
 1

MULTIBODY DYNAMICS 2011, ECCOMAS Thematic Conference

J.C. Samin, P. Fisette (eds.)

Brussels, Belgium, 4-7 July 2011

SYMBOLIC COMPUTATION TECHNIQUES FOR MULTIBODY

MODEL DEVELOPMENT AND CODE GENERATION

Chad Schmitke

and Paul Goossens

Maplesoft

Waterloo, Ontario, Canada

e-mail: cschmitke@maplesoft.com,

web page: http://www.maplesoft.com

Keywords: symbolic computation, multibody, maplesim, maple, optimized code generation

Abstract. This paper presents some of the benefits of a general purpose symbolic computa-

tion environment when constructing and generating simulation code for multibody, multi-

domain systems. Specifically, it considers how tools provided by these environments can be

harnessed to generate highly efficient simulation code. MapleSim™, a modeling and simula-

tion platform that is based on the Maple™ symbolic computation engine is used as the investi-

gative tool. As a case study, different approaches to an inverse dynamics solution of a

Stewart-Gough platform are modeled and exported to C-code for simulation and timing.

Chad Schmitke, Paul Goossens

 2

1 INTRODUCTION

One of the goals of multibody dynamics research is to advance techniques for developing

efficient simulation code. To this end, symbolic computation has been shown to be beneficial

for many classes of problems [1]. Many of the straightforward benefits of symbolic computa-

tion in multibody formalisms are well known: automatic removal of multiplications by 1s and

0s, cancellation of common terms, trigonometric simplifications, etc. As well, most of these

operations can be performed without implementing a general purpose symbolic computation

engine (GPSCE), that is, they can be coded into routines that run while simulation code is be-

ing processed (or during the formulation stage), without the need to provide the user with any

ability to directly view or manipulate the underlying equations. The equations are only seen

as text in the software’s target code.

The goal of this paper is to present some additional advantages of having access to a

GPSCE during the model development and code generation phases. The first section discuses

how coordinate selection can impact both the form and complexity of system’s governing

equations. The second section looks at how being able to view and manipulate these equa-

tions (and their structure) in a GPSCE can lead to further simplifications (and perhaps inform

the coordinate selection). Generation of optimized simulation code is considered in the third

section, with a brief discussion of how a specific GPSCE, Maple, leverages its internal repre-

sentation of the equations to generate efficient code. This is followed by example timings of a

Stewart-Gough manipulator using some of the aforementioned techniques. The paper con-

cludes with some summary thoughts on the use of GPSCE’s for formulating and generating

code for multibody systems.

2 COORDINATE SELECTION

Although different multibody formalisms may be more or less efficient than one another,

the efficiency of the final set of equations is strongly dependent on the chosen coordinates.

As Mitiguy and Kane [2] point out, “Generally, the choice of variables made by the analyst

has a profound effect on the efficiency of the resulting

equations”.

Consider the Stewart-Gough manipulator shown in

Figure 1. The 6 DoF (Degree of Freedom) mechanism

consists of 6 identical legs fixed to ground via universal

joints, and attached to a common platform via spherical

joints. The motion of the platform is controlled by the

6 actuators which drive the length of each leg.

Using a selection of absolute coordinates (the x-,y-,z-

translation and roll, pitch, yaw orientation of each rigid

body) to model this system results in 78 coordinates – 6

for the platform motion and 12 for each of the 6 legs

(each leg having 2 rigid bodies). These coordinates ne-

cessitate 78 ordinary differential equations (ODEs) to

govern their motion. Since the platform only has 6

DoF, 72 additional constraint equations are required to account for the lack of independence

between the coordinates. This gives a total of 150 differential-algebraic equations (DAEs) for

this model. The large number of constraints can be particularly costly during simulation since

they will need to be handled using some type of iterative approach.

In contrast, using a set of hybrid coordinates (a combination of absolute and joint coordi-

nates), the platform can be modeled using 24 variables – 6 for the platform motion and 3 for

Figure 1: Stewart-Gough Manipulator

Chad Schmitke, Paul Goossens

 3

each of the 6 legs (2 for the universal joint at the base and 1 for the prismatic joint). This re-

quires 24 ODEs and 18 constraint equations, resulting in only 42 DAEs.

Using pure joint coordinates (replacing the platform coordinates with a spherical joint in

one of the legs), we could reduce the coordinate count to 21, but the structure of the equations

is not as efficient. In general, fewer coordinates do not always lead to more efficient simula-

tions (3). Being able to control the coordinate selection is important as it allows expert users

to apply domain knowledge to a given model.

