
Functional Mock-up Control with
Multi-player Online Game Protocol

Mikio Nagasawa Shinichi Ishizuka
Cybernet Systems Co., Ltd.

Kanda-neribeicho 3, Chiyoda-ku, 101-0022 Tokyo

Abstract

To meet the requirement of collaboration in the
system-level simulations of multi-domain models, a
distributed online co-simulation environment, COSI-
MAS, is designed and implemented. It works as a
multi-user FMI co-simulation master. Based on the
online gaming protocol UPC, the environment adopts
dynamical control and communication architecture for
sharing co-simulation models status information. By
application of Flash visualization technologies, an in-
teractive simulation environment in the web browser is
implemented. This paper introduces the main charac-
teristics and architecture of COSIMAS.

Keywords: FMI; online; co-simulation; multi-
domain; games; cloud; MapleSim; Simulink

1 Introduction

For designing the collaborative online simulation ar-
chitecture, one of interesting interfaces is “Functional
Mockup Interface (FMI)” [1] for multiphysics, multi-
timescale co-simulations. The FMI defines a standard-
ized interface to be used in computer simulations to
develop complex physical systems. When we connect
N simulation codes, the number of program interface
can be reduced fromO(N2) to O(N) using the unified
standard interface. The superposition of “Multi-X” co-
simulation might be possible, which would differ from
“serial connection” and “parallel coupling”. Those are
applicable for any “Multi-X”, such as multi-method,
multi-technique, multi-tool and multi-expertise, and so
on. We believe that this new integration M&S method-
ology will be in huge demand in the near future.

As online simulation standards, we have considered
the distributed application protocols: DIS, HLA, and
UPC. The Distributed Interactive Simulation (DIS) is
an IEEE standard [2] which describes the format of the
packets and their protocol that should be exchanged
between distributed simulation entities. High-Level

Architecture (HLA) is a multi-domain interoperability
architecture for distributed computer simulation sys-
tems to interact, communicate, and synchronize with
other computer simulations [3]. Union Platform [4] is
a development platform for creating connected appli-
cations such as realtime multi-player games.

A Modelica web simulation environment was pre-
sented [5], on which users can perform system simu-
lation and analysis in the browser. Users can complete
the experiment connecting the custom components,
and the results of the experiment can be obtained af-
ter the simulation. However, the system was designed
for engineering analysis using client server architec-
ture with limited number of users. In order to share
the simulation environment with larger number of soft-
wares and users, this paper describes a general online
simulation game environment for web-based modeling
and simulation engineering.

This paper is organized as follows: Section 2
presents the system architecture of multi-player on-
line game. Section 3 explains the synchronization
mechanism needed for co-simulation consistency. In
Section 4 we describe the case studies performed us-
ing our online co-simulation environment. We present
our conclusions and directions for future work in Sec-
tion 5.

2 Online Game Architecture

COSIMAS is a co-simulation framework that links
FMU simulators of “multi-X” and physical systems.
COSIMAS allows engineers to develop simulations of
different subsystems in the most appropriate tool for
their domain and then co-simulate the larger system
by running the distributed subsystem simulations.

Online interactive co-simulations support the com-
munication and collaboration of people through the
sharing and manipulation of the Application Data Unit
(ADU) via the Internet. The link with COSIMAS will



help FMU users accelerate the product development
process.

COSIMAS has a distributed architecture where each
user runs a part of the application. This has the dis-
tinct advantage that the application can be deployed
in a lightweight fashion, without relying on a support-
ing server infrastructure. But at the same time, this
peer-to-peer architecture raises a number of challeng-
ing problems: First, application data needs to be dis-
tributed among all FMI master/slaves. Second, con-
sistency control mechanisms are required to keep the
distributed application data synchronized.

Figure 1: Online game libraries to be functional mock-
up units.

We propose to exploit the knowledge of this trade-
off by voluntarily increasing the responsiveness of
the application despite the short-term inconsistencies.
Every player has a “good-enough” view of their co-
simulation environment. as shown in Figure 1.

2.1 Protocols

We use UPC protocol for data communication and im-
plement FMI co-simulation call back. COSIMAS is
a simulation framework based on a internet communi-
cation protocol architecture for multi-physics simula-
tions at all levels of abstraction that provides a collab-
orative environment for engineers for designing, sim-
ulating and validating complex systems. The com-
plete co-simulation framework provides a develop-
ment platform that supports native and non-native sim-
ulation environments, a test platform that integrates
test and measurements monitors, and a verification
platform that supports co-simulation between different
abstraction levels and non-regression of model func-
tionality along the design flow. COSIMAS uses FMI
for model exchange and co-simulation of two or more

simulation tools, where each instance of each tool can
be treated as a black box with no need for translation.

