 − 1.58437)(uθ1 − 3.812)

(uθ1 + 1.58437)(uθ1 − 3.812)(u2θ1 + 2.2 · 10−10uθ1 + 1)

Again we calculate the roots of these resultants. Now we have to choose a

common root and substitute it again in the original basis. We see that uθ1 =

3.812 is the only common root of the resultants.

If we substitute the solutions we get so far in the original basis we get the 3

polynomials:
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−10.8854 + 3.8428d3, −89.7393 + 31.6805d3, −159.2735 + 56.2276d3

The common root of these 3 polynomials is d3 = 2.8326.

Therefore we get the solution,

{uα4 = 1.61978, uβ4 = 0.55785, uθ2 = −.437282, uθ1 = 3.812, d3 = 2.83265}.

Summarizing, by the resultant method we just get a polynomial for determin-

ing a partial solution which we then need to extend to a full solution of the

whole system. The calculations of the resultant on the tangent half-angle ap-

proach are quick but the extension step is much more complicated than the

extension step of Gröbner Bases. First we have to filter the real solutions out

of all solutions. Then we have to choose the right candidate or more precisely

calculate solutions for all candidates to choose the right candidate. Addition-

ally we have to do further elimination steps in the extension step to get the

whole solution.

In calculation of the simulation of a robot arm the elimination step normally

has to be done just once. The extension step has to be done several times,

actually each time the robot arm is moved. Thus the efficiency of the extension

step is much more important than the efficiency of the elimination step.

For these reasons we will write a computer program, which uses Gröbner bases

on the unit circle model to simulate the robot arm.

9.3. Parametric Gröbner bases

We calculate a general Gröbner basis for all possible hand positions in the

space of motion of the robot arm. Therefore the Gröbner basis contains also

the parameters x, y, z. Thus, we have computed a so called parametric Gröbner
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basis. In a few particular cases this specialisation of this basis can lead to

problems.

In the program to simulate the robot arm we calculate a Gröbner basis over

the function field C(x, y, z). Thus, we have polynomials in C(x, y, z)[J ], where J

are the set of the variables of the robot arm. When we substitute the hand po-

sition in this Gröbner basis, we do a specialization of the Gröbner basis. But

when we do this specialization we have to consider the case that the leading

coefficients or their denominators become 0. In that case the polynomials we

get if we specialize a Gröbner basis, do not constitute a Gröbner basis.

EXAMPLE:

Let f, g ∈ C(t)[x, y]

f = x2 − ty

g = 2tx+ y2

If we calculate the Gröbner basis wrt. lexicographical ordering x > y we get

G = {−4t3y + y4, 2tx+ y2}

During the calculation we divide the polynomials by 2t.

spol(f, g) = x2 − ty − x

2t
(2tx+ y2) =

xy2

2t
− ty

These calculations are wrong if t = 0. Therefore, if t = 0, G will not be a Gröbner

basis any more.

We also see that if we substitute t = 0 into f, g and calculate the Gröbner basis

we get:

G′ = Basis(f0, g0, x > y) = {x2, y2}.

If we substitute t = 0 into G we get G′′ = {y2}. So the x disappears. Therefore

G′′ is not a Gröbner basis for 〈f0, g0〉. �
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There are different ways to handle the disappearing coefficients. The simplest

way is to substitute the parameters in the original basis and to calculate a new

non-parametric Gröbner basis afterwards.

Another way are comprehensive Gröbner bases. This kind of parametric Gröb-

ner basis remains a Gröbner basis after specialisation. For the existence and

construction of a comprehensive Gröbner basis for a polynomial ideal we refer

to Weispfenning in [Wei92].

We also can build a Gröbner system by separating the field of parameters into

partitions. These partitioning is defined by the leading coefficients of the Gröb-

ner basis. So one distinguishes the areas where the leading coefficients are 0.

More details you can find in the paper [MM09].

In the case of the robot arm model the parameters are the coordinates x, y, z of

the hand position.

9.4. Extraction of solutions from a Gröbner basis

To get a Gröbner basis for a specific hand position we have to substitute this

coordinates into the parametric Gröbner basis of the robot arm. If the special-

isation delivers a Gröbner basis it can be solved by doing some simple steps.

First take the smallest non-zero polynomial w.r.t. the term order. If this poly-

nomial contains more than one variable, choose values for all but one variable

and remember them. The variables with values are now free variables. Sub-

stitute the values for the free variables into the polynomial. Solve the polyno-

mial after the remaining variable and add the solution to the system solution.

Substitute the gained solutions into the Gröbner basis. The chosen smallest

polynomial should be the zero polynomial now. Repeat this step until the Basis

just contain zero polynomials. (See Algorithm 2.)

The resulting list of solution contains each variable maximal once. If every
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Algorithm 2 FINDSOLUTION (Input : G,< Output : sol)

. where G is a Gröbner basis w.r.t. to the term ordering < and sol is a common

root of the polynomials in G, e.q. a point in the corresponding algebraic set.

sort G ascending w.r.t. <;

freevars = sol = [];

for p in G do

vars := indeterminates of p;

n := numelems(vars);

if n < 1 then

if p = 0 then

next;

else

return no solution;

end if

else if n > 1 then

add vars[2..n] to freevars;

chose values for the all freevars and add them to sol;

substitute sol into p;

end if

solve p w.r.t. first variable;

add the solution to sol;

substitute sol into G;

end for

return sol
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variable in the Gröbner Basis has a value and all polynomials become 0 if we

substitute the solution we have a solution of polynomial system.

If there is a variable which has no value there is a problem with the speciali-

sation of the Gröbner basis. Then we have to do specialisation before Gröbner

basis computation and repeat the steps.

