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Abstract— Advanced intelligent
systems such as robots must be capable
to interact with dynamic environment
and adapt their behavior to it
efficiently. Currently, modeling
humanoid robots with sophisticated
learning and cognitive capabilities is
one of the most challenging issues in
the field of intelligent robotics. Robots
must be equipped with the ability to
modify and add to its knowledge base
information gained from its past
failings. This might provide stable
robust walking on unseen terrains as
well. Moreover, a further critical stage
in designing and evaluating such a
sophisticated complex system s
modeling and simulation. This paper
describes  preliminary work on
designing a simple multi-body system
by using MapleSim, which is a tool for
multi-body modeling/simulation and
reinforcement learning algorithm is
applied to this multi-body system in
terms of using Modelica models.

INTRODUCTION
Humanoid

significant attention over the last decades. Ineorto
enhance the capability of HR for large movemendsiable
speeds, various constraints and respond to uncgriai the
real world, intelligent control algorithms,
reinforcement learning (RL) is considered [1]. Rifecs an
efficient way to move from traditional robotics toue
autonomy and versatility by generating adaptabléing
gaits based on the changing dynamics in the envieoih
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robot (HR) design and development wit
advanced control and learning techniques have gaing

such asb
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RL is basically an on-line learning technique toprfrmm an
input (situation) to output (action) by performiagrial-error
process in order to maximize the performance ahieg by
gaining higher numerical positive reinforcement nsig
(reward) from the system.

In 1983, Barto and Sutton developed a temporakwdifice
(TD) method and demonstrated its efficiency on pole
balancing problem [1]. In 1988, Sutton achieved to
formulate discrete TD\) learning algorithm and specified its
properties [2]. An important work in continuous &nand
space RL was introduced by Kenji in 2000. He exic
derived the critic/value function equations for DR(TDQ)
and the value gradient based policy learning. ldtetkthese
algorithms on a nonlinear pendulum and cart-polegwp
tasks [3]. In terms of RL humanoid robot applicatipan
efficient actor-critic based RL algorithm was implented
on a physical robot by Hamid [4]. It controls thejdint
angles by using the peripheral controllers’ evatumatand
CMAC neural network. Tedrake (2004) introduced a
stochastic RL algorithm and implemented it on a 3D,
Degrees of Freedom (DOF) robot [5]. Gen et al. 800
implemented a continuous RL algorithm which is laea
CPG and a policy gradient method to a full body 3D
humanoid [6].

Designing a bipedal robot, which is the most sapfated
fype of legged robot, is a formidable challenge tobe
esearchers because of the complexity of the mésthaamd
ifficulties in construction and modeling. As deng
dynamic/kinematic equations of the rigid multi-boslystems
by hand result in an inefficient representationhef systems,
software packages for modeling multi-body systeraseh
een developed. It is important to choose appragpriaulti-
body modeling software package which derives and
simplifies the equations of the system. Moreovémreyt
should be flexible enough to allow researchergheir own
learning/control algorithm application to the desd multi-
body system.

This paper presents a preliminary work on multiypod
modeling/simulation and RL application by using the
MapleSim software together with Modelica modelsr e
knowledge of the authors this is the first applmatof the
RL algorithm to a multi-body system by basicallyrdzining
two softwares’ properties, namely MapleSim and Micde
In section 1, actor-critic based RL algorithm igiegved. In
section 2, various multi-body modeling simulators briefly
introduced. Moreover, modeling a pendulum with Megim



and writing RL codes with Modelica are introducedveell.
In section 3, a simulation experiment is performaud
simulation results are presented.

I.  LITERATURE REVIEW AND BACKGROUND

In value function (critic) learning, TD learninggakithms
and TD error play a central role. This section iaflig

Equation (3) can be written in terms of currentvased and
future value function, which motivates the “diffaped
error” used in TD learning.