The processes and relationships are defined in the
following:

1. Select a co-simulation room: user selects the on-
line room that serves as a simulation stage for the
joining master/slaves. This co-simulation room
can be defined by the first master or slave mod-
ule. If there is neither master nor slave module,
the room will be cleared and reset.

2. Select and load simulation models: user selects
an instance model to be communicated to start co-
simulation. The loading is an iterative process.

3. Select components and ports of models: User se-
lects models and their respective input and output
ports. These selections are stored as the ADU and
the user select them for visual monitoring.

4. Select visualization modes: The modeler is given
the choice of viewing and event-listening mode.

5. Execute simulation : Without explicit event of co-
simulation start, simulation clock is advancing.
User starts simulation of the model. If any model
component is selected to be viewed, the execu-
tion of the model is displayed as the animation of
the model components.

As shown in Figure 2, there is a standard interface
between master (controller) and slaves (solver): the
master controls a solver using Flash functions, UPC
protocol, and external .dll.

The UPC protocol functions are as follows:

SEND_MESSAGE_TO_ROOMS

SEND_MESSAGE_TO_CLIENTS

SET_CLIENT_ATTR

JOIN_ROOM

SET_ROOM_ATTR

CREATE_ACCOUNT

LOGIN

SYNC_TIME

... and 150 more

The FMI master/slaves and chat users can share the
online root and exchange the messages.

2.2 Graphical User Interface

Visualization function should be platform indepen-
dent: Only methods that are compatible with the FMI



Figure 2: Implementation of FMI communication layer

specification should be used. This rules out the devel-
opment in form of an extension to an existing platform.

The FMI model must contain a port of ADU shar-
ing, which allows access from the Flash API. On the
other hand, extensions which cannot be expressed in
FMU need to be implemented in a language that is
supported through FMU’s external function interface.

The second important requirement was loose cou-
pling between the simulated model of C/Fortran and
the visualization tool of Flash. While with the choice
of C as implementation language, several options for
accessing rendering-tools exist.

The viewer usually requires a lot of additional fea-
tures (user interface, inputs, file management). Pro-
viding those features to a FMU model in a platform
independent implementation would require lots of ad-
ditional work for each visualization.

So instead of directly linking the Flash API func-
tions into a FMU model, we chose to use Flash Union
communication (UPC). Typical examples of UPC ap-
plications are networked computer games and dis-
tributed virtual environments. That way, simulation
as well as visualization can run as dedicated processes
while sending respectively receiving messages. Any
visualization needs to implement a common commu-
nication interface. Because visualization should not
influence the simulation results, other communication
ADU between simulation and GUI event should be
established. visualization is unidirectional. Since
the simulation does not expect any messages from
the visualization, the communication can work syn-
chronously. This also fits into the event-driven mod-
eling style of FMU.

With the design decisions settled, the first task was
to implement an extensible, synchronous, platform in-
dependent UPC layer in FMU. we have to wrap UPC
solutions around it’s C-interface. Flash allows sending
of arbitrary messages as internet objects as shown in
Figure 3. Message objects can be allocated, equipped
with parameters and send over a connection. In case
a faster solution is needed, Flash should be trivial to
port to whatever UPC mechanism seems appropriate.
Depending on the scene, this might yield significant
runtime and memory improvements over methods like
the Multi-Body visualization.

3 Synchronization Mechanism

In order to increase the time integration accuracy of
co-simulation, variable communication step sizes were
investigated [6]. In a serverless architecture, synchro-
nization must be introduced to make sure that the
state displayed by each FMI master/slave is consistent.
Late-join slaves need to be initialized with the current
application state before they are able to participate in
a collaborative session[7].

For dynamical group communication, we adapt the
network protocol UPC for the standardized communi-
cation of online interactive co-simulations.

COSIMAS supports dynamic initialization of co-
simulation stage where master/slaves may join and
leave at any time. But a participant joining an ongoing
session has missed the ADU data that has previously
been exchanged by the other session master/slaves. It
is therefore necessary to let the late-join slave know



Figure 3: Online COSIMAS shown in browser



the current shared state.
In general, it is not necessary for an application in-

stance to be initialized with the entire shared state. A
prerequisite for such a partial initialization is that the
application’s state is partitioned into independent ob-
jects. For each object, a late-join client can then decide
when the data for that object should be requested, us-
ing its application-specific request.

Figure 4: Synchronized bouncing ball control.

The Application Data Unit(ADU) is a chunk of data
manipulated by the online game application.

