
Orbital Mechanics

The objects that orbit earth have only a few forces acting on them, the largest being the 

gravitational pull from the earth. The trajectories that satellites or rockets follow are largely 

determined by the central force of gravity. Johannes Kepler developed the laws of planetary 

motion we use today to predict the motion of the planets about the sun or the path of a satellite 

about the earth, and his theories were confirmed when Newton revealed his universal law of 

gravitation. These laws provide a good approximation of the path of a body in space 

mechanics.

This module explains angular momentum, central forces including Newton's law of gravitation, 

properties of elliptic orbits such as eccentricity, and Kepler's laws of planetary motion. The 

associated equations are presented alongside an example in MapleSim and an interactive plot 

of the eccentricity of an orbit. It is recommended that the Rotational Kinematics module is 

reviewed prior to completing this module. 

Angular Momentum

Consider an object moving with linear momentum as described by  in the Impulse and 

Momentum module. The moment of this object about point O is the moment of momentum, 

or angular momentum.



... Eq. (1)

The cross product implies that the angular momentum is a vector perpendicular to both the 

momentum  and the position  vectors. The magnitude of the angular momentum vector

is given as

... Eq. (2)

Where phi  is the angle between the position vector and momentum vector, and  is the 

tangential speed in a rotating frame of reference. Substituting the tangential velocity, this 

can be written in the form

... Eq. (3) 

where  is the angular speed. Deriving the angular momentum in vector form gives

... Eq. (4) 

The cross product of the first term will be zero. The product  is a force, which is crossed 

with the position, resulting in a moment. The rate of change of angular momentum becomes

... Eq. (5)

It is often more advantageous to express angular momentum per unit mass, denoted by h. 

... Eq. (6)

Central Forces

If an object in undergoing a force directed toward a fixed point and no other forces are 

acting on this object, it is experiencing a central force. Gravity is a common central force. A 

satellite in orbit experiencing no other (or negligible) forces except for the gravitational pull 

towards the center of mass of the earth is undergoing a central force. Therefore, if the force 

on the object is directed at the center of mass, there is no moment on the object. 



... Eq. (7)

This must mean that the angular momentum is a constant value for objects under a central 

force. 

Newton's Law of Universal Gravitation

Newton states his law of gravitation as

... Eq. (8)

where the force F is related to the product of mass M$m of the attracting objects, the 

distance r between them, multiplied by the constant of gravitation  

. 

The weight that all objects experience under gravity on the surface of a planet of radius

R is

... Eq. (9)

Trajectory of Particles Under a Central Force

Particles moving under a central force follow the trajectory given by the following differential 

equation.

... Eq. (10)

Where the force F is assumed as an attractive force (positive towards the origin), and u 

represents 1/r. 

Deriving the Trajectory Differential Equation



The radial and transverse components describe the motion of a particle in terms of r and 

theta.

Figure 1: Radial components of a trajectory

The velocity of the particle is the time derivative of its position.

... Eq. (11) 

The derivative of the unit vector  can be represented with . 

... Eq. (12a, 12b)

Substituting this in provides the velocity of a particle in radial and transverse components

... Eq. (13)

Following the same method, differentiating with respect to time and simplifying provides 

the accelleration of the particle.

... Eq. (14)

The force applied to the particle given in terms of the radial and transverse components 

follows F=ma.



... Eq. (15a, 15b)

Under a central force, the force experience by a particle will be along the frame directed 

towards the origin.  

... Eq. (16)

Including the force in eq. (15) resolves the equations to

... Eq. (17a, 17b)

From eq. (6),

... Eq. (18)

Similarly, velocity can be expressed with angular momentum.

... Eq. (19)

Acceleration is found in a similar fasion.

... Eq. (20)

Let 1/r be represented with u. Substituting _ and _ into eq. (17a) shows 

... Eq. (21)

Simplifying this resolves to a differential equation.

... Eq. (10)

If the central force is gravity, using Newton's equation from eq. (8) the differential equation 

represents the trajectory of an object in orbit. 



... Eq. (22)

Solve the ODE by adding the particular solution u=GM/h2 to the general solution u=C$cos(  

0) with 0=0.

... Eq. (23)

The ratio of the constants decribe the eccentricity of the trajectory. 

... Eq. (24) 

This allows eq. (23) to be written in the following form.

... Eq. (25)

Exploring Eccentricity

Observe the effects of vaying the eccentricity of the particles trajectory in the interactive 

section below. 
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Figure 2: Visualizing the eccentricity of orbits

The eccentricity of an orbit describes the path of the particle quite well. There are four cases

of trajectories that concern the eccentricity.

therefore the vector r tends to infinity. The particle will travel in a hyperbolic trajectory. 

parabolic 

ellipse as there is a radius vector for every 

circular orbit. 

Escape Velocity



Figure 3:

At this point, it has an initial position  and velocity  and the object is located at the 

perigee, the closest point to earth in its orbit. The constant C can be found with  and  

... Eq. (26)

C.

... Eq. (27)

Knowing the constant of the trajectory, the eccentricity can be found. 

... Eq. (28) 

Which simplifies to

... Eq. (29)

The different cases of eccentricity can approximate key velocities from eq. (29). To 

launch a rocket into a circular orbit of radius 



... Eq. (30)

An elliptical path occurs as the eccentricity is between 0 and 1. 

... Eq. (31)

The minimum velocity required to escape an orbit happens when the eccentricity is 1 and

the object is travelling in a parabola.

