Maple Programming Guide

L. Bernardin
P. Chin
P. DeMarco
K. O. Geddes
D. E. G. Hare
K. M. Heal
G. Labahn
J. P. May
J. McCarron
M. B. Monagan
D. Ohashi
S. M. Vorkoetter

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2018

Maple Programming Guide

by L. Bernardin, P. Chin, P. DeMarco, K. O. Geddes, D. E. G. Hare, K. M. Heal, G. Labahn,
J. P. May, J. McCarron, M. B. Monagan, D. Ohashi, and S. M. Vorkoetter

Copyright

Maplesoft, Maple, MapleNet, MaplePrimes, Maplet, Maple T.A., and OpenMaple are all trademarks of Waterloo
Maple Inc.

© Maplesoft, a division of Waterloo Maple Inc. 1996-2018. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means
— electronic, mechanical, photocopying, recording, or otherwise. Information in this document is subject to change
without notice and does not represent a commitment on the part of the vendor. The software described in this
document is furnished under a license agreement and may be used or copied only in accordance with the agreement.
It is against the law to copy the software on any medium except as specifically allowed in the agreement.

Adobe and Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated in the United
States and/or other countries.

Java is a registered trademarks of Oracle and/or its affiliates.

MATLAB is a registered trademark of The MathWorks, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
NAG is a registered trademark of The Numerical Algorithms Group Ltd.
All other trademarks are the property of their respective owners.

This document was produced using Maple and DocBook.

ISBN 978-1-926902-46-3

Contents

PrEefaceoeeieii e xxiii
1 Introduction to Programming in Maplec.ooeviiiiiiiiiieiieieeeeeee e 1
1.1 In ThiS CRAPLET ..uvvniiiiiie ittt et e e e e e e e e et e et e e eaenas 1
1.2 The Maple SOftWAIEovvniiiiiiiiiei e e e 1
The User INterfacecouuiiiiiiiiii e 1
The Computation ENGINecccoviiiiiiiiiiiiiieiiei e 1
1.3 Maple StateMENTSuuiveiieeiieieeeii et e et e e et eaeeae et e et e eaeeaneeaneeaneeanas 2
Getting Help ovnieniiii e 2
Displaying @ TeXt STIINEcvuuivniieeiieiiee et e et et e e ae e e e e e e e eeans 2
Performing an Arithmetic Operationcecuvviineiineiiieiiieieiieeieeieeeneen. 3
ASSIZNING 10 @ NAIMEivviiiiiii et et et et e e e e e e et e e e aeaeaenas 3
Using Maple Library Commandsccceeiiiiiiiiinniineiieiieiieineiineiinaienns 3
1.4 PIOCEAUIESuneiiie ettt ettt et e e e e 4
Defining a Simple Procedureooiiiiiiiiiiie e 4
Entering a Procedure Definitionc...oeiiiiiiiiiniiiiiieii e 4
Adding Comments t0 @ Procedurecocoviiiiiiiiiiiii e 7
Calling @ ProCedureuviiniiiiiieiiie e 8
Maple Library Commands, Built-In Commands, and User-Defined Proced-

UTES -ttt ete et et ettt et et et et et et ettt e e e e et et e ettt e e e enns 8
Full Evaluation and Last Name Evaluationccooooiiiiiiniiiiniinii, 9
Viewing Procedure Definitions and Maple Library Codec.ccoeevvnrnnnnnn.. 10

1.5 Interrupting Computations and Clearing the Internal Memory 11
Interrupting a Maple CompPutationuvivneiieiieiiieiineierieeieeieeeneens 11
Clearing the Maple Internal Memoryccoevviiiniiiniiieiiieiieeieeeeeeann 11

1.6 Avoiding Common Problemsccocoeiiiiiiiiiiiiiniie e 12
Unexpected End of Statementc.ooiiiiiiiiiiiiiiniieiei e 12
IMISSING OPETALOT ..vvueivieiieiteeieeiieei et et et ete et e et e et eeneeaneesneerneenerenaes 12
Invalid, Wrong Number or Type of Argumentsccceevveineiineiinnrnnnnnn. 12
Unbalanced Parenthesesccouuiiiuiiiiiiiiiiieii e 13
Assignment Versus EQUalityoooovviiiiiiiiiiiiiii e 13