• All ADUs issued at the same time by various FMI
master/slaves are computed together to evaluate
the state of the co-simulation.

• All the co-simulation master/slaves can display
the shared co-simulation state simultaneously.

In COSIMAS, time is divided into fixed length pe-
riods and a bucket is associated with each period. All
ADUs received by a player that were shared by UPC
during a given period are stored by the receiver in
the bucket corresponding to that interval. At the end
of every bucket interval, all ADUs in that bucket are
used by the FMI solver to compute its local and global
states. Buckets are computed in 60 fps after the end
of the sampling period during which ADUs have been
issued (500ms is the ping/alive delay). Figure 4 shows
the interactive co-simulation trajectories. The bucket
mechanism is used to reduce network jitter effects in

packet audio information. In other words, to com-
pute a new global state, a FMI solver computes all the
ADUs available in the current bucket.

The bucket frequency defines the rate at which a
new game state is computed and displayed. Since hu-
man vision perceives smooth motion when the frame
rate exceeds 30 frames per second, we have chosen to
compute 30 buckets per second. The bucket frequency
is a receiver application parameter that should not be
influenced by network parameters. With COSIMAS’s
current settings, the ADU transmission frequency be-
ing equal to the bucket frequency, there should be one
new ADU message per slave at the time a bucket is
processed.

To deliver a complete view of the simulation game,
the bucket algorithm requires at least one ADU per
participant to be available in each bucket. However an
ADU can be missing for various reasons. It may have
been lost by the network or it may be late. Dead reck-
oning is used to replace missing ADUs. For each miss-
ing ADU, the state computation algorithm goes back
to the previous buckets, looking for the most recent
ADU received for the missing slave. Once found, this
ADU is dead reckoned to estimate the position where
the slave should be at the current time. The accuracy
of the evaluation depends on the dead reckoning algo-
rithm parameters such as the age of the ADU used. We
have implemented the simplest possible dead reckon-
ing algorithm in COSIMAS. When a communication
position is missing at the time, we compute a bucket,
we simply replay the last known position of this slave.
We decided to have a simple dead reckoning algorithm
in order to analyze online synchronization.

3.1 Dead Reckoning

Dead Reckoning is an extrapolation technique used in
the aviation systems to compute an estimate of the cur-
rent position of a plane based on the knowledge of its
position in the past and on its trajectory [8]. Dead
reckoning is commonly employed for consistency con-
trol in continuous applications such as distributed vir-
tual environments and simulation games. It uses a
combination of state prediction and state transmission.
Each object of the shared state has a single controlling
application instance. State prediction means that all
sites are able to calculate state changes caused by the
passage of time locally, e.g., the path of a bouncing
ball. Only the controlling instance is allowed to issue
operations, e.g., when the user changes the direction of
his/her ball. These operations modify the state of the
affected object such that it differs significantly from



the predicted state. Thus, the controlling instance has
to notify all participants by propagating the updated
state. Following the soft state approach, operations are
transmitted unreliably as states, and communication is
repaired by periodic ping/alive protocols. Each slave
is only responsible for the shared ADUs. Instead, the
controlling slave transmits an update when it detects
the collision.

The main advantage of the dead reckoning approach
is its low complexity. Thus, dead reckoning is em-
ployed for large simulations and distributed virtual en-
vironments. However, dead reckoning cannot guaran-
tee correctness because it transmits states instead of
events. Thus, it is not possible for a slave that receives
a state update to determine how that state came to be.
This may lead to an incorrect state. For example, con-
sider a situation where two balls A and B approach
each other. At some point in time, the instance con-
trolling ball A receives a state update for B that puts
B past A. If some preceding updates were lost, there
is no way for the controlling slave of A to determine
how B got to this position and whether the two balls
collided or not.

3.2 Collision Problem

Dead-reckoning method suffers from error during the
period of an occurrence of an event and the commu-
nication of this event to the relevant slaves. It also
handles the false positive and false negative collision
detection problems. The new method is required for
handling state changes due to unpredictable user inter-
ventions or object collisions.

We suggest a family of consistency protocols for
multiplayer games that explicitly addresses the two is-
sues of concern when enforcing consistency: (a) when
an event occurs, how do we figure out the set of clients
that need to be informed of this event, and (b) how do
we schedule the dissemination of updates to meet both
update receipt deadlines, as well as receive parameters.

4 Case Study

4.1 Multi-method Multi-body Coupling

With the component model synthesis technique, the
FlexibleBody model was constructed on the standard
Modelica MultiBody library [9]. A coupled rigid-
flexible mechanism and a control subsystem were
modeled and simulated.

The variable macro step size are investigated within

the framework for the automotive drive cycle simula-
tion [10].

