
 
 

 

  

Abstract— Advanced intelligent 
systems such as robots must be capable 
to interact with dynamic environment 
and adapt their behavior to it 
efficiently. Currently, modeling 
humanoid robots with sophisticated 
learning and cognitive capabilities is 
one of the most challenging issues in 
the field of intelligent robotics. Robots 
must be equipped with the ability to 
modify and add to its knowledge base 
information gained from its past 
failings. This might provide stable 
robust walking on unseen terrains as 
well. Moreover, a further critical stage 
in designing and evaluating such a 
sophisticated complex system is 
modeling and simulation. This paper 
describes preliminary work on 
designing a simple multi-body system 
by using MapleSim, which is a tool for 
multi-body modeling/simulation and 
reinforcement learning algorithm is 
applied to this multi-body system in 
terms of using Modelica models. 

INTRODUCTION  
Humanoid robot (HR) design and development with 
advanced control and learning techniques have gained 
significant attention over the last decades. In order to 
enhance the capability of HR for large movements, variable 
speeds, various constraints and respond to uncertainty in the 
real world, intelligent control algorithms, such as 
reinforcement learning (RL) is considered [1]. RL offers an 
efficient way to move from traditional robotics to true 
autonomy and versatility by generating adaptable walking 
gaits based on the changing dynamics in the environment.  
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RL is basically an on-line learning technique to map from an 
input (situation) to output (action) by performing a trial-error 
process in order to maximize the performance of learning by 
gaining higher numerical positive reinforcement signal 
(reward) from the system.  

In 1983, Barto and Sutton developed a temporal difference 
(TD) method and demonstrated its efficiency on pole 
balancing problem [1]. In 1988, Sutton achieved to 
formulate discrete TD(λ) learning algorithm and specified its 
properties [2]. An important work in continuous time and 
space RL was introduced by Kenji in 2000. He explicitly 
derived the critic/value function equations for TD(0), TD(λ) 
and the value gradient based policy learning. He tested these 
algorithms on a nonlinear pendulum and cart-pole swing-up 
tasks [3]. In terms of RL humanoid robot applications, an 
efficient actor-critic based RL algorithm was implemented 
on a physical robot by Hamid [4]. It controls the 6 joint 
angles by using the peripheral controllers’ evaluation and 
CMAC neural network. Tedrake (2004) introduced a 
stochastic RL algorithm and implemented it on a 3D, 6 
Degrees of Freedom (DOF) robot [5]. Gen et al. (2008) 
implemented a continuous RL algorithm which is based on 
CPG and a policy gradient method to a full body 3D 
humanoid [6].  

Designing a bipedal robot, which is the most sophisticated 
type of legged robot, is a formidable challenge for the 
researchers because of the complexity of the mechanism and 
difficulties in construction and modeling. As deriving 
dynamic/kinematic equations of the rigid multi-body systems 
by hand result in an inefficient representation of the systems, 
software packages for modeling multi-body systems have 
been developed. It is important to choose appropriate multi-
body modeling software package which derives and 
simplifies the equations of the system. Moreover, they 
should be flexible enough to allow researchers for their own 
learning/control algorithm application to the designed multi-
body system.  

This paper presents a preliminary work on multi-body 
modeling/simulation and RL application by using the 
MapleSim software together with Modelica models. For the 
knowledge of the authors this is the first application of the 
RL algorithm to a multi-body system by basically combining 
two softwares’ properties, namely MapleSim and Modelica. 
In section 1, actor-critic based RL algorithm is reviewed. In 
section 2, various multi-body modeling simulators are briefly 
introduced. Moreover, modeling a pendulum with MapleSim 
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and writing RL codes with Modelica are introduced as well. 
In section 3, a simulation experiment is performed and 
simulation results are presented. 

I. LITERATURE REVIEW AND BACKGROUND 

In value function (critic) learning, TD learning algorithms 
and TD error play a central role. This section initially 
presents the TD learning algorithms and then reviews 
residual gradient learning equations that will be used in the 
rest of the paper. Finally, it reviews controller (actor) 
equations of the RL. 

