
Methods of Heat Transfer

Thermodynamics often makes reference to the heat transfer betwen systems. Often these laws

do not adequately describe heat transfer processes, so we must introduce more accurate rules

to explain what happens. The control of heat transfer is important to study so that we can 

design the appropriate tools to transfer thermal energy from one medium to another. 

This module introduces heat transfer and the transport laws of conduction, convection and 

radiation. The laws introduced include Fourier's law, Newton's law of cooling and Stefan-

Boltzmann law. Other topics that are discussed include Biot numbers, Wein's law, and the one-

dimensional heat diffusion equation. These act as an introduction to the complicated nature of 

thermal energy transfer. 

Methods of Heat Transfer

When a temperature difference is present, heat will flow from hot to cold. Heat can transfer 

between two mediums by conduction, convection and radiation whenever there is a 

temperature difference. Recall the first law of thermodynamics. The rate that heat will 

transfer in a closed system is presented in the following form.



... Eq. (1)

Where Q is the heat transfer rate, W is the work transfer rate and dU/dt is the net change in 

the total energy of the system. Usually, heat transfer can be analyzed without work being 

included. However, real systems can include work in their analysis. In the case of only  

work occuring, Eq. (1) becomes 

... Eq. (2)

with two special cases: constant pressure and constant volume. In the case of constant 

volume, 

... Eq. (3)

the specific heat capacity is . For constant pressure, 

... Eq. (4)

with the enthalpy  and  as the specific heat capacity. The specific heat 

capacities will be equal in an incompressible liquid, with constant volume at any pressure, 

rendering . The heat transfer rate becomes 

... Eq. (5)

 is not always known immediately, so most of the time it cannot be used to find . To 

achieve this, we must use the transport laws to accurately predict the heat transfer rate. 

These laws are Fourier's law, Newton's law of cooling, and the Stefan-Boltzmann law 

introduced in the following sections. 

Conduction

Heat Flux and Thermal Conductivity
Conduction is the transfer of thermal energy through the interaction of particles. Small

particles transfer kinetic and potential energy as they collide and vibrate with other 



particles. Two materials can only share energy by conduction if they are in direct or 

indirect contact with each other. The flow rate of this heat energy is known as heat 
flux.

Heat flux, or thermal flux, is defined as a measurement of the heat rate transfer per 

unit of area, expressed in watts per square meter ( ). Mathematically, it is a vector 

quantity represented as .

... Eq. (6)

Here,  is the heat transfer rate and  is the cross-sectional area.

Heat flux from thermal conduction is also proportional to the temperature gradient 

across an object and opposite in polarity. It varies by a constant k, the thermal 
conductivity of a material. The thermal conductivity has units of watts per meter 

Kelvin ( ). It depends on the material and can only be found experimentally. This 

relationship is known as Fourier's law of heat transfer.

... Eq. (7a)

This is the one-dimensional representation of heat flux. 



Figure 1: Heat flux shown on a temperature distribution graph.

Because temperature flows from hot to cold, the heat flux will be positive if the rate of 

change of the temperature gradient decreases. In the multidimensional 

representation, 

... Eq. (7b)

It is sometimes more convenient to work with the scalar form of this equation, such as

one dimensional problems where the direction of heat flow is easily determined. 

Remembering that heat flows from hot to cold, heat flux can be calculated by

... Eq. (8)

where L is the thickness of the material in the direction of the heat flow, and k and T 



are positive quantities. 

Different materials will conduct heat better than others. Copper, for example, has a 

very high thermal conductivity because it is a good electrical conductor and can move 

electrons and transfer energy easily. In contrast, diamond, which is a poor electrical 

conductor, transfers heat even better than copper due to its efficient lattice structure. 

Gases are better insulators because the molecules have more space to move around 

and do not interact as well as solids. 

Materials with a high thermal conductivity have a smaller temperature gradient 

because (from Eq. (7a)),

... Eq. (9)

or more generally, 

... Eq. (10)

For larger thermal conductivities, the temperature gradient will change less. 

Heat Flux Example
An industrial furnace is pumping 200 °C hot air through a 3mm copper pipe (k = 

400 W / m$K) insulated with 1cm of an elastomer (k = 0.4 W / m$K) on the outside 

of the pipe. What is the temperature distribution in the copper pipe and the heat 

conduction through the walls of the tube? Assume an ambient room temperature 

outside of the tube. 



