

Abstract— Advanced intelligent
systems such as robots must be capable
to interact with dynamic environment
and adapt their behavior to it
efficiently. Currently, modeling
humanoid robots with sophisticated
learning and cognitive capabilities is
one of the most challenging issues in
the field of intelligent robotics. Robots
must be equipped with the ability to
modify and add to its knowledge base
information gained from its past
failings. This might provide stable
robust walking on unseen terrains as
well. Moreover, a further critical stage
in designing and evaluating such a
sophisticated complex system is
modeling and simulation. This paper
describes preliminary work on
designing a simple multi-body system
by using MapleSim, which is a tool for
multi-body modeling/simulation and
reinforcement learning algorithm is
applied to this multi-body system in
terms of using Modelica models.

INTRODUCTION
Humanoid robot (HR) design and development with
advanced control and learning techniques have gained
significant attention over the last decades. In order to
enhance the capability of HR for large movements, variable
speeds, various constraints and respond to uncertainty in the
real world, intelligent control algorithms, such as
reinforcement learning (RL) is considered [1]. RL offers an
efficient way to move from traditional robotics to true
autonomy and versatility by generating adaptable walking
gaits based on the changing dynamics in the environment.

Manuscript received May 1, 2012.
Onder Tutsoy is with the Electrical and Electronic Engineering

Department, Control Systems Centre, University of Manchester,
Manchester, CO M13 9PL UK, phone: (0)161 306 4772; (e-mail:
Onder.Tutsoy@ postgrad.manchester.ac.uk).

Martin Brown is with the Electrical and Electronic Engineering
Department, Control Systems Centre, University of Manchester,
Manchester, CO M13 9PL UK (e-mail: martin.brown@manchester.ac.uk).

Hong Wang is with the Electrical and Electronic Engineering
Department, Control Systems Centre, University of Manchester,
Manchester, CO M13 9PL UK (e-mail: hong.wang@manchester.ac.uk).

Joe Riel is with the MapleSoft company, Waterloo, Canada, N2V 1K8.

RL is basically an on-line learning technique to map from an
input (situation) to output (action) by performing a trial-error
process in order to maximize the performance of learning by
gaining higher numerical positive reinforcement signal
(reward) from the system.

In 1983, Barto and Sutton developed a temporal difference
(TD) method and demonstrated its efficiency on pole
balancing problem [1]. In 1988, Sutton achieved to
formulate discrete TD(λ) learning algorithm and specified its
properties [2]. An important work in continuous time and
space RL was introduced by Kenji in 2000. He explicitly
derived the critic/value function equations for TD(0), TD(λ)
and the value gradient based policy learning. He tested these
algorithms on a nonlinear pendulum and cart-pole swing-up
tasks [3]. In terms of RL humanoid robot applications, an
efficient actor-critic based RL algorithm was implemented
on a physical robot by Hamid [4]. It controls the 6 joint
angles by using the peripheral controllers’ evaluation and
CMAC neural network. Tedrake (2004) introduced a
stochastic RL algorithm and implemented it on a 3D, 6
Degrees of Freedom (DOF) robot [5]. Gen et al. (2008)
implemented a continuous RL algorithm which is based on
CPG and a policy gradient method to a full body 3D
humanoid [6].

Designing a bipedal robot, which is the most sophisticated
type of legged robot, is a formidable challenge for the
researchers because of the complexity of the mechanism and
difficulties in construction and modeling. As deriving
dynamic/kinematic equations of the rigid multi-body systems
by hand result in an inefficient representation of the systems,
software packages for modeling multi-body systems have
been developed. It is important to choose appropriate multi-
body modeling software package which derives and
simplifies the equations of the system. Moreover, they
should be flexible enough to allow researchers for their own
learning/control algorithm application to the designed multi-
body system.

This paper presents a preliminary work on multi-body
modeling/simulation and RL application by using the
MapleSim software together with Modelica models. For the
knowledge of the authors this is the first application of the
RL algorithm to a multi-body system by basically combining
two softwares’ properties, namely MapleSim and Modelica.
In section 1, actor-critic based RL algorithm is reviewed. In
section 2, various multi-body modeling simulators are briefly
introduced. Moreover, modeling a pendulum with MapleSim

Reinforcement Learning Algorithm Application and Mu lti-body
System Design by Using MapleSim and Modelica

Onder Tutsoy, Martin Brown, Hong Wang and Joe Riel

and writing RL codes with Modelica are introduced as well.
In section 3, a simulation experiment is performed and
simulation results are presented.