At the first look Algorithm 2 may look a bit long or complicated but it is simple

and easy to understand. It will also compute rather fast. The only time con-

suming step is the calculation of the roots of the polynomials. If there are no

free variables then the algorithm has to solve, at most the number of variables

in the Gröbner basis, univariate polynomials. For an actual computer algebra

system this is no problem.

If we do some tests we can observe that mostly the free variables come from

the restrictions we get from the unit circle approach. If we have a free angle θi

then the corresponding unit circle polynomial is often the smallest polynomial

which has to be 0 for cθi , sθi. So the number of free variables is normally less

than the number of unit circle polynomials in the Gröbner basis.

In the simulation it is possible to choose values for the free variables and

calculate a solution to them. Another option will be to run through the interval

of valid values for one specific free angle where the other free angles are fixed.

Certainty we have to check if the gained solution is valid for the mathematical

model of the robot arm. Especially prismatic joints mostly have maximal and

minimal limits on their lengths. So after we calculate a solution we have to

verify its validity for the model.

In this thesis we will check 4 conditions to validate a solution for a robot arm.

• Is the solution over the real numbers?

• Are the restrictions from the unit circle approach fulfilled?

• Are the limit restrictions of the modelling fulfilled? (E.q. prismatic joints
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limits)

• Does the mathematical model actually reach the hand position if the so-

lution is substituted?

If we can answer these 4 questions with "yes" we calculated a valid solution

for the robot arm. If one of the answers is "no" we have to calculate a different

solution and check if it is valid.

Of course it is possible that we can not find a valid solution because there

is none. So we should stop the program after a certain amount of checked

solutions. Some tests showed that in 50 randomly calculated solutions there

is most likely a valid solution, if there are any valid solutions.

When we have a valid solution we can calculate the coordinates of the different

joints and the hand position by substituting the solution in the corresponding

mathematical models. Thus we can draw a semantic view of the robot arm.
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10. Usage of RS.mpl by the example of the Stanford

manipulator

We have modelled and solved the Stanford manipulator in the previous sec-

tions. Now we want to do this with the Maple program, Robot Simulation

RS.mpl. The code of RS.mpl you can find in Appendix A.

10.1. User guide

In the following steps the code examples are the commands we have to put

into a Maple worksheet to run the simulation. To use the Robot simulation

program we have to read the file with

read("...\RS.mpl")

First we have to put the Stanford manipulator in an input format for the pro-

gram. The input format for the program is a list of equations. Each equation

represents a joint in the robot arm. On the left hand side of the equation there

has to be a four character string of the form "ijjj", where i is the position of

the joint and jjj is the type of the joint. On the right hand side of the equation

are the parameters for the joint. The list has to be sorted increasingly by the

position of the joint.

Table 1 is a list of the types of joints in RS.mpl, di−1 is the length of the segment

along the x axis, on which the joint is placed on.

So for the Stanford manipulator with two revolute joints, a prismatic joint and

an euler joint we get the list:

j:=["1rjx"= 1, "2rjy"= 1, "3prj"= [1, 3], "4ecj"= 1, "5seg"= 1].

The first segment has length 1, then there is a revolute joint around the x axis,

followed by another segment of length 1 and a revolute joint around the y axis.

a prismatic joint with minimal length 1 and maximal length 3 is placed on the
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Type Name Parameters

rjx revolute joint around x di−1

rjy revolute joint around y di−1

rjz revolute joint around z di−1

prj prismatic joint maxlength or [min,max]

baj Balljoint di−1

ecj Euler joint di−1

rpy Roll-pitch-yaw di−1

cyj Cylindrical joint [rad,min,max]

seq Segment x or [x, y, x]

Table 1: Types of Joints

last revolute joint. Afterwards we have a segment of length 1 with a euler joint.

Finally there is a segment of length 1 which represents the robot hand.

After we have defined the robot arm we model the robot arm with the command:

B := RS:-modelrobot(j).

As result we get the Gröbner basis for the robot arm.

During the computation interesting information about the robot arm is printed

to the Maple worksheet. The output for the Standford manipulator you can find

in Figure 10.

Let us explain some features of this output. First you get the trigonometric

formulas for the hand position. Then the occurring angles are listed. The for-

muals get transformed into a polynomial form. Together with the restrictions

they form the input basis for the Gröbner basis calculations. Therefore we also

need a polynomial order. Then the Gröbner basis is printed out.
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Figure 10: Maple output of modelrobot(j)
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The leading terms of the Gröbner basis show if the system has flexible solu-

tions. We measure the CPU time which is needed for the three main steps:

setup of a model, polynomial form of the model, Gröbner basis calculation.

Finally we start the robot simulation for a fixed hand position (x, y, z) in the

3-dimensional space.

erg := RS:-simulateposition(3, 2, 2)

This command opens the simulation window which is a Maple maplet.

Figure 11: Simulation start

On the left side a 3-dimensional plot of the robot arm is placed. Segments

are represented though blue lines. Joints are points of different color. The
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color shows the kind of the joint. Yellow joints are revolute joints, red joints

are euler, ball or roll-pitch-yaw joints, green joints are prismatic or cylindrical

joints. The hand position is the black point at the end of the robot arm. In the

robot hand the orientation system is located, the red line corresponds to the

local x-axis, the green one to the y- axis and the yellow one to the z-axis.

On the right side you find the sliders for the free angles. With them you can

move the robot arm. The button walk walks through the whole circle for the

given angle, in doing so the other angles are fixed. Of course, as we can see in

Figure 12 and Figure, just the valid solutions are drawn. 13.