1.7 EX@ICISES -ttt e e e e eees 14

2 Maple Language EIementsccouiiiiiiiiiiiiiiiiiiei e e 15

2.1 In ThisS CRAPLET ..ovviiniii et et e e e e e e e e e e eeaes 15

2.2 CRATACLET SEL ...eetniiiiee ittt ettt et 15

2.3 TOKENIS ..t 16
Reserved WOTdScouuniiiiee e 16
Programming-Language OPEeratorsceeuueiureinieineiineeieeieeiieriieesnersneeens 17
INAITIES . e e 20

2.4 Natural INTEZETSuivniiniiieie et e e e e eaens 21

2.5 SHIIIES 1oveiteii ettt et et et e e e e e e e e e et a et anaans 22
Length of @ SIrINgovviiiniiiii e 22

il

iv ¢ Contents

SUDSLIINES .. eeeii ettt et et e e e anns 22
Searching @ STIINEovvueiiiiiee ettt e e e e e e ees 23
String Concatenationc..veeuuuieeuueruieiii ettt eai et eei e e 23
Mutability Of StrNGSuoveiiiiei et 24
Special Characters in StrNGSvveeineiineiieiie e e e e e eee e eeneens 24
Parsing StIINESuuveniiiiii et e 25
Converting EXpressions to Stringscveeuveiniiiieiineiieiineieeieeieeieeinenns 26
2.6 Using Special Charactersoeeuviuieiiiiieiieine e e eaenas 26
TOKEN SEPATALOLSevvneiineiieeii et et et e e e e e e e e e e e e e eaneeans 26
Blank Spaces, New Lines, Comments, and Continuationc.c....... 27
Punctuation Marksoouuriiiiiiiiiiii e 28
EScape CRAraCtersc.uviuniiieiieie e ettt e e e eens 31

2.7 Types and OPErandsoceueeeueiineiineeieie e e e e e e e e eaneeans 31
DIAGS e e 31

1A Yo (I) o 1< 32
Operands AN OPoveneieeii ettt 34
2.8 Avoiding Common Problemsccceceuiiiiiniiiiiiiiiiniiinie e 37
Attempting to Assign to a Protected Namecccoeeeiiiiiiiiiiiiniiiinineennn.. 37
Invalid Left-Hand ASSIZNMENtc..oeiiuiiiiiiiiiniiiieii e 38
Incorrect Syntax in Parseccooveiiiiiiiiiiiiiiniin e 38
White Space Characters within a ToKenccooeiviiiiiiiiiiniiiniiieeeeeans 38
Incorrect Use of Double and Single QUOtescccvvinviiiiiiiiiiieineieannss 38
Avoid Using Maple Keywords as Namescccvvieriniiineiiineiiinneiinneenan. 39
2.9 EXEICISES . vvueetinetiiie ettt ettt et ettt et e e e 40
3 Maple EXPIESSIONS ..evuueiiiniiinetiii ettt ettt et e e 41
3. 1IN ThiS CRAPLET ...eevieiiieiii et et 41
TN 18 (T 11T 5 () o PN 41
Expressions and Statementsoveuueiieiineiinrieii e iee e e e eanaas 41
Automatic Simplification and Evaluationc...ccoooeiiiiiniiinniinnn, 41
Syntax and CONSIIUCLOTSvvuieneiieii et ei et et e e e e e ee e eaneeeneeens 41