I. LITERATURE REVIEW AND BACKGROUND

In value function (critic) learning, TD learning algorithms
and TD error play a central role. This section initially
presents the TD learning algorithms and then reviews
residual gradient learning equations that will be used in the
rest of the paper. Finally, it reviews controller (actor)
equations of the RL.

A. Value Function

Value function is the long term prediction of the discounted
future rewards that could be obtained in the future. Basically,
TD methods are investigated to estimate the unknown value
function [3, 7]. Discounted infinite horizon value function:

() ()
0

t
k k t

t

V x r xγ
∞

+
=

=∑ (1)

where () (),k k kr x r x u= is the immediate reward obtained at

each discrete time sample k , kx is the state, ()kV x is the

value function, γ (0 1γ< <) is the discount factor, ku is the

torque. The discount factor should be chosen such that (1)
converges [3, 8]. If the reward is state based, then

()k kr x x= . Basically, a state based reward provides an

instant feedback about learning. Characteristic of the value
function changes as the selected rewards carry different
properties of the learning. However, exact value function
representation generally can only be employed to small scale
problems. Thus, exact representation is not feasible anymore
for a system with large number of states [9]. Furthermore,
value function and controller should be represented
approximately. A parametric value function approximation
scheme which is linear in its parameters is:

() ()ˆ ,
T

k k k kV x w x wφ= (2)

where ()kxφ is the basis function vector and kw is the

parameter vector. The next section introduces residual
gradient learning which is a type of TD learning algorithm.

B. Residual Gradient Learning

It is noticed that TD learning algorithms can diverge for
more general function approximation schemes. The residual
gradient algorithm was developed to eliminate the
divergence issue associated with TD(0) learning and this
section reviews the residual gradient learning algorithm.

1) Temporal Difference Error

With respect to the equation (1), it can be understood that the
value function is basically the sum of the discounted future
rewards [2, 7]. Therefore, it represents the long term
performance of the learning process.

() () () ()1k k kV x r x r x r xγ γ ∞
+ ∞= + + + (3)

Equation (3) can be written in terms of current reward and
future value function, which motivates the “differenced
error” used in TD learning.

() () ()1k k kV x r x V xγ += + (4)

This defines an optimality condition which is satisfied as
long as the approximated value function is accurate.
Otherwise, a temporary error occurs between the instant
reward and the differenced value functions. This is known as
TD error occurring due to difference between the
instantaneous reward, ()kr x , and estimated reward,

() () ()1
ˆ ˆˆ , , ,k k k k k kr x w V x w V x wγ += − .

()ˆ ,k kV x w

()1
ˆ ,k kV x w+

x
-1 -0.5 0 0.5 1
0

1

2

3

4

5

6

7

()kr x

()1kr x +

() ()ˆ ,k k k kr x r x wδ = −

kx 1kx+

()k kr x x=

Figure 1: Configuration of the TD error, instant reward and
value function. The reward is state based where ()1,1x ∈ −

and the discount factor is 0.85 for the value function.

The temporary error between the instant and the expected
reward is given by:

() ()ˆ ,k k k kr x r x wδ = − (5)

where kδ is called as TD error [3]. Substituting the

estimated reward in (5) gives:

() () ()()1

T

k k k k kr x x x wδ φ γφ += − − (6)

The TD error is equivalent to the error used in many
instantaneous learning algorithms in the literature, such as
least mean square (LMS) algorithm.

2) Residual Gradient Parameter Update

 Baird investigated residual gradient algorithm to overcome
the divergence issue associated with the TD(0) learning
algorithm. With this learning algorithm, gradient descent is
performed on the squared TD error and guarantees the
convergence to a local optimum.

() () ()() 22

1

1 1 ˆ ˆ, ,
2 2k k k k k k kE r x V x w V x wδ γ += = − − (7)

The residual gradient algorithm directly minimizes the TD
error by updating its parameters based on gradient descent.

1
k

k k
k

dE
w w

dw
η+ = − (8)

The residual gradient parameter update rule in terms of the
residuals is given by:

() ()1 1k k k k kw w x xηδ φ γφ+ += + −   (9)

The parameter update direction is the weighted difference
between successive basis function vectors. Residual learning

is stable for the learning rates lying in the range of

() () 2

1 2
0 2 k kx xη φ γφ +< < − . Appropriate learning rate

selection plays an important role in the parameter
convergence rate analysis.

C. Controller and Controller Parameter Update

In order to update the parameters of the controller to reach
optimal control policy, TD error is used as a reinforcement
signal and same noise signal is added to keep the parameter
update sign in the correct direction.