V(%) =1 (%) W (%) @)
This defines an optimality condition which is sh#d as
long as the approximated value function is accurate
Otherwise, a temporary error occurs between théarnhs

presents the TD learning algorithms and then revieweward and the differenced value functions. Thisniewn as

residual gradient learning equations that will Bediin the
rest of the paper. Finally, it reviews controlleactor)
equations of the RL.

A. ValueFunction
Value function is the long term prediction of thsabunted

future rewards that could be obtained in the futBiesically, V(RV\L)S .
TD methods are investigated to estimate the unkneaime — ~ 4
function [3, 7]. Discounted infinite horizon valéenction: ()$<+1’V\(Lf : q=r(>) (%W
V(%) =2 /T (%) (1) i
t=0 £ S G
where r (X, ) =r(x,,U,)is the immediate reward obtained at 1 1t
1% % 0F 3(

each discrete time sample, x, is the stateV (x,) is the
value function, ) (0< y<1) is the discount facton,, is the

torque. The discount factor should be chosen shah (i)
converges [3, 8]. If the reward

r(xk):|xk| Basically, a state based reward provides

instant feedback about learning. Characteristithef value
function changes as the selected rewards carrerdift
properties of the learning. However, exact valuecfion
representation generally can only be employed t@llssnale
problems. Thus, exact representation is not féasitymore
for a system with large number of states [9]. Femtfore,
value function and controller should be

scheme which is linear in its parameters is:

7 T

V(%W ) =o(x) W (2)
where ¢(x) is the basis function vector ang is the

is state based,n th

represent

approximately.A parametric value function approximation

TD error occurring due to difference between the
instantaneous reward,r(x,), and estimated reward,

f(xk’wk) :v(xk’wk‘)_y\?(xkfl’wk)'

7,

6

Figure 1: Configuration of the TD error, instantveed and
value function. The reward is state based whef&(-1,1)

éamd the discount factor is 0.85 for the value fiomct

afhe temporary error between the instant and theearg
reward is given by:

Jk:r(xk)_f(xkiwk) (5)
where 9§, is called as TD error [3]. Substituting the
estimated reward in (5) gives:

N
3 =1 (%)= (0(%) =~ (%)) W (6)
the TD error is equivalent to the error used in ynan

instantaneous learning algorithms in the litergtwgch as
least mean square (LMS) algorithm.

2)  Residual Gradient Parameter Update

parameter vector. The next section introduces wasid Baird investigated residual gradient algorithmoiercome

gradient learning which is a type of TD learningalthm.

B. Residual Gradient Learning

It is noticed that TD learning algorithms can diyerfor
more general function approximation schemes. Thilueal
gradient algorithm was developed to eliminate
divergence issue associated with TD(0) learning tmsl
section reviews the residual gradient learningtlgm.

1)  Temporal Difference Error

With respect to the equation (1), it can be undedsthat the
value function is basically the sum of the discednfuture
rewards [2, 7]. Therefore, it represents the loegmt
performance of the learning process.

V(%) =1 (%) 11 (%) +t V71 (%) 3)

the

the divergence issue associated with the TD(O)nlegr
algorithm. With this learning algorithm, gradiergsgent is
performed on the squared TD error and guarantees th
convergence to a local optimum.

1,.2_1 - - 2
E =210 =JJr (%) =(V (6. w) =W (% )| )
The residual gradient algorithm directly minimizibe TD
error by updating its parameters based on gradestent.
dE, ®)

Wi = Wi _’7d_Wk
The residual gradient parameter update rule ingesfrthe
residuals is given by:

Wy =W +78, [ @(%) = 10( %) | 9
The parameter update direction is the weighteceuiffce
between successive basis function vectors. Residaaling



is stable for the learning rates lying in the rangke

0<77 < 2|e(% ) - (%) rate

Appropriate learning

|2'

selection plays an important role in the parametely .o

convergence rate analysis.