I A 1 1 L PPN 42
Creating Names: Lexical CONVENtIONSoevuiiuiiineiineiineiineinneiineineeineennnes 43
3.4 Unevaluated EXPIESSIONScc..ueeiuniiiiiiiiiniiiin ettt ecei e 46
Protecting Names and OPtionsovuuviineiineiineineie e eeeaeeaeeaanas 47
GENEriC EXPIESSIONS ...vuniiniiieiineiie e et e e et et e e e e e e e e e e e eeanaes 48
Pass by Referenceooouiiiiiiiiei e 48
Displaying the Original Commandccoveeiiiiiiiiiiiiinine e 49
UnNassigning NAMIESoeuuiiuiiieii et iee e e e e e e et e e e aeea e e eenns 49
Evaluation and Automatic SImplificationc.coeeeiiiiiiniiiiniiiiniiinn. 49
Example: Defining a Procedure That Is Returned Unevaluated 51

3.5 NUIMDEIS ...ttt et ettt e e e e 53
TNEEZEIS .o 53

FLaCtIONS .. vieeieiiie it 53

Contents ¢ v

2 (G £ 54
Complex NUMDETSuvveiiiiiieiie et e e e e e e e e e eenns 58
3.6 Indexed EXPIreSSIONSccuuuiieuuiiiiiiiieeiie it 62
3.7 Member SEIECIONvveiiieiie e 67
TR 201 1 Uo7 o) s 68
Calls t0 PrOCEAUIESuvvniiieiie ettt eens 69
3.9 Arithmetic EXPIeSSIONScc..uieuuniiiiniiiiiiiiineiii et 70
ArIthmetic OPEIatorso.uueeeeeeeiii it e e e e e et et e e e e e e e e eeneees 70
Noncommutative Multiplicationccoeeviiiiiiiiineiiene e 82

S Tor 0] o 1 84
Forming Sums and Productsoeiuiiiiiiiiiiiiiie e 85
3.10 Boolean and Relational EXPressionsoveevvineiensiineiineiiieiieeieeieeineeenns 86
Boolean ConStantscc.uueeiuniiiiniiiineii e 86
B001€an OPEIatorsueieeineieeiie et et e et et et et e e e e e e e e e e 86
Relational OPETatorscceuuieiieiiieiii et 90
Efficient Boolean Iterationc.ovvueiieiineiieeiiei e 93
3.11 Expressions for Data StruCturesc.uvvuneiieiineiniieeie e eeeeeeaeeeenn 94
SEQUETICES ...ttt e et e e et e et et et e et e e e e ans 94
LSS ettt et 96

S S ettt et 98
1o (<N 99
Rectangular Tablesco.oviniiiiiiiiie e 100
3.12 Set-Theoretic EXPreSsionsc..eiuiiiiiiieiieiieieeie e eieeee e aieeeieeannas 101
1Y (3001 1S)] 111 o 101
Set INCIUSION ..eivineiiie et 102
Other Binary Operators for Setsoviuiiiiieiiieiiieieiee e 103
3.13 Other EXPIeSSIONS . ..uvvuieneiieiieiieeieeieeie et e e eaeeae e e e eaneanaeannas 105
Functional OPeratorsovuueiuniiineiieeiie et e e eens 105
(07030010101 15101 1 RN 105
NEULTAl OPEIALOTS ..eevvneiiiitieiie ettt ettt eeeeaie e 107
RANGES ..o 107
The Concatenation OPEratoroeuuueeeeunerineeieeieineeeneeaeenneeneenaeannns 110
The Double Colon OPeratoroeuueunrieneiieiieee e e eee e e eeneeens 111
SEIIES ..ttt e 112
314 AIIDULES . oeneeiieiii e 115
3.15 USING EXPIeSSIONS «...veviniiiiiiiieiiie ettt 116
Evaluating and Simplifying EXpressionscc..coevveviineiiniiieiniieiieennnes 116
Substituting SUDEXPIESSIONSvvuieneiineiieiieiieeiieeieeie e e e eaeeaneennnas 117
SUCTUIEA TYPES - evneteneiie et e ettt e e e et et e e e e eaneeannas 120

I 0 25 (S5 (o3 <L 124
4 Basic Data SIUCTUIESuiiuuiiiieiii ettt et ei e 127
o 0 I 08 S O -) S 127