Figure 12: Walk α4
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Figure 13: Walk β4

On the bottom you first have a text field with the current solution in it. Then

there are 4 Buttons. "Refresh" redraws the robot arm. "Random" calculates

and draws a random configuration for the given robot arm. "ClearCloud" re-

moves the point cloud of previous solutions. And "Close" of course closes the

simulation. At the end there is a legend for the joint colors.

As mentioned there are some hand positions where the specialization of the

Gröbner basis is not valid. One such point is (0, 0, 0). Thus, for

erg := RS:-simulateposition(0, 0, 0) we get a corresponding message

in the maple worksheet (Figure 14).
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Figure 14: Maple Output (0, 0, 0)

The program notices that we do not have a complete solution, so the specialisa-

tion does not deliver a Gröbner basis. Thus the program substitutes the hand

position (0, 0, 0) into the original basis and calculates a valid Gröbner basis.
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In the simulation we do not notice anything of that.

Figure 15: Hand position (0, 0, 0)
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10.2. Further examples

So far we did all calculations and simulations on the Stanford manipulator,

but of course, the program also works for other robot arms. In this subsection

we give two additional examples.

For example the input

joints := ["1baj" = 1, "2baj" = 2, "3seg" = 2];

B := RS:-modelrobot(joints):

erg := RS:-simulateposition(3, 2, 2):

delivers a Gröbner basis with 7 polynomials in 8 variables of maximal degree

4. The robot arm has one free variable. The calculations of this robot arm take

about 2 seconds.

Figure 16: Hand position (3, 2, 2)
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The input

joints := ["1rjx"=0, "2rjy"=1, "3rjy"=1, "4ecj"=1, "5seg"=1];

B := RS:-modelrobot(joints):

erg := RS:-simulateposition(1, 2, 1):

delivers a Gröbner basis with 16 polynomials in 10 variables of maximal degree

12. The system has two free variables. The calculations of this robot arm take

about 80 seconds.

Figure 17: Hand position (1, 2, 1)
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11. Conclusion and Outlook

The theory of part one is well-known and therefore nothing new. The two books

of Cox, Little and O’Shea [CLO96] and [CLO04] give a good introduction to the

theories we need for our applications.

The modelling of the kinematics of a robot arm in part two of the thesis is

also known. Basics to modelling robot arms you can find in the book Robot

manipulators by Paul [Pau86].

We see that every joint in the 3-dimensional space can be represented by a

combination of the rotations around the axes and translations by an arbitrary

vector. Thus, every joint can be described by a so called transformation ma-

trix. By multiplying these transformation matrices in the correct order we get

trigonometric equations for the hand position.

Because we want to solve the problem with algebraic methods we have to bring

the equations into polynomial form. We do this in two different ways: the

unit circle approach and the tangent half-angle substitution. Both methods

work rather fine but have different advantages. We observe that the unit cir-

cle approach performs better with Gröbner bases and the tangent half-angle

substitution is the better alternative for resultants.

For transforming systems of polynomial equations into a suitable form for solv-

ing, systems of polynomial equations, we consider two different approaches,

Gröbner bases and resultants. We noticed that resultants are a bit faster in

the elimination step but have a complicated extension step. Gröbner bases on

the other hand have a rather simple extension step. Thus, for the purpose of

simulating a robot arm, where the extension step has to be done very often,

Gröbner bases fit better.

When we use Gröbner bases we first calculate a parametric Gröbner basis and

specialize it in a later step. In this specialization we may lose the Gröbner
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property of the basis. Thus, we have to check if we still have a Gröbner basis

after specialization and take actions if not.

If we finally get a solution we still have to check if it is valid, otherwise we have

to calculate another one.

Thus in this thesis we put together the different theories of elimination theory,

robotic modelling, etc. to develop a simulation of the kinematics of a robot

arm in a computer algebra system. We chose Maple to do the calculations and

Maplets for the graphical user interface. The most difficult part of the thesis

was the application of the elimination theory on the ideals of robotic arms.

There are many different ways you can do that, to find a feasible way and spot

the unusable ones took some time.

Outlook

In this thesis we have built a solid basis to model the kinematics of a robot

arm with algebraic methods but one can go into more detail at some issues.

This thesis considers a semantic model of an robot arm. To simulate a more

realistic robot arm one can extend the mathematical models. For instance,

real robots are affected by physical forces, this forces can be included into the

mathematical models. Some joints can not rotate a whole circle around their

links, so one also can add limits to the joints.

In the real world there may exist barriers in the field of motion. One may can

study how to handle such barriers.

One also can try to find a simpler way to use resultants, more precisely develop

a practical method to do the extension step with resultants. Maybe there are

methods to use resultants on the unit circle approach or other methods to get

a polynomial systems.

Another issue, which this thesis just touched on the surface, are parametric

Gröbner bases. Maybe the calculation of comprehensive Gröbner bases or
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Gröbner systems leads to better performance in the simulation of the robot

arm.
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A. Source Code

Listing 1: Robot Simulation

1 # RS.mpl
2 # Robot Simulation
3 # (C) 2014 Michael Steglehner
4

5 # Usage:
6 # RS:-modelrobot(joints)
7 # joints # list of equations of the form "ijjj" = parameters,
8 # each equation represent a joint in the robot arm
9 # where i is the number of the joint and jjj the type of the joint

10 # Return a general GröbnerBasis for the given Robot arm
11

12 # RS:-simulateposition(x,y,z)
13 # x,y,z # substitute (x,y,z) for the handposition in the GB from modelrobot()
14 # and start a maplet which simulates the robot arm.
15 # Returns the last solution of the simulation.
16

17 # RS:-getvarlist()/RS:-getorientation()/RS:-gettermordering()
18 # Return the properties of the actual robot arm
19 ########################################################################
20