3 SYMBOLIC MANIPULATION

This control over the coordinates is par-

ticularly advantageous when one can then

view and manipulate these equations using

a GPSCE. The Stewart Platform shown in

Figure 1 and described in [4] was created in

MapleSim, and the equations were formu-

lated and retrieved via the multibody analy-

sis package. One of the commands in this

library returns the symbolic constraint

Jacobian for the system (the partial deriva-

tive of the constraint equations with respect

to the modeling coordinates).

Although it is difficult to glean any in-

sight from the fully expanded Jacobian,

looking at the symbolic structure of the

Jacobian can lead to a better understanding of the system’s make-up. This structure is shown

in Figure 2. Here, white

squares corresponds to sym-

bolically 0 terms (0 for all

time, not just at a single in-

stant in time) and black

squares corresponds to poten-

tially non-zero terms. The

two vertical black columns

correspond to the platform’s

three translations and rota-

tional coordinates, respec-

tively. Clearly these

coordinates are involved in

all of the constraint equations.

However, and as direct result

of using the previously men-

tioned hybrid coordinate se-

lection, the joint coordinates

for each leg only appear in a

cluster of three equations –

the constraints related to the

xyz-constraint of each leg’s

Figure 2: Graphical Depiction Of Symbolic Jacobian

Figure 3: Parameterized Constraint Equations

Chad Schmitke, Paul Goossens

 4

spherical joint. A quick symbolic comparison confirms that the parameterized constraints of

these 6 groups are symbolically identical. A snapshot of the 3 constraint equations (taken

from Maple) are shown in Figure 3.

Here X, Y and Z correspond to the desired translation of the platform (orientation is as-

sumed level). Xp,Yp, Zp and Xg,Yg,Zg correspond to the location of the leg with respect to

frame Am and frame Gm in coordinates local to each frame (see Figure 1). The variables α, β

and s are the universal joint angles and the prismatic joint’s displacement, respectively. Final-

ly, ang is an offset angle controlling the orientation of the leg with respect to the Gm frame.

Even more useful than helping to identify the structure of the equations, a GPSCE can also

be used to analytically solve these equations for the desired variables. Using Maple’s solve()

command, and passing in the three equations shown, we can immediately obtain a solution for

alpha α, β and s as a function of only the platform position and the leg parameters – effective-

ly solving the inverse kinematics problem for each leg without needing to perform any manu-

al manipulation of the equations.

Once obtained, MapleSim allows for the automatic creation of block components from the

derived equations. All that is required is to map the variables appearing in the equations to

ports on the block. Shown circled in Figure 4, this block takes the XYZ motion of the plat-

form, and the Xp,Yp, Zp and Xg,Yg,Zg parameters relating the leg to the platform and ground,

and outputs the required length of variable s (the length of the leg). Used in conjunction with

a position driver, we can easily measure the system’s inverse dynamics, that is, the forces re-

quired in each leg to generate the prescribed motion.

To verify the correctness of the solution we compare against the results shown in [4] for a

diagonal heaving of the platform. The results, which match those listed by Tsai, are shown in

Figure 5.

Figure 4: Snapshot Of MapleSim Interface High-lighting Inverse Kinematics Block

Chad Schmitke, Paul Goossens

 5

4 OPTIMIZED CODE

GENERATION

In the previous example,

no additional coding was re-

quired to transform the solved

equations into efficient simu-

lation code. That task was

entirely handled by the

GPSCE. To talk about this

further we need to understand

a bit more about how equa-

tions are internally stored

withing the engine – in this

case, Maple.

Maple uses a Directed

Acyclic Graph (DAG) to

store its internal representa-

tion of a given set of equa-

tions (see the discussion on

repeated subexpressions in

[5]). This structure looks for repeated subexpressions of the expression and stores them only

once, referencing them elsewhere in the equations. Not only is this efficient for managing a

computer’s memory resources, but it also provides a significant benefit in the area of generat-

ing efficient simulation code.

As a simple example,

consider the set of equations

shown in Figure 3. Using

Maple’s cost() function, we

can calculate the equations to

have 35 addi-

tions/subtractions, 87 multi-

plications, and 82 functions

(sin(),cos() calls). Applying

optimization, which takes

advantage of the internal

DAG structure, yields the equations shown in Figure 6:

Here, tn corresponds to temporary variables created for repeated subexpressions. CON1,

CON2, and CON3 represent the original three constraints in terms of the repeated expressions.