4.2 INtrodUCHIONonieii e 127

vi ¢ Contents

4.3 Immutable Data StrUCIUIESccuuiiiiiiiiiiiinein e 127
LISt ettt e 128
S ettt 134

4.4 Mutable Data STrUCLUIESccuuniiiineiiiieiiiee e eeene 139
TADIES .. 139
ATTAYS oottt 146

4.5 Other Data Structure OPErationscc..ueeeuueeiuneeeiineeiieeiieeeieeeiiaeenenees 155
Filtering Data Structure EIementsccoiviiiiniiiiniiiniiiiniincineeiis 155
Converting Data StruCtUIESccuuiiuiiiiiiiiiie e eens 156

4.6 Other Data SrUCIUIESv.uieneiieiie e et e e e e e e e eeeees 157
RECOTAS ..t 157
I 72T PPt 159
(0 11 <] 1T PPN 161

4.7 Datad COCTCION ...eeuneiiin ettt et ettt et ettt e e e e e eeia e 164

4.8 Data Structure Performance CompariSOnscc.veeueenneennrenerinernnaennnnn. 164
INAEXINEG ..ttt 165
1Y (3001 TS)] 111 o 165
Building a Collection of Datacccoeiiiiiiiiiiiinii e 166

4.9 Avoiding Common Problemsccooeeiuiiiiiiiiiiiiiiiin e 167
Passing Sequences into FUNCtionsccoveviiiiiiniiiniiieiieieceee e, 167
Incorrect IndeX Valuescouvviniiiiiiiii e 167
Do Not Treat Lists and Sets as Mutablecooeeviiiiiiiiiiniiinieieen. 169

O LV 25 3 () T 169

5 Maple SEALETNENESueeeuniiiieiiie et ettt ettt et eaaes 171

RN B 6T 1§ 1P < S 171

5.2 INFOAUCHION ..evuniiiniiiiie et 171

5.3 Statement SEPAratorsc..veeuiiiiiiiiiiiiii e 171

5.4 EXPression StateIMENTsu.ieuuiiiuneeiieeiiieeiie et ettt et et e eeieeenane 172

R I NS Fea 1110 30U 172
Multiple ASSIZNMENT ...cceuuiiiiiiiiiiiii e 173
Assignment EXPreSSIONSoeuueieiieiiieiieiie e e e e e e e eie e aeeeannas 174

5.6 FIOW CONLIOL ..eviiiiiiiiiiei e 176
T 13153 T 1 =N 176
BranChingcooeiuiiniiiii e 177
00D et 181
Looping CommandSc.ueiuneiineiieiieeieeie et e e e e e e e eanns 187
Non-Local FIow Controlccouuiiiiiiiiiiiiiiiniiinciece e 189

5.7 The USE StAteIMENTuieniieiieie et e et e e e e e e e e e e e eaannas 193

5.8 Other StateIENtsccuuniiiiiiii it 197
The quit STAtEMENTeettiiiii i 197
The save Statementoveiuiiiiiiiie e 198
The read StatemMEntcc.uviiiiiiiii it 198

5.9 EXEICISES ueuininininie ittt ettt et e e aas 199

Contents ¢ vii

6 PTOCEAUIES ..o.uueiiineiiie ettt e 201
6.1 TETMINOIOZY ..evuneiii ettt 201
6.2 Defining and Executing Procedurescccoeeeuiiiiiniiiiiniiiiniiiineciieeenn, 202
6.3 Parameter Declarationscouuviiiiniiiiniiiiniiiin e 203