21 RS := module()
22 # export functions
23 export modelrobot, simulateposition, getvarlist, getorientation, gettermordering;
24 # function which work with the maplet
25 global findnewsolution, move,drawArm,myrandom,clearPlot,walk;
26 #local functions
27 local makeeqsystem, getpolynomialsystem, solvesystem,
28 checkflexiblesolutions,findsolution, checksol,
29 getpointlist, buildmaplet, calculateangles, rotx,roty,rotz,trans;
30 # jointtypes/jointmatrices
31 local baj, rjx, rjy, rjz, ecj, cyj, prj, rpy;
32 # module variabels
33 local anglelist, sigangle, E, F, B, gB, tord, tempB, operationradius,
34 handpos, OrientationVector, varlist, freevars , joints, cursol:=[],
35 restrictions, limitrestrictions, polymethod, checkcounter,
36 oldpoints:=[], jointcolor;
37

38 # used maple packages
39 with(Groebner);
40 with(plottools);
41 with(plots);
42 with(Maplets[Elements]);
43 with(Maplets[Tools]);
44

45 # translation by an vector (x,y,z)
46 trans:=proc(x,y,z)
47 Matrix([[1,0,0,x],[0,1,0,y],[0,0,1,z],[0,0,0,1]]);
48 end proc;
49 # rotation around x-axis by alpha
50 rotx:=proc( alpha)
51 Matrix([[1,0,0,0],[0,cos(alpha),-sin(alpha),0],[0,sin(alpha),cos(alpha),0],[0,0,0,1]]);
52 end proc;
53 #rotation around y-axis by alpha
54 roty:=proc( alpha)
55 Matrix([[cos(alpha),0,-sin(alpha),0],[0,1,0,0],[sin(alpha),0,cos(alpha),0],[0,0,0,1]]);
56 end proc;
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57 # rotation around z-axis by alpha
58 rotz:=proc( alpha)
59 Matrix([[cos(alpha),-sin(alpha),0,0],[sin(alpha),cos(alpha),0,0],[0,0,1,0],[0,0,0,1]]);
60 end proc;
61

62 baj := trans(l,0,0).rotx(alpha).roty(beta); #balljoint
63 rjx:=trans(l,0,0).rotx(gamma); #revolute joint around x
64 rjy:=trans(l,0,0).roty(gamma); #revolute joint around y
65 rjz:=trans(l,0,0).rotz(gamma); #revolute joint around z
66 ecj:=trans(l,0,0).rotx(alpha).roty(beta).rotx(gamma); #euler corridante joint
67 prj:= trans(d,0,0); #prismatic joint
68 cyj := trans(d,0,0).rotx(alpha).trans(0,0,r); #cylindircal joint
69 rpy :=trans(l,0,0).rotx(alpha).roty(beta).rotz(gamma); #roll pitch yaw joint
70

71 #make a general equation system, transform it to a polynomial one and apply GB to it
72 modelrobot:=proc( jointlist::list,{polymeth::string :="unitcircle"})
73 local st,a,indE;
74 st := time():
75 sigangle:=[]; cursol:=[];
76 polymethod:= polymeth;
77 joints:=jointlist;
78 print("MODELLING of the robot arm");
79 E:= makeeqsystem(joints);
80 print("CPU time:", evalf(time()-st));
81 st:=time();
82 indE:= indets(E);
83 for a in anglelist do
84 if a in indE then
85 sigangle:= [op(sigangle),a];
86 end if;
87 end do;
88 print("All angles/Position significant angles",anglelist, sigangle);
89 E:= getpolynomialsystem(E);
90 F:= [op(restrictions), E[1],E[2],E[3]];
91 print("CPU time:" , evalf(time()-st));
92 st:=time();
93 gB:= solvesystem(F);
94 print("CPU time:" , evalf(time()-st));
95 gB;
96 end proc;
97

98

99 getvarlist:=proc() varlist end proc;
100

101 gettermordering:=proc() tord end proc;
102

103 getorientation:= proc()
104 if nops(cursol) = 0 then return OrientationVector; end if;
105 subs(calculateangles(),OrientationVector)[[1..3],[1..3]];
106 end proc;
107

108 # make equations out of the joint list
109 makeeqsystem:=proc( joints::list )
110 local A:= Matrix(4, shape = identity),joint, para, O,tempE, jointstr, jnr;
111 anglelist:=[];
112 varlist:=[];
113 restrictions:=[];
114 limitrestrictions:=[];
115 operationradius:=0;
116 O:= A;
117 print(joints);
118 for joint in joints do
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119 jnr :=parse(lhs(joint)[1]);
120 jointstr := lhs(joint)[2..4];
121 para := rhs(joint);
122 if evalb( jointstr = "baj") then
123 A:=A.subs(alpha=alpha[jnr] ,beta= beta[jnr],l=para,baj);
124 O:=O.subs(alpha=alpha[jnr] ,beta= beta[jnr],l=0,baj);
125 anglelist:=[op(anglelist), alpha[jnr],beta[jnr]];
126 operationradius:= operationradius + para;
127 elif evalb( jointstr = "rjx") then
128 A:=A.subs(gamma=gamma[jnr] ,l=para,rjx);
129 O:=O.subs(gamma=gamma[jnr] ,l=0,rjx);
130 anglelist:=[op(anglelist), gamma[jnr]];
131 operationradius:= operationradius + para;
132 elif evalb( jointstr = "rjy") then
133 A:=A.subs(gamma=gamma[jnr] ,l=para,rjy);
134 O:=O.subs(gamma=gamma[jnr] ,l=0,rjy);
135 anglelist:=[op(anglelist), gamma[jnr]];
136 operationradius:= operationradius + para;
137 elif evalb( jointstr = "rjz") then
138 A:=A.subs(gamma=gamma[jnr] ,l=para,rjz);
139 O:=O.subs(gamma=gamma[jnr] ,l=0,rjz);
140 anglelist:=[op(anglelist), gamma[jnr]];
141 operationradius:= operationradius + para;
142 elif evalb( jointstr = "prj") then
143 A:=A.subs(d = l[jnr] ,prj);
144 varlist := [op(varlist), l[jnr]];
145 if nops(para) = 2 then
146 limitrestrictions:= [op(limitrestrictions), l[jnr] >=para[1], l[jnr]