C. Controller and Controller Parameter Update

In order to update the parameters of the contradlereach
optimal control policy, TD error is used as a remement
signal and same noise signal is added to keepataeter
update sign in the correct direction.

dA( X, W
Wl?+1 = WE +’7A5knk % (10)
And the controller is:
U, = u”“"x(tanhA(xk wka)) +o.n, (11)

where A(xkvvi) is the function approximation with the

simulators for the humanoid robots Asimo, Qrio &tapal.
Commercial software packages, for instance Webats a
RoboWorks, are efficient tools for multi-body modegl and
However, they do not have advanced liesafor
actuators, sensors, ground reaction forces andctsip@o
eliminate these disadvantages Reichenbach hasatégitia
new dynamic simulator [10, 11]. It has advancedssen
options like collision detection sensor, virtuakeenoment
point (ZMP) sensor, pressure sensor, laser seraamlio
sensor. Generated robot model is now tested angaemuh
with the real robot. Hence, this software is stihder
development.

A further software called Robotran which is a sytitbo
multi-body modeling and simulation package desigaiethe
University Catholique de Louvain in Belgium. It hdsee
major features: graphical user interface, symbetication
generator and interface between Robotran and Mattab

actor parameterw; and noise standard deviation isgenerates models in symbolic form which leads tiabke

o, =0, min(l, ma>( 0.0E(, =V (X%, wk)) V’max)).

Generating realistic mathematical models is a lalosrbut
essential process for multi-body system designaalysis.
Developed models are also crucial part of contrnotl a
learning algorithms design. In this part of the grapnitially
existing multi-body modeling softwares are reviewtten

MULTIBODY MODELLING & RL APPLICATION

numerical accuracy and faster simulation. However,
documentation on modeling and software usage is
insufficient and online help is limited. It is unatio generate
C-code as well. MapleSim, which is newly releasgudtmlic
modeling tool for creating and simulating complé¥sical
system, is able to generate stand alone C-code.|&duils the
controller to be accurately exported to the reatey. In
addition, it is capable to integrate the multi-badgdeling
together with actuator models.

modeling with MapleSim and writing Modelica custom

component model are presented.

A. Existing Smulators for Multi-body Modeling

Over the last two decades a number of softwaregugskare
launched for multi-body modeling and simulation.cEaf

them has advanced or weak properties in terms ofetimg,

simulation, controller design and user's own altoni

application to multi-body systems.

B. MapleSm: Symbolic Multi-body Modeling

MapleSim enables users to create models including
components from various engineering fields. Sojfaittd
symbolic and numeric properties of MapleSim yietdwate
mathematical models that depict the behavior ofesys. It

is also able to simplify the equations of the pbgksystem.
MapleSim component library contains more than 400
components which are used to design electricalrauid,

1D and multi-body mechanical models. Majority ofe th

OpenHRP3 (Open Architecture Human-centered RobOligg, s are from Modelica standard library 3.1. Ttoge with

Platform version 3) is a software specifically deped for
robot simulation. It contains a number of softwar
components and calculation libraries that are ¢isdeior
robotic applications. A library consisting of pasit, torque,
vision and inclination sensors plays an importasie ron
designing controllers for robots. Moreover, thistware
includes useful tools for walking and balancing rswas
collision detection. 3D visualization interfaceoalls users to

the existing MapleSim component library, users vaite

Sheir own mathematical models by using the custom

modeling component property. Hence the users dee tab
define their own equations and properties of themamnent,
for example parameters and port variables. In texinsing
the components from multi-body library, multi-boslystems
can be built easily.

see the model and behavior of the model during tk-

simulation. Although this software is free and ogeftware,
it can be directly only used for HRP robots. Ih@ feasible
to apply it to other robots as it does not allow tiser to
modify or customize major features of OpenHRP.dditon
available documentation is limited and technicgdpart is
not provided [10].

]

Y

Fixed Frame  Revolute Joint - Rigid Body
Frame

S
A=

Rigid Body

\\

~

Figure 2: a) Constructed pendulum in model workep&g

Honda, Sony and Fajitsu have been designed mo$Q visualization of the pendulum. Sphere represengs



revolute joint and rigid body, the cylinder repnetsethe
planar link.