Figure 5: A power window simulation model

Figure 6: Multi-method co-simulation for rigid-
flexible coupling

For the analysis of the power window as in Figure 5,
we implement the online co-simulation workbench as
shown in Figure 6. This is a co-simulation stage where
rigid body slaves and elastic body saves are playing.

In order to advance time integration in a stable man-
ner, the 1st order symplectic Euler algorithm is ap-
plied for rigid body slaves, while the 4th order Runge-
Kutta scheme is necessary for elastic body slaves. The
elastic body is modeled with spring-and-mass compo-
nents. Those two slaves exchange the position and
velocity information of the two pinned points at ev-
ery time step. This is a kind of multi-method co-
simulation with common constant time steps.

4.2 Collaborative Control

As a development methodology, “Multi-X-In-the-
Loop” is proposed. The X stands for model, software,
hardware, and players. While, specialized consistency
control and synchronization methods for multiplayer
games are needed.



The implementation is through a minimal set of C-
functions. As an example, an engineer may have con-
trol software written in C, control system elements
modeled in Simulink and/or MapleSim, and power
electronics, mechanical, magnetic and other system
plant models developed in ANSYS. The user would
like to combine the simulator control, communication
and synchronization of signals, and retain the integrity
of the respective models and code, and simulate the
entire system.

The Functional Mockup Interface (FMI) has be-
come one kind of unified model exchange and co-
simulation standard for multi-domain physical sys-
tems. The verification of system-level modeling
of multi-domain systems using Functional Mockup
Unit(FMU) is difficult to be accomplished by an in-
dividual or individual enterprise because of its com-
plexity and multidiscipline. The COSIMAS aims the
testbed to form the unified online platform for collabo-
rative co-simulation. Through transplanting the stand-
alone tools of modeling and simulation for FMU into
the Web, the usage scenarios are widely expanded.

5 Conclusions and Future Work

In this paper, we have proposed an online func-
tional mock-up platform to support collaborative co-
simulation. It considers how interaction with simu-
lation messages is perceived by co-simulation mod-
els and users under the existence of network latency.
It also handles the collision detection problems and
the unpredictable user interaction events. Our current
study is regarded as in a Proof-of-Concept phase, we
would like to proceed the detailed performance evalu-
ation applying COSIMAS platform to be compliant to
FMI 2.0RC1 as our future work. In addition, some
legacy batch models written in Fortran code should
participate in this online paradigm. It may widen the
application of FMI co-simulation to more global hu-
man and software network cloud, such as massively
parallel supercomputers concerted in harmony with
Android and iOS smartphones.

References

[1] FMI 2.0 RC1: Functional Mock-up Inter-
face for Model Exchange and Co-Simulation.
https://www.fmi-standard.org/.

[2] DIS: IEEE Standard for Distributed Interactive
Simulation – Application Protocols. (IEEE Std
1278.1-2012) IEEE Computer Society, 2012.

[3] HLA: Standard for Modeling and Simulation
High Level Architecture. (IEEE Std 1516.1-
2010) IEEE Standards Association, 2010.

[4] UPC: Union Procedure Call Protocol Specifica-
tion. http://unionplatform.com/specs/upc/.

[5] Qi, L., Tifan, X., Qinghua, L., Liping, C.:
WebMWorks: A General Web-Based Model-
ing and Simulation Environment for Modelica.
In: Proc. 9th International Modelica Conference,
Munich, Germany, pp.549-555, 2012.

[6] Schierz, T., Arnold, M., Clauß, C.: Co-
simulation with communication step size control
in an FMI compatible master algorithm. In: Proc.
9th International Modelica Conference, Munich,
Germany, pp.205-214, 2012.

[7] Li, F.W.B., Li, L.W.F., Lau, R.W.H.: Support-
ing Continuous Consistency in Multiplayer On-
line Games, Proc. 12th ACM Multimedia, New
York, pp.388-391, 2004.

[8] Lin, K. C., Schab, D. E.: The Performance As-
sessment of the Dead Reckoning Algorithms in
DIS. In: Simulation, Vol.63, No.5, pp.318-325,
1994.

[9] Gang, X., Yan, Z., Fanli, Z., Liping, C.: Mod-
elling and Simulation of the Coupled Rigid-
flexible Multibody Systems in MWorks. In:
Proc. 9th International Modelica Conference,
Munich, Germany, pp.405-416, 2012.

[10] Günther, F., Mallebrein, G., Ulbrich, H.: AMod-
ular Technique for Automotive System Simula-
tion. In: Proc. 9th International Modelica Con-
ference, Munich, Germany, pp.589-598, 2012.