<=para[2]];
147 operationradius:= operationradius + para[2];
148 elif nops(para) = 1 then
149 limitrestrictions:= [op(limitrestrictions),l[jnr] >=0, l[jnr] <=para];
150 operationradius:= operationradius + para;
151 else
152 limitrestrictions:= [op(limitrestrictions), l[jnr] >=0];
153 end if;
154 elif evalb( jointstr = "cyj") then
155 A:=A.subs(alpha=alpha[jnr] , d=l[jnr] ,r = para[1],cyj);
156 O:=O.subs(alpha=alpha[jnr] , d=0 ,r = 0,cyj);
157 anglelist:=[op(anglelist), gamma[jnr]];
158 varlist := [op(varlist), l[jnr]];
159 limitrestrictions:= [op(limitrestrictions), l[jnr] >=para[2], l[jnr]

<=para[3]];
160 operationradius:= operationradius + sqrt(para[3]^2+para[1]^2);
161 elif evalb( jointstr = "ecj") then
162 A:=A.subs(alpha=alpha[jnr],beta= beta[jnr], gamma=gamma[jnr] ,l=para,ecj);
163 O:=O.subs(alpha=alpha[jnr],beta= beta[jnr], gamma=gamma[jnr] ,l=0,ecj);
164 anglelist:=[op(anglelist),alpha[jnr], beta[jnr], gamma[jnr]];
165 operationradius:= operationradius + para;
166 elif evalb( jointstr = "rpy") then
167 A:=A.subs(alpha=alpha[jnr],beta= beta[jnr], gamma=gamma[jnr] ,l=para,rpy);
168 O:=O.subs(alpha=alpha[jnr],beta= beta[jnr], gamma=gamma[jnr] ,l=0,rpy);
169 anglelist:=[op(anglelist), alpha[jnr], beta[jnr], gamma[jnr]];
170 operationradius:= operationradius + para;
171 elif evalb( jointstr = "seg") then
172 if nops(para) = 3 then
173 A:=A.trans(para[1],para[2],para[3]);
174 operationradius:= operationradius + sqrt(para[1]^2+ para[2]^2+para[3]^2);
175 elif nops(para) = 1 then
176 A:=A.trans(para,0,0);
177 operationradius:= operationradius + para;
178 end if;
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179 else
180 print("Incorrect jointtype:",jnr, jointstr);
181 end if;
182 end do;
183 tempE:=A.Vector([0,0,0,1])-Vector([x,y,z,0]);
184 OrientationVector:=O;
185 print("Equations for a point (x,y,z):" ,tempE);
186 tempE;
187 end proc;
188

189 # make a polynomial system out of the general equations system
190 getpolynomialsystem := proc(paraE)
191 local lcd:=1,a, tempE:= paraE,i;
192 if evalb(polymethod="unitcircle") then
193 for a in sigangle do
194 varlist :=[op(varlist), c[a], s[a]];
195 tempE:=subs( {cos(a)=c[a],sin(a)=s[a]},tempE);
196 restrictions:=[op(restrictions), c[a]^(2)+s[a]^(2)-1];
197 end do;
198 elif evalb(polymethod="halfangle") then
199 for a in sigangle do
200 varlist :=[op(varlist), u[a]];
201 tempE:=subs(

{cos(a)=(1-u[a]^(2))/(1+u[a]^(2)),sin(a)=(2*u[a])/(1+u[a]^(2))},tempE);
202 end do;
203 print(tempE);
204 for i to nops(tempE) do
205 tempE[i] := simplify(evala(tempE[i]*denom(tempE[i])));
206 end do;
207 else
208 print("Incorrect polymethod", polymethod);
209 end if;
210 print("Polynomial equations:", tempE);
211 print("Variables:" ,nops(varlist));
212 print("Restictions:", restrictions , limitrestrictions);
213 tempE;
214 end proc;
215

216 # apply the buchbergers algorithm to the polynomial system
217 solvesystem:=proc(paraF)
218 local v,tempB:=paraF,i;
219 print("Basis:" , paraF, " Number of Polynomials:", nops(paraF));
220 tord := plex( op(varlist));
221 print("order: ",tord);
222 try
223 tempB:=timelimit(600, Groebner:-Basis(paraF,tord));
224 catch "time expired":
225 print("The calculation take to much time");
226 return[];
227 end try;
228 print("Groebnerbasis: " , tempB, " Number of Polynomials:", nops(tempB));
229 print("Leading terms: ", LeadingMonomial(tempB, tord));
230 print("Solutions: ", checkflexiblesolutions(tempB));
231 tempB
232 end proc;
233

234 checkflexiblesolutions:= proc(paraB)
235 local leadingterms, check,v,l,ind;
236 if paraB[1] = 1 then return "No solutions!"; end if;
237 leadingterms:=LeadingMonomial(paraB, tord);
238 for v in varlist do
239 check:= false;
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240 for l in leadingterms do
241 ind:= indets(l);
242 if nops(ind)= 1 and v = ind[1] then
243 check:= true;
244 break;
245 end if;
246 end do;
247 if check= false then
248 return "Flexible solutions!";
249 end if;
250 end do;
251 return "Isolated solutions!";
252 end proc;
253