()
1

, a
k ka a A

k k k k a
k

dA x w
w w n

dw
η δ+ = + (10)

And the controller is:

()()max a
ktanh ,k k k ku u A x w nσ= + (11)

where ()a
k k,A x w is the function approximation with the

actor parameter a
kw and noise standard deviation is

()()()()0 max max
ˆmin 1,max 0.08, , /k k kV V x w Vσ σ= − .

II. MULTIBODY MODELLING & RL APPLICATION

Generating realistic mathematical models is a laborious but
essential process for multi-body system design and analysis.
Developed models are also crucial part of control and
learning algorithms design. In this part of the paper, initially
existing multi-body modeling softwares are reviewed, then
modeling with MapleSim and writing Modelica custom
component model are presented.

A. Existing Simulators for Multi-body Modeling

Over the last two decades a number of software packages are
launched for multi-body modeling and simulation. Each of
them has advanced or weak properties in terms of modeling,
simulation, controller design and user’s own algorithm
application to multi-body systems.

OpenHRP3 (Open Architecture Human-centered Robotics
Platform version 3) is a software specifically developed for
robot simulation. It contains a number of software
components and calculation libraries that are essential for
robotic applications. A library consisting of position, torque,
vision and inclination sensors plays an important role on
designing controllers for robots. Moreover, this software
includes useful tools for walking and balancing such as
collision detection. 3D visualization interface allows users to
see the model and behavior of the model during the
simulation. Although this software is free and open software,
it can be directly only used for HRP robots. It is not feasible
to apply it to other robots as it does not allow the user to
modify or customize major features of OpenHRP. In addition
available documentation is limited and technical support is
not provided [10].

Honda, Sony and Fajitsu have been designed more

simulators for the humanoid robots Asimo, Qrio and Hopa1.
Commercial software packages, for instance Webots and
RoboWorks, are efficient tools for multi-body modeling and
control. However, they do not have advanced libraries for
actuators, sensors, ground reaction forces and impacts. To
eliminate these disadvantages Reichenbach has initiated a
new dynamic simulator [10, 11]. It has advanced sensor
options like collision detection sensor, virtual zero moment
point (ZMP) sensor, pressure sensor, laser sensor, audio
sensor. Generated robot model is now tested and compared
with the real robot. Hence, this software is still under
development.

A further software called Robotran which is a symbolic
multi-body modeling and simulation package designed at the
University Catholique de Louvain in Belgium. It has three
major features: graphical user interface, symbolic equation
generator and interface between Robotran and Matlab. It
generates models in symbolic form which leads to reliable
numerical accuracy and faster simulation. However,
documentation on modeling and software usage is
insufficient and online help is limited. It is unable to generate
C-code as well. MapleSim, which is newly released symbolic
modeling tool for creating and simulating complex physical
system, is able to generate stand alone C-code. This leads the
controller to be accurately exported to the real system. In
addition, it is capable to integrate the multi-body modeling
together with actuator models.

B. MapleSim: Symbolic Multi-body Modeling

MapleSim enables users to create models including
components from various engineering fields. Sophisticated
symbolic and numeric properties of MapleSim yield accurate
mathematical models that depict the behavior of systems. It
is also able to simplify the equations of the physical system.
MapleSim component library contains more than 400
components which are used to design electrical, hydraulic,
1D and multi-body mechanical models. Majority of the
blocks are from Modelica standard library 3.1. Together with
the existing MapleSim component library, users can write
their own mathematical models by using the custom
modeling component property. Hence the users are able to
define their own equations and properties of the component,
for example parameters and port variables. In terms of using
the components from multi-body library, multi-body systems
can be built easily.

Figure 2: a) Constructed pendulum in model workspace, b)
3D visualization of the pendulum. Sphere represents the

revolute joint and rigid body, the cylinder represents the
planar link.

MapleSim also provides 3D visualization of the model in 3D
environment. An important useful property of this software is
that the users can visualize the simulation results by playing
animation which depicts the model movement. MapleSim
templates enable users to analyze the created model. The
model can be linearized, discretized and controllers can be
designed and the response of the systems might be analyzed.