MapleSim also provides 3D visualization of the made3D
environment. An important useful property of thidteare is
that the users can visualize the simulation resitplaying
animation which depicts the model movement. MapieS
templates enable users to analyze the created motel
model can be linearized, discretized and cont®lEan be
designed and the response of the systems mightaigzad.

C. Model Generation with Modelica Custom Component

One of the most significant features of MapleSinthiat it
allows the users to create their own custom compotee
design various learning/control algorithms. Thevjmesly

reviewed RL algorithm is applied to a pendulum tsng

Modelica.Blocks.Interfaces.RealOutput Wc[sn*srgtihotation
(Placement(transformation(
extent = {
{90,-43},{110,-63}},
rotation=0)));
initial equation
Wec=fill(0,sn*sn,1);
preWc=fill(0,sn*sn,1);
equation
Wc= preWc + nc * (prebPen - gama * bPen)*scalBiiror);
clock = sample(0, 0.01);
when clock then
foriin 1:sn*sn loop
preWcUpdate[i,1] = pre(Wcli,1]);
end for;
end when;
end valueFunctionParamUpdate;

Modelica custom component. For example, the MoedelicHere also an initial equation is defined to assigjtial

model for the TD error is:

model TDError

extends Maplesoft.Icons.CustomComponent;
parameter Real gama = 0.8;// "Discount factor";
parameter Real failureState = 0.3;// "Failuréesta
Real r[1,1];// "Reward";
Modelica.Blocks.Interfaces.Reallnput V[1,1] aratain(
Placement(transformation(

extent = {

{-110,82},{-90,62}},

rotation = 0)));

Modelica.Blocks.Interfaces.RealOutput TDError]1,1
annotation(
Placement(transformation(
extent = {
{90,-13},{110,7}},
rotation = 0)));
equation
r[1,1]=(cos(phi)-cos(failureState))/(1-cos(failutat®));
TDError =r + gama*V - preV;// "TD error";
end TDError;

As can be seen from the table, initially the narféne@ model
is specified and the model parameters are intratiutleen,
the inputs and outputs of the TDError model aréngeff In
the equation section, differential equations, algieb
equations and equations including for/while loapgwhen

conditions, other Modelica functions can be alsedud-or
instance, the Modelica code for value function peater
update includes a for loop, when condition togethth

sample and pre functions.

model valueFunctionParamUpdate
extends Maplesoft.Icons.CustomComponent;
parameter Real gama = 0.8;// "Discount factor";
parameter Real nc = 0.6;// "Ciritic learning rate"
parameter Real sn = 10;//"Number of basis";
Boolean clock;
Modelica.Blocks.Interfaces.Reallnput preWc[sn13n,
annotation
(Placement(transformation(
extent = {
{-110,102},{-90,82}},
rotation = 0)));

values for the current and previous values of theumeter
vectors. To use the previous parameter vectoreattinrent
time, sample and pre functions are used. Sampletifum
holds the previous value for 0.01s for this examflbe
figure below shows the RL algorithm applied to agdum

in MapleSim in terms of using the Modelica custom
component and Maple blocks.
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Figure 3: RL applied to a pendulum in MapleSim, wehe
STD represents the standard deviation of the namgkre-
initialize pendulum is basically an angle sensoittam in
Modelica to re-initialise the pendulum in the ca$éilure.

The block between the STD and controlParamUpdate is
time lookup table where data caries the propedigandom
Gaussian noise. In order to show the learning and
convergence results of the RL algorithm appliedesigned
pendulum model in MapleSim, a simulation experimisnt
performed.

This section initially introduces the simulatiorrgaeters
and then analyzes the simulation results.