Required Positional Parameterscoeuiviiiiiiniiiniiieiiei e 203
Optional Ordered Parametersovvuuviineiineiineieeiie e eee e eieeanns 204
Expected Ordered Parametersooeeuuniiiiiiiiiiniiineiiinecii e 206
Keyword Parametersoo.uviuiiiieiieiie e 206
The End-of-Parameters Markercooviiiiiiiiiiiiiiiee e 208
Default Value Dependenciesceeuvvueriiieiineiieiineiieeie e eiee s 209
Parameter MOAIfIErSovvuiineiieie et 210
Procedures without Declared Parameterscccoeeeviiiiniiiniiiiineinnniennn. 214
6.4 RETUIN TYPC .oevniiiiiiiie et e e 215
6.5 The Procedure Bodyoeeiuiiiiiiiiiiniiinie e 215
I T er | o151 1 PP 216
L0 751507 4T 216
Variables in Procedurescoveuiiiiiiiiiiiei e 223
Non-Variable Name Bindingscoeuviiiiiiniiniiiniieiie e 226
The Statement SEQUENCEeeuueieeiiieieei et e e e e e e 226
Referring to Parameters within the Procedure Bodyccoeviiiiiiiniinnnn. 227
6.6 How Procedures Are Executedc.oviiviiiiiiniiiniiiiiiiiicin e, 233
Binding of Arguments to Parameterscocevviiieiiieiiiiiiiiieieie e, 235
Statement Sequence INterpretationoeveviineiireiniiiiiiein e, 238
6.7 Using Data Structures with Proceduresccoovviiiiiiiiniiiniiniinieenn 247
Passing Data Structures to Procedurescoceuvviiiiniiiiniiiiniiiiiniiinecinns 247
Returning Data Structures from Proceduresccoeeovviiiiiiiiniiineinnnnnnn. 248
Example: Computing an AVETageceuuneiiinieiineiiiineeiineeiineeiieeeineeennns 249
Example: Binary Searchccoocoiiiiiiiiiiiiiiiiniin e 250
Example: Plotting the Roots of a Polynomialccocoviiiiiiiinnin. 251
6.8 Writing Usable and Maintainable Proceduresc...ccooveeiiniiiiiiiinnninnn... 255
Formatting Procedures for Readabilityc.oocoiviiiiiiiiiniinii, 255
Commenting YOUr COdeovuniiiniiieiieiiei et 256
6.9 Other Methods for Creating Proceduresc.oevvuviieiieiiniineineinneannens 258
Functional Operators: Mapping Notationcccevenviinriineiineiineiineinaannns 258
The unapply FUNCHONcouuiiiiiiii i 259
ANoNymous Proceduresouuviuuiiiiiieiie et 261
6.10 RECUISIONtiiiiiie ittt et e e e e e e e e e e e e e eneees 262
6.11 Procedures That Return Proceduresccc.ocooiiiiiiiiiniiiiiiinnnn, 264
Example: Creating a Newton Iterationccoeeeiiiiiiiiniiiniiiiniiiineen. 264
Example: A Shift Operatorc.uvieeieeieeiiee e een 267
6.12 The Procedure ODJECtovvniieiiiiiie it 268
The Procedure TYPE ...c.ueeneiineiie ettt e e eens 268

Procedure Operandsc..oeiuiineiieii et 269

viii * Contents

6.13 EXCICISES evuvvneiineiieineeiieet et et et et e et e et e et e et e et ean e e e eaneeaneenneenneens 272
7 Numerical Programming in Maplec.ccoiiiiiiiiiiiiniiiiniiee e 273
8 A G T Y 1P < S 273
7.2 Numeric Types in Maplecc.oviiiiiiiiiiiiiiniin e 273
INEEEETS ..o 273
103 41 P 275
Floating-Point NUMDETScoouuiiiiiiiiiniiici e 276
Hardware Floating-Point NUMDETSocuuviineiiiiiiniiieieiieeieee e, 278
Extended NUMETIC TYPES ...uevviniiiiiiiiniiiieiiie e 279
Complex NUMDETSuiiniiieieii et 280
NON-NUMETIC CONSLANESivuieneiineieeiieei et eeie e e e e e e e eeneeneeanna 281