A. Value Function 

Value function is the long term prediction of the discounted 
future rewards that could be obtained in the future. Basically, 
TD methods are investigated to estimate the unknown value 
function [3, 7]. Discounted infinite horizon value function: 
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where ( ) ( ),k k kr x r x u= is the immediate reward obtained at 

each discrete time sample k , kx  is the state, ( )kV x  is the 

value function, γ ( 0 1γ< < ) is the discount factor, ku is the 

torque. The discount factor should be chosen such that (1) 
converges [3, 8]. If the reward is state based, then 

( )k kr x x= . Basically, a state based reward provides an 

instant feedback about learning. Characteristic of the value 
function changes as the selected rewards carry different 
properties of the learning. However, exact value function 
representation generally can only be employed to small scale 
problems. Thus, exact representation is not  feasible anymore 
for a system with large number of states [9]. Furthermore, 
value function and controller should be represented 
approximately. A parametric value function approximation 
scheme which is linear in its parameters is: 
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where ( )kxφ  is the basis function vector and kw  is the 

parameter vector. The next section introduces residual 
gradient learning which is a type of TD learning algorithm. 

B.  Residual Gradient Learning 

It is noticed that TD learning algorithms can diverge for 
more general function approximation schemes. The residual 
gradient algorithm was developed to eliminate the 
divergence issue associated with TD(0) learning and this 
section reviews  the residual gradient learning algorithm.  

1) Temporal Difference Error 

With respect to the equation (1), it can be understood that the 
value function is basically the sum of the discounted future 
rewards [2, 7]. Therefore, it represents the long term 
performance of the learning process.   

( ) ( ) ( ) ( )1 ....k k kV x r x r x r xγ γ ∞
+ ∞= + + +                       (3) 

Equation (3)  can be written in terms of current reward and 
future value function, which motivates the “differenced 
error” used in TD learning. 

( ) ( ) ( )1k k kV x r x V xγ += +                          (4) 

This defines an optimality condition which is satisfied as 
long as the approximated value function is accurate. 
Otherwise, a temporary error occurs between the instant 
reward and the differenced value functions. This is known as 
TD error occurring due to difference between the 
instantaneous reward, ( )kr x , and estimated reward, 
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Figure 1: Configuration of the TD error, instant reward and 
value function. The reward is state based where ( )1,1x ∈ −  

and the discount factor is 0.85 for the value function. 

The temporary error between the instant and the expected 
reward is given by: 

( ) ( )ˆ ,k k k kr x r x wδ = −                (5) 

where kδ  is called as TD error [3]. Substituting the 

estimated reward in (5) gives: 

( ) ( ) ( )( )1

T

k k k k kr x x x wδ φ γφ += − −                                (6) 

The TD error is equivalent to the error used in many 
instantaneous learning algorithms in the literature, such as 
least mean square (LMS) algorithm.   

2) Residual Gradient Parameter Update 

 Baird investigated residual gradient algorithm to overcome 
the divergence issue associated with the TD(0) learning 
algorithm. With this learning algorithm, gradient descent is 
performed on the squared TD error and guarantees the 
convergence to a local optimum. 
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The residual gradient algorithm directly minimizes the TD 
error by updating its parameters based on gradient descent. 
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The residual gradient parameter update rule in terms of the 
residuals is given by: 

( ) ( )1 1k k k k kw w x xηδ φ γφ+ += + −                                 (9) 

The parameter update direction is the weighted difference 
between successive basis function vectors. Residual learning 



 
 

 

is stable for the learning rates lying in the range of 

( ) ( ) 2

1 2
0 2 k kx xη φ γφ +< < − . Appropriate learning rate 

selection plays an important role in the parameter 
convergence rate analysis. 

C. Controller and Controller Parameter Update 

In order to update the parameters of the controller to reach 
optimal control policy, TD error is used as a reinforcement 
signal and same noise signal is added to keep the parameter 
update sign in the correct direction.  
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And the controller is: 

( )( )max a
ktanh ,k k k ku u A x w nσ= +  (11) 

where ( )a
k k,A x w  is the function approximation with the 

actor parameter a
kw  and noise standard deviation is 

( )( )( )( )0 max max
ˆmin 1,max 0.08, , /k k kV V x w Vσ σ= − .  