254 # find a random start configuration of the arm with the fixed hand at (x1,y1,z1)
255 simulateposition:= proc(x1::numeric,y1::numeric,z1::numeric)
256 local sol,i,st,mymaplet,s;
257 if(polymethod="halfangle") then
258 print("Simulation for halfangle substitution is in process!");
259 return [];
260 end if;
261 print("SIMULATION");
262 print("FIND SOLUTION");
263 print(x1,y1,z1 );
264 freevars:=[]; oldpoints:=[]; cursol:=[];
265 handpos:= [x=x1, y=y1, z=z1];
266 B:= subs(x=x1,y=y1, z=z1, gB);
267 if operationradius < evalf(sqrt(x1^2+ y1^2+z1^2)) then
268 print("Point:", [x1,y1,z1], "out of robot arm range!");
269 return [];
270 end if;
271 sol:=findsolution();
272 if sol = [] then
273 print("no solution found");
274 return [];
275 end if;
276 print("free variables:", freevars);
277 print(sol);
278 print(evalf(subs(op(sol),E)));
279 Maplets[Display](buildmaplet());
280 cursol;
281 end proc;
282

283 #find a solution for the commited GB
284 findsolution:=proc()
285 local sol, check:=false,idvar,idnr, v,i,val,erg;
286 checkcounter:=0;
287 while not check do
288 tempB:=B;
289 sol:=[]; freevars:=[];
290 if evalb(checkcounter >= 50) then
291 return sol;
292 end if;
293 for i from 1 to nops(tempB) do
294 idvar:= indets(tempB[i]);
295 idnr :=nops(idvar);
296 if idnr < 1 then next; end if;
297 if idnr > 1 then
298 for v in idvar[2..idnr] do
299 freevars:=[op(freevars),v];
300 if member(op(v), anglelist) and polymethod="unitcircle" then
301 val:=evalf(cos((rand(24)()*(Pi))/(12)));
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302 elif member(op(v), anglelist) and polymethod="halfangle" then
303 val:=evalf(tan(((rand(24)()-12)*(Pi))/(24)));
304 else val:=rand(3)()+1;
305 end if;
306 tempB:= subs(v=val,tempB);
307 sol:= [op(sol), v=val];
308 end do;
309 end if;
310 erg:= {solve(tempB[i],idvar[1])};
311 val:= erg[rand(nops(erg))()+1];
312 tempB:= subs(idvar[1]=val,tempB);
313 sol:= [op(sol), idvar[1]=val];
314 end do;
315

316 if nops(sol) < nops(varlist) then
317 print("Parametric gröbnerbasis failed! Solution incomplete:", sol);
318 B:= solvesystem(subs(handpos,F));
319 if 1 in B then return []; end if;
320 tempB:= B;
321 next;
322 end if;
323 check := checksol(sol);
324 end do;
325 cursol:=sol;
326 sol;
327 end proc;
328

329 #evaluate if the committed solution is a real solution for our model
330 checksol:=proc(solution)
331 local sol:=solution,s,r,pE;
332 checkcounter:= checkcounter+1;
333 for s in sol do
334 if type(rhs(s),nonreal) then return false; end if;
335 end do;
336 r:=[op(subs(op(sol),restrictions)),op(subs(op(sol),limitrestrictions))];
337 for s in r do
338 if type(s,’‘<=‘’) then
339 if not evalb(evalf(s)) then
340 return false;
341 end if;
342 elif type(s,numeric) then
343 if round(s*10^(6)) <>0 then
344 return false;
345 end if;
346 end if;
347 end do;
348 pE:=subs(handpos,subs(op(sol),E));
349 for s in pE[1..3] do
350 if evalb(evalf(abs(s)) > 10^(-6)) then
351 return false;
352 end if;
353 end do;
354 true;
355 end proc;
356

357 # calculate the angles to the corresponding variables in current solution
358 calculateangles:= proc()
359 local s,c,x, v, val,a,curangles:=[],u;
360 if evalb(polymethod="unitcircle") then
361 for a in anglelist do
362 c:=1;s:=0;
363 for x in cursol do
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364 v:= lhs(x);
365 if op(v) = a then
366 if convert(v,string)[1] = "c" then c:= rhs(x); end if;
367 if convert(v,string)[1] = "s" then s:= rhs(x); end if;
368 end if;
369 end do;
370 val := arccos(c);
371 if evalf(arcsin(s)) < 0 then val := 2*Pi - val; end if;
372 curangles :=[op(curangles), a = val]
373 end do;
374 elif evalb(polymethod="halfangle") then
375 for a in anglelist do
376 c:=1;s:=0;
377 for x in cursol do
378 v:= lhs(x);
379 if op(v) = a then
380 u := rhs(x);
381 end if;
382 end do;
383 val := arctan(u)*2 + Pi;
384 curangles :=[op(curangles), a = val]
385 end do;
386 end if;
387 curangles;
388 end proc;
389

390 # find a solution for the commited GB with substituted free variables
391 findnewsolution:=proc(dsol::list)
392 local sol, check:=false ,idvar,idnr,i,val,erg,p,pval,distance,e;
393 checkcounter:=0;
394 tempB:=subs(dsol, B);
395