7.3 More about Floating-Point Numbers in Maplecccoevviiiiiiniinniinnenn... 281
Representation of Floating-Point Numbers in Mapleccoeeveinneinnnnnnn. 282
Precision and ACCUIACYuiuueiineiieeie e ettt et e e e e e e eannas 283
Floating-Point CONtAGIONc.uviuueiieiieiiee e e et e e e e e 285
More on the Floating-Point Modelcccoviiiiiiiiiiiiieeee, 288
7.4 Maple Commands for Numerical Computingccc.ceeuveiiiiiiniennneennne. 289
The evalf Commandcoouiiiiiiiiiiii e 289
NUMETIC SOLVETS ..euuiiiiiiiie et 293
The evalhf Commandcooviiiiiiiiiie e 293
Numerical Linear Algebracoviiviiiiiiiiiiii e, 296
7.5 Writing Efficient Numerical Programscc.ccovviiiiiiiiiiiiniinieeeeen, 300
Writing Flexible Numerical Procedurescc.ooviiiiiiiiiiiiiineiiieieeeeans 300
Example: Newton [terationc.c.vveeriieiineiineineie e 302
Example: Jacobi Iterationccooviiiniiiniiiiiiiieis e, 306

8 Programming with Modulesccooeiiiiiiiiiiiiii e 313
8.1 TN This CRaPLer ...oveniiiiiieii et et e e e e e ees 313
8.2 INrOAUCLION ..eeuuiiiiiiii et 313
ENcapsulationccouiiiiiiniii e 313
Creating a Custom Maple Packageccoooviiiiiiiiiiiiiieiecee, 313
Creating ObBJECLS ...ovuneiieiiei ettt et e et e e e e e et et e e e e eaneenns 313
Creating Generic Programsoovuiviiiiiiiiiieiin e 314
8.3 A Simple EXamplecoouiiiiiiiiiiiiiii e 314
8.4 Syntax and SemMAantiCsceuureiiiiiiiiiiin et 315
The Module Definitionc.uviuniiiieiineieiie e eens 315
The Module BOAYvvuiiiiiiiie e 315
Module Parametersoceuueiiiniiiiiniiieii e 316
Named MOdULESuieiuniiiiii e 316

LB eTed 2 1) 1 318
Exported Local Variablesooieuviiiiiiiiiniiiiiiiicin e 320
MOAULE OPLIONS .evuitneiteiieeii et ie et e et e et e et e e e et e et e eaneeaneeaneenns 324
Special EXPOILS ..ovuieniiieiieie et 325

Implicit Scoping RULESviuiiiiiiieie e 330

Contents ¢ ix

Lexical Scoping RUIESccuiiiiiiiiiie e 330
Modules and TYPES ...uvvneiineiieieei ettt e 334
TR AT ' 335
Creating RECOTASvvniieiie et 335
RECOTA THPCS vttt et e e e eens 337
Using Records to Represent QUaternionscc.veeeveiniiinniineiieiineiineannns 337
Object INNEITTANCEvvuiiiiiie e 338
8.6 Modules and use Statementsoeuvieeinieiniiieiie e e e e 340
Operator Rebindingc.covviiiiiiiiiiii e 341
8.7 Interfaces and Implementationscoeeuveiniiiiiiiiiiieiineeee e 345
Generic Programming as a Good Software Engineering Practice 345
Distinction between Local and Exported Variablescc.c.cccoveiiiiiinnien. 346
INEETTACES . o.eeeii e 346

A Package for Manipulating Interfacescooeeviiiviiiiiiiiiniieieen. 347
The 10ad OPtON ...vvuieneiie e ettt e e e e e ean s 351

9 Object Oriented Programmingoeeueiuieinieinieieiie e e e eie e e 353
0.1 I This CRAPLET ...evvneiiiiieii et e e e e e ees 353
9.2 Introduction to Object Oriented Programmingccovvieiiiiineiinnnennnn. 353
TeIMINOLOZY .. evneiie ittt et et e e e e e e e e eanea 353
Benefits of Object Oriented Programmingccoeeviiiiieiineiineinnnnnnn. 353
9.3 Objects i MAPLEuiiniiieiie et 354
Creating a New Class of ODJECtSvvuviiiiiieiieie e 354
Creating More ODJECES ...ovuniiniiieiii e e e e e eans 354
ODbJECtS ANA TYPES - vvneenneineineeie e et et et e et e e e e et e e e eaneeaneenns 355