II.  MULTIBODY MODELLING &  RL APPLICATION 

Generating realistic mathematical models is a laborious but 
essential process for multi-body system design and analysis. 
Developed models are also crucial part of control and 
learning algorithms design. In this part of the paper, initially 
existing multi-body modeling softwares are reviewed, then 
modeling with MapleSim and writing Modelica custom 
component model are presented.  

A. Existing Simulators for Multi-body Modeling   

Over the last two decades a number of software packages are 
launched for multi-body modeling and simulation. Each of 
them has advanced or weak properties in terms of modeling, 
simulation, controller design and user’s own algorithm 
application to multi-body systems. 

OpenHRP3 (Open Architecture Human-centered Robotics 
Platform version 3) is a software specifically developed for 
robot simulation. It contains a number of software 
components and calculation libraries that are essential for 
robotic applications. A library consisting of position, torque, 
vision and inclination sensors plays an important role on 
designing controllers for robots. Moreover, this software 
includes useful tools for walking and balancing such as 
collision detection. 3D visualization interface allows users to 
see the model and behavior of the model during the 
simulation. Although this software is free and open software, 
it can be directly only used for HRP robots. It is not feasible 
to apply it to other robots as it does not allow the user to 
modify or customize major features of OpenHRP. In addition 
available documentation is limited and technical support is 
not provided [10]. 

Honda, Sony and Fajitsu have been designed more 

simulators for the humanoid robots Asimo, Qrio and Hopa1. 
Commercial software packages, for instance Webots and 
RoboWorks, are efficient tools for multi-body modeling and 
control. However, they do not have advanced libraries for 
actuators, sensors, ground reaction forces and impacts. To 
eliminate these disadvantages Reichenbach has initiated a 
new dynamic simulator [10, 11]. It has advanced sensor 
options like collision detection sensor, virtual zero moment 
point (ZMP) sensor, pressure sensor, laser sensor, audio 
sensor. Generated robot model is now tested and compared 
with the real robot. Hence, this software is still under 
development.     

A further software called Robotran which is a symbolic 
multi-body modeling and simulation package designed at the 
University Catholique de Louvain in Belgium. It has three 
major features: graphical user interface, symbolic equation 
generator and interface between Robotran and Matlab. It 
generates models in symbolic form which leads to reliable 
numerical accuracy and faster simulation. However, 
documentation on modeling and software usage is 
insufficient and online help is limited. It is unable to generate 
C-code as well. MapleSim, which is newly released symbolic 
modeling tool for creating and simulating complex physical 
system, is able to generate stand alone C-code. This leads the 
controller to be accurately exported to the real system. In 
addition, it is capable to integrate the multi-body modeling 
together with actuator models.  

B. MapleSim: Symbolic Multi-body Modeling  

MapleSim enables users to create models including 
components from various engineering fields. Sophisticated 
symbolic and numeric properties of MapleSim yield accurate 
mathematical models that depict the behavior of systems. It 
is also able to simplify the equations of the physical system. 
MapleSim component library contains more than 400 
components which are used to design electrical, hydraulic, 
1D and multi-body mechanical models. Majority of the 
blocks are from Modelica standard library 3.1. Together with 
the existing MapleSim component library, users can write 
their own mathematical models by using the custom 
modeling component property. Hence the users are able to 
define their own equations and properties of the component, 
for example parameters and port variables. In terms of using 
the components from multi-body library, multi-body systems 
can be built easily.   

 
Figure 2: a) Constructed pendulum in model workspace, b) 
3D visualization of the pendulum. Sphere represents the 



 
 

 

revolute joint and rigid body, the cylinder represents the 
planar link. 

MapleSim also provides 3D visualization of the model in 3D 
environment. An important useful property of this software is 
that the users can visualize the simulation results by playing 
animation which depicts the model movement. MapleSim 
templates enable users to analyze the created model. The 
model can be linearized, discretized and controllers can be 
designed and the response of the systems might be analyzed. 