396 while not check do
397 sol:=dsol;
398 tempB:= subs(op(sol), B);
399

400 for i from 1 to nops(tempB) do
401 idvar:= indets(tempB[i]);
402 idnr := nops(idvar);
403 pval:= 0;
404 if idnr < 1 then next; end if;
405 if idnr > 1 then
406 print("Error: The free variables are not defined",tempB[i]);
407 return "Free variables not bounded!";
408 end if;
409 erg:={solve(tempB[i],idvar[1])};
410 val := erg[rand(nops(erg))()+1];
411 for p in cursol do
412 if idvar[1] = lhs(p) then pval:= rhs(p); break; end if;
413 end do;
414 distance:=abs(val-pval);
415 for e in erg do
416 if evalf(abs(e-pval)) < evalf(distance) then
417 val:=e;
418 distance:=abs(e-pval);
419 end if;
420 end do;
421 tempB:=subs(idvar[1]=val,tempB);
422 sol:=[op(sol), idvar[1]=val];
423 end do;
424 check := checksol(sol);
425 checkcounter:= checkcounter+1;
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426 if checkcounter > 20 then
427 print("Error: The new values are not valid!",sol);
428 sol := cursol;
429 return "No solution for these values!";
430 end if
431 end do;
432 cursol:=sol;
433 end proc;
434

435 clearPlot:=proc( )
436 oldpoints:=[];
437 drawArm();
438 end proc;
439

440 drawArm:=proc( )
441 local plist,i,Lines,Points,p,n,colorlist,hp,Or;
442 plist:=[[0,0,0]];
443 colorlist:= [];
444 Lines:={}; Points:={};
445 n:= nops(joints);
446 for i from 1 to n do
447 plist:=[op(plist), getpointlist(joints[1..i])];
448 colorlist:= [op(colorlist), jointcolor];
449 end do;
450 for p in oldpoints do
451 Points:={op(Points) ,point(p,color="LightSalmon",symbolsize=15)};
452 end do;
453 if nops(oldpoints) > n*25 then oldpoints:= oldpoints[1..n*25]; end if;
454 oldpoints:= [op(plist),op(oldpoints)];
455

456 for i from 1 to nops(plist)-1 do
457 Lines:={op(Lines),line(plist[i],plist[i+1],color=blue,thickness=4)} :
458 Points:={op(Points) ,point(plist[i+1],color=colorlist[i],symbolsize=35)}:
459 end do;
460

461 hp:= [rhs(handpos[1]),rhs(handpos[2]),rhs(handpos[3])];
462 Or:=evalf(getorientation());
463 Lines:={op(Lines),line(hp, hp + convert(Or[1..3,1],list),color=red),line(hp, hp +

convert(Or[1..3,2],list),color=green),line(hp, hp +
convert(Or[1..3,3],list),color=yellow)} :

464

465 display( (Lines union Points),axes=normal,scaling=constrained, axis=[thickness =0],
466 labels=[x,y,z], labelfont=[Courier,BOLD,13],
467 ’orientation’=[-10, 160, -25], ambientlight=[1, 1, 1] );
468 end proc;
469

470

471

472 # do the forward kinematic problem for robotics
473 getpointlist:=proc(joints::list )
474 local A:=Matrix(4, shape = identity),joint,j,para,P,a,pv;
475

476 for joint in joints do
477 j:= lhs(joint);
478 para :=rhs(joint);
479 if evalb( j[2..4] = "baj") then
480 A:=A.subs(alpha=alpha[parse(j[1])],beta= beta[parse(j[1])],l=para,baj);
481 jointcolor:= ’red’;
482 elif evalb( j[2..4] = "rjx") then
483 A:=A.subs(gamma=gamma[parse(j[1])],l=para,rjx);
484 jointcolor:= ’yellow’;
485 elif evalb( j[2..4] = "rjy") then
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486 A:=A.subs(gamma=gamma[parse(j[1])],l=para,rjy);
487 jointcolor:= ’yellow’;
488 elif evalb( j[2..4] = "rjz") then
489 A:=A.subs(gamma=gamma[parse(j[1])],l=para,rjz);
490 jointcolor:= ’yellow’;
491 elif evalb( j[2..4] = "prj") then
492 A:=A.subs(d = l[parse(j[1])] ,prj);
493 jointcolor:= ’green’;
494 elif evalb( j[2..4] = "cyj") then
495 A:=A.subs(alpha=alpha[parse(j[1])], d=l[parse(j[1])] ,r = para[1],cyj);
496 jointcolor:= ’green’;
497 elif evalb( j[2..4] = "ecj") then
498 A:=A.subs(alpha=alpha[parse(j[1])],beta=beta[parse(j[1])],
499 gamma=gamma[parse(j[1])] ,l=para,ecj);
500 jointcolor:= ’red’;
501 elif evalb( j[2..4] = "rpy") then
502 A:=A.subs(alpha=alpha[parse(j[1])],beta= beta[parse(j[1])],
503 gamma=gamma[parse(j[1])] ,l=para,rpy);
504 jointcolor:= ’red’;
505 elif evalb( j[2..4] = "seg") then
506 if nops(para) = 3 then
507 A:=A.trans(para[1],para[2],para[3]);
508 elif nops(para) = 1 then
509 A:=A.trans(para,0,0);
510 end if;
511 jointcolor:= ’black’;
512 end if;
513 end do;
514 P:=A.Vector([0,0,0,1]);
515 if evalb(polymethod="unitcircle") then
516 for a in sigangle do
517 P:=subs( {cos(a)=c[a],sin(a)=s[a]},P);
518 end do;
519 elif evalb(polymethod="halfangle") then
520 for a in sigangle do
521 P :=subs( {cos(a)=(1-u[a]^(2))/(1+u[a]^(2)),sin(a)=(2*u[a])/(1+u[a]^(2))},P);
522 end do;
523 end if;
524 pv:=evalf(subs(op(cursol),P));
525 [pv[1],pv[2],pv[3]];
526 end proc;
527