L Y (511 1 T Yo 355
Methods Can Access Object Localsc.oveviiiiiiiiiiiiieieeeeeeeie e 355
Method Names Should Be Declared Staticcooeevviiiiiniiinniiiiieienn, 355
Methods Are Passed the Objects They Manipulatecceevvviveinneennnnn. 355
Calling Methodsuviuiiiiie e 355
Objects in Indexed Function Callsccovuiiiiiiiiiiiiiiii e, 356
Special MethOdsovvniieeiiii e 356

9.5 Overloading OPEratorseeuueiuneiieiieeeneiietie e e eaeeaeeieeeaannns 356
SUpPOrted OPEIatOrSoevneieeieeii e e eie et et e et et et e e e e eaneenneas 357
Implementing OPEIatorsc...vieuueeuieeuieiii et eeieeenes 357
9.6 Overloading Built-in ROUHNESoevviiiiiiiiieiieie e 357
Overridable Built-in ROUtINEScoveiiiiiiiiiiiiie e 357

L > 11110 1< 358
9.8 Avoiding Common MiStaKesceeuiviiriiniiieiiieiee e eieeenas 363
Overloaded Operators and Built-in Routines Must Handle All Possibilities 363
Make Sure to Access the Correct ROULINGoevnvieneiniiniiiiiieieieieennes 365

Be AWare oOf NULLouiiiiiiii et 365
Lexical Scoping Does Not Circumvent localcooceviiiiiiiiiiiiinnn. 365

10 Input and OULPUL ..ce.ueiineiiie et eeanee 367

x ¢ Contents

10.1 In This Chapteroceuniiiiiiii e 367
10.2 INtOAUCLION .. eviiine st e et e et e e e e e e e eneees 367
10.3 Input and Output in the Worksheetccooeeiiiiiiniiniinen, 369
INEETTACES . .vueeiie e 369
Interactive OULPULvveiiiii et e e eenes 370
Interactive TNPULoevuniiiiii e 372
(@11 10) 10117221 8 () 1 AP 372
10.4 Input and Output With Filesccoviiiiiiiiiiiiii e 373
INErOAUCLION «..oeviiiiii e 373
Working with General Filesccooiiiiiiiiiiiii e 373
Importing and Exporting Numerical Dataccooociiiiiiiniiiniinicncen. 378
Files Used by Mapleccouiiiiiiiiiiiiiiii e 380
10.5 Reading and Writing Formatted Dataccoooiiiiiiiniiniiinne 382
The scanf and printf Commandscoviiiiiiiiiiiiii e 382
FOrmat StrinGsovuneiieiie et 383
Related Commandscc.uviiuiiiiiiniiiii e 384
10.6 USE Ul ULIIEIES .vvuvveeiieiii i e e et e e e e e ees 384
The StringTools Packageocevviiniiiiiiiiii e 384
Conversion COmMMAanScc.uveeuuiiiieeiieeii et enen 385
10.7 2-D Math oo 385
INErOAUCLION ..ueviii it 385
The Typesetting Packageocovviiiiiiiiiiii e 386
Additional TIPS ...oveniineii e 387
10.8 EXCICISES +.uevvnereneieeiieeti et et et e tie e e e e e e e e e e e e e e et e et e et e eeeeneanns 387
11 Writing Packa@esc.uovvniiieiieiie ettt 389
T1.1 I This Chapter ..cc..ueeuuniiiieiiie e 389
11.2 What Is @ Packagecc..oeiiiniiiiiiiii e 389
Packages in the Standard Librarycooeeiiiiiiiiiiii i, 389
Packages Are ModUIEScouiiiiiiiiiiiei e 389
Package EXPOITSccuuniiiiiiiiiiiie e 390
Using Packages Interactivelyccooviiuiiiiiniiiiiiiiincn e 390
11.3 Writing Maple Packages By Using Modulesc...ccoveiiiiiiiniiiininnn.e. 391
A Simple EXAMPLE «...oveviiiiiiii i 391
CUSLOM LADIATIES ..vuvvieiineiie ittt e e e e e e eaeees 393
11.4 A Larger EXamplecoouiiiiiiiiiiiii e 395
ModuleLoadoiiiniiiiii e 396
The Preprocessor and Structured Source Filesooevvviiiiiniiiniinniiennnn.e. 396
SUDPACKAZES .. eee ittt 398
11.5 Example: A Shapes Packageccooeiiiiiiiiiiiiiniiiiiininceccee 399
Source Code Organizationeeeeeereinruneiineeineeineeeeeneeeneeaeeaeennns 399
Package ATChiteCtUI®vivniiiiii it 400
The Package APLooeiiiii e 401