C. Model Generation with Modelica Custom Component

One of the most significant features of MapleSim is that it
allows the users to create their own custom component to
design various learning/control algorithms. The previously
reviewed RL algorithm is applied to a pendulum by using
Modelica custom component. For example, the Modelica
model for the TD error is:

model TDError
 extends Maplesoft.Icons.CustomComponent;
 parameter Real gama = 0.8;// "Discount factor";
 parameter Real failureState = 0.3;// "Failure state";
 Real r[1,1];// "Reward";
 Modelica.Blocks.Interfaces.RealInput V[1,1] annotation(
 Placement(transformation(
 extent = {
 {-110,82},{-90,62}},
 rotation = 0)));
…
 Modelica.Blocks.Interfaces.RealOutput TDError[1,1]

annotation(
 Placement(transformation(
 extent = {
 {90,-13},{110,7}},
 rotation = 0)));

equation
r[1,1]=(cos(phi)-cos(failureState))/(1-cos(failureState));
TDError = r + gama * V - preV;// "TD error";
end TDError;
As can be seen from the table, initially the name of the model
is specified and the model parameters are introduced. Then,
the inputs and outputs of the TDError model are defined. In
the equation section, differential equations, algebraic
equations and equations including for/while loops, if /when
conditions, other Modelica functions can be also used. For
instance, the Modelica code for value function parameter
update includes a for loop, when condition together with
sample and pre functions.
model valueFunctionParamUpdate

 extends Maplesoft.Icons.CustomComponent;
 parameter Real gama = 0.8;// "Discount factor";
 parameter Real nc = 0.6;// "Critic learning rate";
 parameter Real sn = 10;//"Number of basis";
 Boolean clock;
 Modelica.Blocks.Interfaces.RealInput preWc[sn*sn,1]

annotation
 (Placement(transformation(
 extent = {
 {-110,102},{-90,82}},
 rotation = 0)));

 …
 Modelica.Blocks.Interfaces.RealOutput Wc[sn*sn,1] annotation
 (Placement(transformation(
 extent = {
 {90,-43},{110,-63}},
 rotation=0)));
initial equation
Wc=fill(0,sn*sn,1);
preWc=fill(0,sn*sn,1);
equation
 Wc= preWc + nc * (prebPen - gama * bPen)*scalar(TDError);
 clock = sample(0, 0.01);
 when clock then
 for i in 1:sn*sn loop
 preWcUpdate[i,1] = pre(Wc[i,1]);
 end for;
 end when;
end valueFunctionParamUpdate;

 Here also an initial equation is defined to assign initial
values for the current and previous values of the parameter
vectors. To use the previous parameter vector at the current
time, sample and pre functions are used. Sample function
holds the previous value for 0.01s for this example. The
figure below shows the RL algorithm applied to a pendulum
in MapleSim in terms of using the Modelica custom
component and Maple blocks.

Figure 3: RL applied to a pendulum in MapleSim, where
STD represents the standard deviation of the noise and re-
initialize pendulum is basically an angle sensor written in
Modelica to re-initialise the pendulum in the case of failure.

The block between the STD and controlParamUpdate is a
time lookup table where data caries the properties of random
Gaussian noise. In order to show the learning and
convergence results of the RL algorithm applied to designed
pendulum model in MapleSim, a simulation experiment is
performed.

III. SIMULATION EXPERIMENT

This section initially introduces the simulation parameters
and then analyzes the simulation results.

A. Simulation Experiment

Equations of the pendulum can be obtained by using
MapleSim equations template which is located in the
attachment palette. The differential equation representing the

dynamics of the pendulum is ()2 sinml x mgl x u= +&& where

m is the mass, l is the length of the pendulum having both
unity value for the simulation. The simulation length is 120
seconds, the learning rate for value function parameter
update is 0.6η = , the learning rate for the controller

parameter update is 0.9Aη = , the discount factor is 0.8γ = ,

maximum torque is max 5u = and noise standard deviation
constant is 0 0.53σ = . The noise is randomly distributed

zero mean Gaussian. It is accepted that the pendulum fails if

its position is 0.3x ≥ and the reward is given by

() ()() ()()cos cos 0.3 / 1 cos 0.3kr x= − − . The pendulum is re-

initialized with [] []0.011 0.001x x =& in the case of

failure. Basis function is () ()
1

x / x
K

k k l
l

b a a
=

= ∑ where

() ()
2

kx-c
x

T
ks

ka e
−= . Here, ks and kc are the size and centre of

the thk basis function. The size of the basis function is
10*10 for this simulation experiment. All the initial
parameter vectors for the value function and the controller
are zero for this simulation experiment.

B. States of the Pendulum

The RL algorithm learns to generate appropriate control
action from failures. Therefore, it is expected that the
pendulum will fail for a number of times until it achieves to
generate correct control action to stabilize the pendulum.
Then, it should converge to the states which yield the
maximum instant reward and also maximum value function.

x

x&

Figure 4: States of the pendulum during the whole
simulation.