... Eq. (32)

Finally, a hyperbolic path requires a velocity that puts the object in an eccentricity greater

than 1. 

... Eq. (33)

Properties of an Ellipse

An elliptical orbit contains two foci, denoted as F1 and F2 in the below figure. The radius 

from the center of the ellipse to the farthest edge is the semi major axis, a. The distance 

from the center to the closest edge of the ellipse is the semi minor axis, b. 



Figure 4: An object in an elliptical orbit

A planet or a large mass lies at a focus O of the ellipse. The eccentricity of this elliptical orbit

can be described with the largest and smallest r values.

... Eq. (34)

These radial values can be calculated using eq. (25) at  and  ). These 

values help calculate key characteristics of the ellipse such as the magnitude of the semi 

major and minor axes, a and b.

       and       

... Eq. (35a, 35b)

The period of an object in an elliptical orbit is given by

... Eq. (36)

Kepler's Laws of Planetary Motion

The preceding equations assumed that the secondary mass such as a satellite or rocket is 

negligible in the calculations. However, considering the moon moving about the earth, the 

second mass is a rather large factor in determining its orbit. The approximations obtained 

from these equations aren't entirely accurate because of the influence of the moon on 



Earth's orbit. This problem also arises when estimating the path of the planets, however 

these equations do provide a reasonably good approximation. 

Johann Kepler, a German astronomer, developed his 3 laws which govern the motion of the

planets. 

Each planet describes an elliptical orbit with the sun at one of its two foci.1. 

The radius vector drawn from the sun to a planet sweeps equal areas in equal times.2. 

The square of the orbital period of a planet is proportional to the cube of the semi-

major axis of their orbit.

3. 

Proof of Kepler's Third Law

... Eq. (37)

Adding the equations cancels the eccentricity. Simplify and isolate for the angular 

momentum.

... Eq. (38)

Recall the semi major and semi minor axes from eq. (35). Using these in eq. (38) 

reduces the form.

... Eq. (39)

Kepler's third law relates to the period of an orbit. Using the squared form of the period 

eq. (36), and the angular momentum in eq. (39), the equation reduces to the third law.



... Eq. (40)

Examples with MapleSim

Example 1: Maximum Altitude

Problem Statement: A satellite enters an orbit 500km above the earth. It's velocity at 

this point is 36 900 km/h perpendicular to the earth. What will the maximum altitude that 

the satellite will reach?

Figure 5: A satellite in an elliptic orbit about Earth

Analytical Solution

Data:

Convert units to SI units.



Converted to m/s

Solution:

This satellite has entered an orbit, so it's motion can be estimated using eq. (23).

The initial height of the satellite must include the radius of the earth.

The angular accelleration will remain constant throughout the orbit. Use the supplied 

 = 

Subtracting the radius of the earth reveals the maximum altitude of the satellite above 

earth, in meters.

 = 



Therefore, the satellite reaches a maxmimum height of 59 553 km. 

MapleSim Solution

Step 1: Insert Components

Drag the following components into a new workspace.

Component Location

Multibody > Bodies 
and Frames

Multibody > Bodies 
and Frames

Multibody > Joints 
and Motions

Multibody > Joints 
and Motions

1D Mechanical > 
Rotational > Motion 

Drivers



1D Mechanical > 
Rotational > 

Sensors

1D Mechanical > 
Translational > 
Motion Drivers 

Step 2: Connect the components.

Connect the components as shown in the diagram below. 

Figure 6: Model Diagram

Step 3: Add Parameters

1. Add a parameters block to the model. Select the parameter icon  and click on 

the workspace. Open the parameters block and enter the following values: r0 = 

500E+3; v0 = 36900/3.6; R = 6371E+3 . 



Figure 7: Parameter values for MapleSim model

Step 4: Enter Block Values

1. Select the Revolute  block. On the 'Inspector' pane, change the axis of rotation  

parameter to [0,1,0]. Change the initial conditions IC  to 'Treat as Guess', and set 

0 to .

2. For the Prismatic block, change ICs,v to 'Treat as Guess' and set the initial 

displacement s0 to r0.

Step 5: Create the Custom Component.

1. Add a new custom component to the MapleSim document. From the 'View' menu, 

select 'Create Attachment'. Select 'Custom Component' and create the attachment. 

ang(t) and r as r

(t) to specify these as inputs and outputs. Press enter/return to save the equation. 

3. Enter the constant values under 'params'. Angular momentum h will be the product 

of the initial radius and velocity. Enter the constant C from eq. (27). Press 

enter/return. 



Figure 8: Equations for custom component

4. Under the Component Ports section, click 'Clear All Ports' and add 2 new ports. 

For the first port, set the port type to 'Signal Input' and on the drop down menu for the 

value, select ang(t). 

5. For the second port, set the port type to 'Signal Output' and select the r(t) value. 

6. Generate the MapleSim component. Connect it to the model appropriately. The 

block icon can be found on the 'Project' tab under 'Definitions > Components'. 

Step 6: Connect probes

1. Connect a probe to flange_b of the Prismatic block to measure the distance from 

the center of the earth to the satellite. 

Step 3: Run Simulation

Run the simulation and probe the generated graph. Subtract the radius of the earth 

from the generated value to obtain the maximum altitude of the satellite. 

Results

The simulation generates the following plot.



Figure 9: Simulation results

The maximum distance measured from the plot is 6.592$107 m. Subtract the radius

of the earth, 6371 km, from this value.

 =  meters
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