528 # move the robot arm in the simulation if the free variables get modified
529 move:=proc()
530 local sinval,sol,i, cosval, uval,a;
531 sol:=[];
532 if evalb(polymethod="unitcircle") then
533 for i from 1 to nops(freevars) do
534 sinval :=evalf(sin(Get(cat("SL",i)::numeric)*Pi/180));
535 cosval :=evalf(cos(Get(cat("SL",i)::numeric)*Pi/180));
536 a:= op(freevars[i]);
537 sol:=[op(sol), c[a] = cosval, s[a] = sinval];
538 end do;
539 elif evalb(polymethod="halfangle") then
540 for i from 1 to nops(freevars) do
541 uval :=evalf(tan( (Get(cat("SL",i)::numeric)*Pi/180 -Pi) /2 ));
542 sol:=[op(sol), u[op(freevars[i])] = uval];
543 end do;
544 end if;
545 convert(findnewsolution(sol),string);
546 end proc;
547
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548 #calculate a random solution and draw it in the simulation
549 myrandom:=proc()
550 local val,sol,i,s ;
551 sol:=findsolution();
552 print(sol);
553 if sol=[] then return -1; end if;
554 for i from 1 to nops(freevars) do
555 val:=0;
556 for s in calculateangles() do
557 if lhs(s)=op(freevars[i]) then
558 val:= round(rhs(s)*180/Pi);
559 break;
560 end if;
561 end do;
562 Set(cat("SL",i) = val);
563 end do;
564 return convert(sol,string);
565 end proc;
566

567 # create a curve of solution for one free variable
568 walk:=proc(fnr)
569 local val,sol,i ,cura, steps, walkvar,newsol, cosval, sinval,j,uval,a,walkdist;
570 steps:=20;
571 walkvar:= freevars[fnr];
572 sol:=[];
573 clearPlot():
574

575 if evalb(polymethod="unitcircle") then
576 for i from 1 to nops(freevars) do
577 sinval :=evalf(sin(Get(cat("SL",i)::numeric)*Pi/180));
578 cosval :=evalf(cos(Get(cat("SL",i)::numeric)*Pi/180));
579 a:= op(freevars[i]);
580 if (a <> op(walkvar)) then
581 sol:=[op(sol), c[a] = cosval, s[a] = sinval];
582 else
583 cura:= arccos(cosval);
584 end if;
585 end do;
586

587 elif evalb(polymethod="halfangle") then
588 for i from 1 to nops(freevars) do
589 uval :=evalf(tan( (Get(cat("SL",i)::numeric)*Pi/180 -Pi) /2 ));
590 if (op(freevars[i]) <> op(walkvar)) then
591 sol:=[op(sol), u[op(freevars[i])] = uval];
592 else
593 cura:= arctan(uval);
594 end if;
595 end do;
596 end if;
597

598 walkdist:= evalf(2*Pi/steps);
599 for j from 1 to steps do
600 cura:= (cura + walkdist);
601 if evalf(cura) > evalf(2*Pi) then cura:= cura-evalf(2*Pi); end if;
602 newsol:=[op(sol), s[op(walkvar)]= sin(cura),c[op(walkvar)]=cos(cura)];
603 findnewsolution(newsol);
604 Set(cat("SL",fnr)= round(cura*180/Pi));
605 Set(’Plotter1’ = drawArm());
606 end do;
607 end proc;
608

609 # build the simulation popup
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610 buildmaplet:=proc()
611 local maplet3d,pl,sliderlist,s,a,wa,vl,i, actlist:=[],l,val::integer,

colorleg,ang:=[];
612 pl:= Plotter[’Plotter1’](’value’=drawArm());
613 l:= TextBox[’l1’](convert(cursol,string),height = 3);
614 actlist:=[Action[’ref’](
615 Evaluate(’function’="drawArm",’target’=’Plotter1’)),
616 Action[’rand’](Evaluate(’function’="myrandom",’target’=’l1’),
617 Evaluate(’function’="drawArm",’target’=’Plotter1’))
618 ];
619 sliderlist:= [ Label("Adjustable angles:")];
620 for i from 1 to nops(freevars) do
621 val:=0;
622 for s in calculateangles() do
623 if lhs(s)=op(freevars[i]) then
624 val:= round(rhs(s)*180/Pi);
625 break;
626 end if;
627 end do;
628 s:=Slider[cat("SL",i)](0 .. 360, ’value’= val, ’majorticks’ = 90,
629 ’minorticks’ = 10, ’snapticks’ = ’false’, ’filled’ = true,
630 ’showticks’ = true, ’onchange’=cat("AC",i));
631 ang:=[op(ang), freevars[i]];
632 vl:=Label(cat(convert(op(freevars[i]),string)[1],op(op(freevars[i]))),

font=Font("Symbol",18));
633 a:=Action[cat("AC",i)](Evaluate(function = "move",’target’=’l1’),
634 Evaluate(’function’="drawArm",‘option‘="value",’target’=’Plotter1’));
635 wa:=Action[cat("Walk",i)](Evaluate(function = cat("walk(",i,")" )));
636 sliderlist:=[op(sliderlist), [vl, s,Button("Walk",’onclick’=cat("Walk",i))]];
637 actlist:=[op(actlist),a,wa];
638 end do;
639 colorleg := [ Label("revolute joints", background = yellow),
640 Label("eulerjoint, rpy", background = red),
641 Label("prismatic, cylindric", background = green)];
642 Maplet(’onstartup’ = RunWindow(’W1’),Window[’W1’](
643 ’title’="Robot Simulation",[[pl,sliderlist], l,[Button("Refresh", ’onclick’=’ref’),
644 Button("Random", ’onclick’=’rand’),
645 Button("ClearCloud",Evaluate(’function’="clearPlot",‘option‘="value",’target’=’Plotter1’)),
646 Button("Close",Shutdown([]))],colorleg ]),actlist);
647 end proc;
648 end module;
649

650 save(RS, "robotsimulation") ;
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