As can be seen from the Figure 4, the angle and velocity
states of the inverted pendulum converge to states around
zero. Initially, the learning algorithm is unable to keep the
pendulum upright since the entire assigned initial values for
the value function and controller are zero. Basically, the
number of the failures depends on the initial states, initial
parameter vectors, amount of the exploration noise and
selected learning parameters. For example, if the selected
discount factor γ is around 0.9, then the number of the

failures is significantly increasing. More importantly, the
simulation results are becoming inconsistent between each
simulation run. To analyze the possible reason of this
situation, a test problem, where the results will be published
soon, is performed. This work shows that the basis function
space is almost singular for the pendulum around 0.9
discount factor. On the other hand, with appropriate learning
parameters, as new feedbacks through the instant reward are
obtained about the outcome of the learning, the RL algorithm
adjusts its weights/parameters. The amount of the update
depends on the TD error and learning rates. After a number
of trials, the RL algorithm learns the optimal control action
which keeps the pendulum upright.

C. Value Function

Value function is the prediction part of the RL algorithm.
The target is to maximize the value function in order to reach
optimal learning/control outcomes.

()t s

(
)

ˆ
,

k
k

V
x

w

Figure 5: Estimated value function.

The Figure 5 depicts the learning process of the value
function. The maximized optimal value function must have
value of 5 since the discount factor is 0.8. Initially, its value
is around zero but as the learning occurs it reaches its
maximum. If there is a bias in the value function learning,
then modelling error will be unavoidable and the generated
control action will be biased as well.

D. Control Signal

The main target of the RL algorithm is to learn to generate
optimal control signal that stabilizes the systems.

()t s

ku

Figure 6: Learned control action.

As shown by the Figure 6, initially the RL algorithm
generates large control signals which cause failures.
However, from this failure experience, it is able to learn to
generate suitable amount of control signal to keep the
pendulum upright.

E. TD Error

Parameter of the value function and the controller are
updated based on the amount of the TD error.

()t s

kδ

Figure 7: TD error.

As can be seen from the Figure 7, initially TD error is large;
hence amount of the parameter update is large as well. As the
optimal learning occurs, the value function is maximized and
the maximum reward is obtained. Therefore, TD error is
minimum.

F. Noise Standard Deviation

The noise is basically used for the exploration purpose.
However, after optimal learning little amount of noise is still
added to investigate the robustness of the RL algorithm.

()t s

σ

Figure 8: Noise standard deviation.

At the beginning of the learning, maximum amount of noise
is added to attain the optimal learning outcomes. After
learning, the noise plays disturbance role to examine the
efficiency of the learning.

IV. CONCLUSION

Results show that the RL algorithm is able to learn optimal
value function and control action. It also emphasizes that the
RL algorithm is capable to manage the external disturbances
after learning. The next target of the authors is to apply this
algorithm to a simplified HR in terms of using MapleSim
and Modelica features.

REFERENCES

1. A. G. Barto, R. S. Sutton, and C. W. Anderson, "Neuronlike

adaptive elements that can solve difficult learning control
problems," Artificial neural networks, vol. 13, pp. 81-89, 1990.

2. R. S. Sutton, "Learning to predict by the methods of temporal
differences," Machine Learning, vol.3, pp. 9-44, August 1988.

3. K. Doya, "Reinforcement Learning in Continuous Time and
Space," Neural Computation, vol. 12, pp. 219-245, 2000.

4. H. Benbrahim, "Biped dynamic walking using reinforcement
learning," Robotics and Autonomous Systems, vol. 22, pp. 283-
302, 1996.

5. T. Russ, "Stochastic policy gradient reinforcement learning on
a simple 3D biped," presented at the 2004 Intelligent Robots
and Systems, 2004, Japan.

6. G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi and G.
Cheng, "Learning CPG-based biped locomotion with a policy
gradient method: application to a humanoid robot," The
International Journal of Robotics, vol. 27, pp.213-228, 2008.

7. R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction, Cambridge, 1998, pp.20- 322.

8. M. Geist, and O. Pietquin, "Parametric value function
approximation: A unified view," presented at the 2011
Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL), 2011 IEEE Symposium, France.

9. L. Busoniu, R, Babuska, B. D. Schutter and D. Ernst,
"Approximate reinforcement learning: An overview," presented
at the 2011 Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL),France.

10. G. A. Medrano-Cerda, H. Dallali, M. Brown, N. G. TSagarakis
and D.G. Caldwell "Modelling and simulation of the locomotion
of humanoid robots," presented at the 2010 UK Automatic
Control Conference (UKACC), Conventry.

11. T. Reichenbach, "A dynamic simulator for humanoid robots,"
Artificial life and robotics, vol. 13, pp. 561-565, 2009.