A cost() of these equations yield 14 additions/subtractions, 12 multiplications, and 6 functions.

Running this optimization on the 42 DAEs for the Stewart Platform gives a similar magni-

tude of drop in the number of computations. Specifically, the original 14096 additions drops

to 2369, and the 35163 multiplications drops to 2766.

5 SIMULATION TIMINGS

Although counting the number of computations in the expressions can be useful, a better

comparison is the actual integration time. Using the MapleSim Connector®, two inverse dy-

namics solutions to the Stewart-Gough manipulator were exported to C-code and wrapped in

MATLAB
®

/Simulink
®

 S-function. In one case the inverse kinematics was left as a set of non-

Figure 6: Optimized Constraint Equations

Figure 5: Forces Required In Each Leg During Heaving Motion

Chad Schmitke, Paul Goossens

 6

linear equations (those shown in Figure 3) to be solved iteratively during simulation. In the

other case, the analytical solution to the inverse kinematics problem was used.

In order to solve DAEs in MATLAB
®

/Simulink
®

, a projection step is used at the end of

every major integration step, perturbing the solution slightly in order to project the states back

onto the constraint manifold [6]. This projection step is iterative, and MapleSim allows you

to loop to a specific error tolerance in the constraint violation, or specify a fixed number of

iterations.

A straight running of the two models against one another (fixed-step, Euler solver) showed

a 3.5x speed-up when the inverse kinematics were solved analytically. In part, this was due to

the additional projection calls made in the unsolved case, as more work was required in order

to achieve the same level of accuracy in the constraint residual. When both models were lim-

ited to a single projection call per time-step, the solved case was still 2.5x faster.

6 CONCLUSIONS

The goal of the paper has been to show how access to a GPSCE during the model creation

as well as the code generation phase can provide additional opportunities for a user to further

simplify their system.

Coordinate selection coupled with the ability to manipulate the derived equations provides

significant opportunities to generate more efficient code. In this paper we’ve shown how a set

of coordinates can be chosen to yield repeated subsystems of constraint equations. Using the

GPSCE, these kinematic constraints can be analytically solved and sent back into the simula-

tion. However, this is just an example of the types of operations that can be performed in a

GPSCE – order reduction, symbolic differentiation, etc. are also available to the user in these

environments.

The code generation phase can take advantage of a GPSCE by leveraging the internal

structures that describe the equations. Since leading GPSCEs (like Maple) have spent dec-

ades managing and compacting these structures, being able to automatically re-use them for

code optimization can lead to very efficient simulation code – without the need for manual

programming.

Finally, it was shown that by using a GPSCE to obtain an analytical solution for a Stewart-

Gough platform’s inverse kinematics, we were able to speed-up the simulation time of the in-

verse dynamics solution 2.5x to 3.5x times.

REFERENCES

[1] J.C. Samin and P. Fisette. Symbolic Modeling of Multibody Systems. Kluwer Academic

Publisher, Dordrecht, 2003.

[2] P.C. Mitiguy and T.R. Kane. Motion variables leading to efficient equations of motion.

International Journal of Robotics Research, 15, 522–532, 1996.

[3] M. Leger, and J. McPhee, Selection of Modeling Coordinates for Forward Dynamic

Multibody Simulations, Multibody System Dynamics, 18, 277-297, 2007.

[4] Lung-Wen Tsai. Solving the InverseDynamics of a Stewart-Gough Manipulator by the

Principle of Virtual Work. Journal of Mechanical Design, 122, 3-9, 2000.

[5] Allan Wittkopf, Automatic Code Generation and Optimization in Maple, Journal of

Numerical Analysis, Industrial and Applied Mathematics, 1, 1-13, 2007.

Chad Schmitke, Paul Goossens

 7

[6] Lawrence F. Shampine, Mark W. Reichelt, Jacek A. Kierzenka, Solving index-1 DAEs

in MATLAB
®

 and Simulink
®
, SIAM Review, 41, 538-552, 1999.

*Maplesoft, Maple and MapleSim are trademarks of Waterloo Maple Inc. MATLAB and Simulink are registered trademarks of The

MathWorks, Inc. The MathWorks is a trademark of The Mathworks, Inc. All other trademarks are property of their respective owners.