SIMULATION EXPERIMENT

A. Smulation Experiment

Equations of the pendulum can be obtained by using
MapleSim equations template which is located in the
attachment palette. The differential equation repnéing the
dynamics of the pendulum iml?% =mgl sin(x)+u where



m is the mass| is the length of the pendulum having botHailures is significantly increasing. More importin the
unity value for the simulation. The simulation lémgs 120 simulation results are becoming inconsistent betweach
seconds, the learning rate for value function patem Simulation run. To analyze the possible reason to$ t

soon, is performed. This work shows that the bfasgistion

space is almost singular for the pendulum arour@ O.
maximum torque isu™ =5 and noise standard deviationdiscount factor. On the other hand, with approprlatrning
constant isg, =0.53. The noise is randomly distributed Parameters, as new feedbacks through the instarrdeare
obtained about the outcome of the learning, thealgbrithm
) - i ) ) adjusts its weights/parameters. The amount of thaate
its position is [{20.3 and the reward is given by depends on the TD error and learning rates. Aftearaber

r :(cos(x)— cog 0_)3) Q + cds O))E The pendulum is re- ©Of trials, the RL algorithm learns the optimal awhtaction
“ which keeps the pendulum upright.
initialized with [x X]=[0.011 0.00} in the case of

parameter update ig* = 0.9, the discount factor iy = 0.8,

zero mean Gaussian. It is accepted that the pemdfalils if

C. Value Function

K
failure. Basis function is b, :ak(x)/z (x) where Value function is the prediction part of the RL afghm.
1=1 The target is to maximize the value function inesrth reach

g (xc )P , optimal learning/control outcomes.
)=e ool Here, s.and ¢, are the size and centre of P g

a(x
the k™basis function. The size of the basis function is "
10*10for this simulation experiment. All the initial |

parameter vectors for the value function and thetrotier
are zero for this simulation experiment.

B. Sates of the Pendulum ¢

V(%o W)

The RL algorithm learns to generate appropriatetrobn
action from failures. Therefore, it is expected tthhe
pendulum will fail for a number of times until ithieves to
generate correct control action to stabilize thedodum.
Then, it should converge to the states which vyitid T 2 4 60 g 10 1
maximum instant reward and also maximum value fonct t(s)

Figure 5: Estimated value function.

The Figure 5 depicts the learning process of thkieva
function. The maximized optimal value function mbstve
value of 5 since the discount factor is 0.8. #tliyi, its value
is around zero but as the learning occurs it readlse
maximum. If there is a bias in the value functiearhing,
then modelling error will be unavoidable and theerated
control action will be biased as well.

D. Control Sgnal

The main target of the RL algorithm is to learrgemerate
optimal control signal that stabilizes the systems.

Figure 4: States of the pendulum during the whole 2
simulation. )
As can be seen from the Figure 4, the angle andcitgl U o

states of the inverted pendulum converge to stateand
zero. Initially, the learning algorithm is unable keep the
pendulum upright since the entire assigned initeles for 2
the value function and controller are zero. Ba$icahe
number of the failures depends on the initial stateitial
parameter vectors, amount of the exploration naisd “

selected learning parameters. For example, if tlected t(s)
discount factor y is around 0.9, then the number of therigure 6: Learned control action.



As shown by the Figure 6, initially the RL algorith IV. CONCLUSION

generates large control signals which cause falure pegyits show that the RL algorithm is able to lezptimal
However, fro_m this failure experience, it 1S abtelearn to value function and control action. It also emphesithat the
gengrallte swt_atr)]le amount of control signal to kel RL algorithm is capable to manage the externalidisinces
pendulum upright. after learning. The next target of the authorisypply this

E. TD Error algorithm to a simplified HR in terms of using Mafim

Parameter of the value function and the controbee and Modelica features.

updated based on the amount of the TD error.
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Figure 8: Noise standard deviation.

At the beginning of the learning, maximum amountoise
is added to attain the optimal learning outcomefterA
learning, the noise plays disturbance role to eranthe
efficiency of the learning.