C. Model Generation with Modelica Custom Component 

One of the most significant features of MapleSim is that it 
allows the users to create their own custom component to 
design various learning/control algorithms. The previously 
reviewed RL algorithm is applied to a pendulum by using 
Modelica custom component. For example, the Modelica 
model for the TD error is:  

model TDError 
  extends Maplesoft.Icons.CustomComponent; 
  parameter Real gama = 0.8;// "Discount factor"; 
  parameter Real failureState = 0.3;// "Failure state"; 
  Real r[1,1];// "Reward"; 
  Modelica.Blocks.Interfaces.RealInput V[1,1] annotation( 
   Placement(transformation( 
    extent = { 
     {-110,82},{-90,62}}, 
   rotation = 0))); 
… 
  Modelica.Blocks.Interfaces.RealOutput TDError[1,1] 

annotation( 
   Placement(transformation( 
    extent = { 
     {90,-13},{110,7}}, 
   rotation = 0))); 

equation 
r[1,1]=(cos(phi)-cos(failureState))/(1-cos(failureState));           
TDError = r + gama * V - preV;// "TD error"; 
end TDError; 
As can be seen from the table, initially the name of the model 
is specified and the model parameters are introduced. Then, 
the inputs and outputs of the TDError model are defined. In 
the equation section, differential equations, algebraic 
equations and equations including for/while loops, if /when 
conditions, other Modelica functions can be also used. For 
instance, the Modelica code for value function parameter 
update includes a for loop, when condition together with 
sample and pre functions.  
model valueFunctionParamUpdate 

  extends Maplesoft.Icons.CustomComponent; 
  parameter Real gama = 0.8;// "Discount factor"; 
  parameter Real nc = 0.6;// "Critic learning rate"; 
  parameter Real sn = 10;//"Number of basis"; 
  Boolean clock; 
  Modelica.Blocks.Interfaces.RealInput preWc[sn*sn,1] 

annotation 
  (Placement(transformation( 
   extent = { 
    {-110,102},{-90,82}}, 
  rotation = 0))); 

  … 
 Modelica.Blocks.Interfaces.RealOutput Wc[sn*sn,1] annotation 
  (Placement(transformation( 
  extent = { 
    {90,-43},{110,-63}}, 
  rotation=0))); 
initial equation  
Wc=fill(0,sn*sn,1); 
preWc=fill(0,sn*sn,1); 
equation 
  Wc= preWc + nc * (prebPen - gama * bPen)*scalar(TDError); 
  clock = sample(0, 0.01); 
  when clock then 
      for i in 1:sn*sn loop 
       preWcUpdate[i,1] = pre(Wc[i,1]); 
      end for;  
  end when; 
end valueFunctionParamUpdate; 

 Here also an initial equation is defined to assign initial 
values for the current and previous values of the parameter 
vectors. To use the previous parameter vector at the current 
time, sample and pre functions are used. Sample function 
holds the previous value for 0.01s for this example. The 
figure below shows the RL algorithm applied to a pendulum 
in MapleSim in terms of using the Modelica custom 
component and Maple blocks. 

 
Figure 3: RL applied to a pendulum in MapleSim, where 
STD represents the standard deviation of the noise and re-
initialize pendulum is basically an angle sensor written in 
Modelica to re-initialise the pendulum in the case of failure. 

The block between the STD and controlParamUpdate is a 
time lookup table where data caries the properties of random 
Gaussian noise. In order to show the learning and 
convergence results of the RL algorithm applied to designed 
pendulum model in MapleSim, a simulation experiment is 
performed. 

III.  SIMULATION EXPERIMENT 

This section initially introduces the simulation parameters 
and then analyzes the simulation results. 