Figure 2: Insulated copper tube

Solution

Examining the given thermal conductivities, we can see that the copper is 1000 

times higher than the insulator. The temperature distribution in the copper will 

be much less than the elastomer here. However, once the heat flux reaches a 

steady state, the conservation of energy dictates that the heat flux must be 

equal through both materials. We can equate the two rates to obtain the 

temperature distribution.

The sum of the heat distribution through the copper pipe and the insulator will 

be equal to the total change in temperature.

°C

The temperature gradient of the insulator in terms of the copper is then found 

from the first equation.



Substitute this into the second equation.

 = 0.05398380486

Solving this yields  °C for the temperature gradient through the 

copper. Therefore, 

 = 179.9460162 °C

Although the copper pipe is just under 1/3 the width of the insulator, the high 

thermal conductivity means that the copper conducts heat very efficiently. In 

contrast, the insulator has a much higher temperature distribution because it is 

poorer at conducting heat. The heat flux rate for each material will be 

 = 7197.840646

 = 7197.840648

So the tube will lose 7.2 kW/  of thermal energy. 

1-D Heat Diffusion Equation

In the previous example, we were able to obtain the temperature distribution by 

equating the heat flux through each material. This can only be done once the heat flux



reaches a steady state. What can be done if the heat flux is not constant?

Figure 3: Uniform rod

Consider a metal rod (fig. 3) with the sides insulated and only the ends exposed. This 

rod has a length L that extends from  to . This is a uniform rod so assume the 

specific heat c, density , thermal conductivity k, and cross-sectional area A are 

constant. The temperature  changes with both position x and time t. The amount

of heat in the rod at time  is,

... Eq. (11)

Where  is the mass per unit length (because we are considering one dimension), and

 is a differential length of the rod. After  seconds, the amount of heat in the rod will 

be

... Eq. (12)

The change in heat will be the difference between these.

... Eq. (13)

This must be equal to the heat flowing into the rod at  minus the heat flowing out of 

the rod at , for the same duration of time . Recall from Eq. (7a) that the heat 

flow is proportional ot the temperature gradient.

... Eq. (14)

Equate these two terms and divide by  and .



... Eq. (15)

By taking the limit as  and , we obtain the one dimensional heat diffusion 

equation.

... Eq. (16)

This can be simplified with the thermal diffusivity variable  in . 

... Eq. (17)

Convection

Convection occurs when a fluid or gas flows around an object. A small layer of fluid 

forms around the body, called the boundary layer, where heat diffuses from the object 

to the fluid. The thermal energy is then carried away from the object by the fluid.

Newton's law of cooling states that the temperature difference between the oncoming 

fluid and the body is proportional to the heat flow from the body. The steady state 

equation of the law of cooling is written as

... Eq. (18)

where  is the heat flow rate,  is the temperature of the body and  is the 

constant temperature of the oncoming fluid.  is the film coefficient or heat transfer 

coefficient, in . The heat transfer coefficient has 2 forms.  denotes the value a

point on the surface while  with a bar is the average coefficient over the whole body. 

The film coefficient is dependant on the temperature difference only if the fluid is not 



'forced' past the body like it is with forced convection. Forced convection is method by 

which fluid flows due to an external source like a fan or pump. With natural or free 

convection,  can vary by a degree of the temperature difference such as  and 

. This happens in situations where the fluid bouys up around a body or when the 

body is hot enough to boil the fluid, for example. However, our examples will be 

restricted to situations in which Newton's law of cooling applies or is reasonably 

accurate.

Figure 4: Natural convection. The hot air from the flame expands and rises above the denser cold air.

To predict the transient cooling of convectively cooled objects, we use the lumped-
capacity solution. Begin by recalling the first law statement,

... Eq. (5)

By substituting in the equations for Q from Eq. (18) and  from Eq. (5), this will 

become



... Eq. (19)

Although  represents the temperature of the convection fluid and  is the 

temperature of U defined at zero, the derivatives of these will both be 0 because they are

constants. These differences can be treated as equivalent (assume ). The 

solution to this becomes,

... Eq. (20)

The constant C can be found at time t=0.

... Eq. (21)

Substituting this in and rearranging solves for the cooling of the body. This is the lumped-

capacity solution.

... Eq. (22)

Where  is the time constant, which groups together the material properties in Eq. (20), 

given by

... Eq. (23)

The thermal conductivity of the material is not included in this constant. It is assumed 

that heating throughout the object is uniform (with a high thermal conductivity). In these 

cases, the Biot Number for a body is less than 0.1. For other cases, more parameters 

must be considered. 

Biot Number

The Biot number is defined as



.. .Eq. (24)

The Biot number represents a ratio between the rate that a body cools via conduction 

compared to convective cooling. It's a unitless quanitity found by equating Fourier's 

law, Eq. (8), to Newton's law of cooling, Eq. (18). 