A. Simulation Experiment 

Equations of the pendulum can be obtained by using 
MapleSim equations template which is located in the 
attachment palette. The differential equation representing the 

dynamics of the pendulum is ( )2 sinml x mgl x u= +&&  where 



 
 

 

m  is the mass, l  is the length of the pendulum having both 
unity value for the simulation. The simulation length is 120 
seconds, the learning rate for value function parameter 
update is 0.6η = , the learning rate for the controller 

parameter update is 0.9Aη = , the discount factor is 0.8γ = , 

maximum torque is max 5u =  and noise standard deviation 
constant is 0 0.53σ = . The noise is randomly distributed 

zero mean Gaussian. It is accepted that the pendulum fails if 

its position is 0.3x ≥  and the reward is given by 

( ) ( )( ) ( )( )cos cos 0.3 / 1 cos 0.3kr x= − − . The pendulum is re-

initialized with [ ] [ ]0.011 0.001x x =&  in the case of 

failure. Basis function is ( ) ( )
1
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−= . Here, ks and kc are the size and centre of 

the thk basis function.  The size of the basis function is 
10*10 for this simulation experiment. All the initial 
parameter vectors for the value function and the controller 
are zero for this simulation experiment.  

B. States of the Pendulum  

The RL algorithm learns to generate appropriate control 
action from failures. Therefore, it is expected that the 
pendulum will fail for a number of times until it achieves to 
generate correct control action to stabilize the pendulum. 
Then, it should converge to the states which yield the 
maximum instant reward and also maximum value function. 
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Figure 4: States of the pendulum during the whole 
simulation. 

As can be seen from the Figure 4, the angle and velocity 
states of the inverted pendulum converge to states around 
zero. Initially, the learning algorithm is unable to keep the 
pendulum upright since the entire assigned initial values for 
the value function and controller are zero. Basically, the 
number of the failures depends on the initial states, initial 
parameter vectors, amount of the exploration noise and 
selected learning parameters. For example, if the selected 
discount factor γ  is around 0.9, then the number of the 

failures is significantly increasing. More importantly, the 
simulation results are becoming inconsistent between each 
simulation run. To analyze the possible reason of this 
situation, a test problem, where the results will be published 
soon, is performed.  This work shows that the basis function 
space is almost singular for the pendulum around 0.9 
discount factor. On the other hand, with appropriate learning 
parameters, as new feedbacks through the instant reward are 
obtained about the outcome of the learning, the RL algorithm 
adjusts its weights/parameters. The amount of the update 
depends on the TD error and learning rates. After a number 
of trials, the RL algorithm learns the optimal control action 
which keeps the pendulum upright.  

C. Value Function 

Value function is the prediction part of the RL algorithm. 
The target is to maximize the value function in order to reach 
optimal learning/control outcomes. 
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Figure 5: Estimated value function. 

The Figure 5 depicts the learning process of the value 
function. The maximized optimal value function must have 
value of 5 since the discount factor is 0.8.  Initially, its value 
is around zero but as the learning occurs it reaches its 
maximum. If there is a bias in the value function learning, 
then modelling error will be unavoidable and the generated 
control action will be biased as well. 

D. Control Signal 

The main target of the RL algorithm is to learn to generate 
optimal control signal that stabilizes the systems. 
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Figure 6: Learned control action. 



 
 

 

As shown by the Figure 6, initially the RL algorithm 
generates large control signals which cause failures. 
However, from this failure experience, it is able to learn to 
generate suitable amount of control signal to keep the 
pendulum upright. 

E. TD Error 

Parameter of the value function and the controller are 
updated based on the amount of the TD error.  
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Figure 7: TD error. 

As can be seen from the Figure 7, initially TD error is large; 
hence amount of the parameter update is large as well. As the 
optimal learning occurs, the value function is maximized and 
the maximum reward is obtained. Therefore, TD error is 
minimum.  

F. Noise Standard Deviation 

The noise is basically used for the exploration purpose. 
However, after optimal learning little amount of noise is still 
added to investigate the robustness of the RL algorithm. 
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Figure 8: Noise standard deviation. 

At the beginning of the learning, maximum amount of noise 
is added to attain the optimal learning outcomes. After 
learning, the noise plays disturbance role to examine the 
efficiency of the learning. 

IV. CONCLUSION 

Results show that the RL algorithm is able to learn optimal 
value function and control action. It also emphasizes that the 
RL algorithm is capable to manage the external disturbances 
after learning. The next target of the authors is to apply this 
algorithm to a simplified HR in terms of using MapleSim 
and Modelica features.  
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