... Eq. (25)

Taking the ratio between the temperature differences reveals the Biot number. Fig. 5 

displays two different materials that are cooled by convection. The temperature 

across each material is shown.

Figure 5: Low and high Biot numbers

In fig. 5, the left object is said to have a low Biot number. It has a low temperature 

drop within the body  due to a larger thermal conductivity, opposite the 

second body with a low conductivity. Clearly, the Biot number should be expected to 

be low because there is a larger drop between the surface temperature and the 

ambient fluid temperature . Rearrange Eq. (25) to see this explicitly.

.. Eq. (26)

Radiation



All bodies constantly emit some thermal energy by radiating heat, and energy can travel 

between bodies in the form of radiation. Thermal energy can radiate across a range of 

wavelengths but typically it is close to that of infrared. Often, the energy emitted by 

radiation can be neglected in the presence of conduction and convection at low 

temperatures. However, at high temperatures, radiation must be considered because the

energy emission from a body varies as the fourth degree of the absolute temperature.

As radiation strikes an object, some energy may be absorbed, pass through or reflect off 

of the surface. A black body is an ideal object that does not reflect radiation or let energy

pass through. It absorbs all incident radiation and re-emits thermal energy at a rate 

dependent on the black body, not the incident radiation that heats it. 

Figure 6: A black body as a cavity with a hole

A popular model of a black body is that of a cavity with a hole through which radiation 

enters, as shown in figure 6. The walls of the cavity perfectly absorb the radiation and the

surface of the body emits thermal energy. The rate that the body emits energy 

approaches a theoretical maximum, given by the Stefan-Boltzmann law. 

Stefan-Boltzmann law applies only to black bodies. It states the directly proportional 

relationship between the energy emitted from a unit area in one second, , to the 

fourth power of the temperature.



... Eq. (27)

where  is the Stefan-Boltzmann constant, . Here,  may

be reffered to as the heat flux density, irradiance, or emmisive power, and it is given in 

watts per square meter. Stefan formulated this in 1879 through experimentation.

The radiation that a black body will give off will of course be proportional to its 

temperature. This radiation is given off as a distribution of energy across various 

wavelengths. For example, a fire iron left in a fire will glow a dull red, emitting its energy 

mostly through infrared light and a little energy in the visible spectrum. If it were to be 

heated to a hotter temperature, it would emit more visible light. Wein's law declares that 

the hotter an object is, the shorter the wavelength it will emit through radiation. Wein's 

law also states that the peak wavelength that radiating energy is emitted at is 

proportional to its temperature. 

... Eq. (28)

The constant of proportionality used is referred to as Wein's displacement constant. It 
should be noted that this relationship does not correspond with the peak frequency of the

radiation through , that is the peak wavelength  and peak frequency  are not

directly related to each other. Adjust the temperature gauge in fig. 7 and observe its 

effect on the wavelength's distribution.

Surface Temperature (K)

Peak wavelength : 0.3035888323e-6 [meters]



Figure 7: Emissive power vs wavelength chart with adjustable temperature. 

The above figure shows the wavelength distribution of thermal radiation vs. the emissive 

power for a black body and displays the range of visible colour that the body will emit. 

The temperature gauge sets the surface temperature of the black body. The emissive 

power depending on lambda was proposed by Max Planck in 1901 and is stated to be

... Eq. (29)

where  is Planck's constant ,  is the speed of light 

 and  is Boltzmann's constant . 

The net energy that an object can transfer by radiation  is the difference between 

. If some object radiated heat towards another object, assuming they are both black

bodies, the net heat transferred is 

... Eq. (30)

This net transfer assumes that all radiating energy from object 1 sees the second object. 

In cases where there are multiple objects, or some radiation diffuses away, this quantity 

is multiplied by a view factor (otherwise referred to as a shape/configuration factor). This



is the fraction of energy intercepted by object 2 from object 1. 

... Eq. (31)

If the objects are not perfect black bodies, then the view factor is replaced by the

transfer factor which also accounts for the different surface properties and geometries 

of the objects. 

In some experiments, radiation can obscure a temperature reading. To prevent this we 

use radiation shielding to reduce the amount of radiating thermal energy that strikes the

temperature gauge. This can take the form of a reflective sheet, enclosed casing, or 

multiple layers of similar items that reduce the error of the reading due to thermal 

radiation.

Examples with MapleSim

Example 1: Conduction Through Two Materials

Example 2: Conduction and Convection
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