The make Procedureco.ouinininiii e 401

Contents ¢ xi

The area Procedurecouviiiiiiiiiii e 402
The circumference Procedurecooeviiiiiiiiiiiii e 402
Shape Representationo.uvieeeiineiineiiii et eeens 402
Procedure DiSpatChingcc.viviiiiiiiiiiiei e 402
Dispatching on Submodule EXPortscovuvieiiiiiiiiiiiiiii e 403
Conditional DispatChingcccuiiiiiiiiiiiiiiieii e 404
Table-based DisSpatChingovvuuiiieiiniieeii e 404
Shape-specific SUbMOAUIESoviviiiiiiiiei e 405
The point SUBMOAUIEoiiiiiiiii e 405
The circle SUbMOAUIEo.uiiiiiiiiie e 406

L0 € 51] 1 ot 409
12.1 In This Chaptereeuniiiiiiii e 409
12.2 INEEOAUCLION .. evtiie et e e e e e e e e e e ees 409
PIOts N MAPIE ...ueiiiiiiie e 409
Generating @ Plotoouiiiiiiiii e 410
12.3 The PLot LiDIarycoueieeiiiiii et e e e 411
Generating 2-D and 3-D PlotScovuiiiiiiiiieee e 412
Plotting Points, Polygons, and TeXtc.covieuviiiiiiiiniiiiniiiiniiineeeeen 419
Combining PIOtSunieiiieii e 425
Specialty PIOtS ...oouiieiie e 427
Other PaCKagesuiieiiiiie e 433
12.4 Programming with P1otsoooiiiiiiiiiiii e 436
F N D I 2 €111) T 436

A 3D EXAMPIE . .oeniieiie e 439
12.5 Data StIUCLUIEScevueiiniiieiieiii et e 440
Types of Data SIIUCTUIESuovvneineiiiei e e e e et e e e e e ean e 441
Creating P1ot StrUCUIESo.uiieiiiei et 443
Altering Plot STIUCIUIESc.uuiiitniiiiiiiiiiii e 444
12.6 Customizing PIOtScouniiiiiiii it 444
Controlling the Samplingccouiiiiiiiiiiiiiiie e 444
(070 1) PP PP PP 446
S1Z€ ANA VIEW ..eeniiiiiie et 448
TYPESELLING ..eeetie e et 449
Axes and GIIAIINESeeeuniiiiiiii e 450
CoOordinate SYSTEIMS ...vuueieiiniei et ii e et e e e e et e et e e e e e e eaneeaneenns 450
N84T @] 415 Te) 1 T 451
12.7 ANIMATIONS .. ettteeiineiii ettt et ettt e e et et e eaiaeeainee 451
Building an Animation with plots:-displayccocceviiiiiiiiiiiiiiieineeennns 451
The plots:-animate commandcoeuviiieiiieineiiei e 452
3-D Animations with the viewpoint Optionceeevvviiieiniiinniieiineiennnn. 452
Other Animation Commandsccuviiuieiiiiiiiniinen e 453
Displaying an Animation as an Array of Plotsccooiiiiiiiniinnnnnn, 453

12.8 Miscellaneous TOPICS ...cceuuneeuuneirineiiieeiie et 453

xii ¢ Contents

Efficiency in PIOttNgcoouiiiiiiiiiiiii e 453
Interfaces and DEVICEScuuviiniiieiie e 454
12.9 Avoiding Common Problemscoeeeiiiiiiiiiiiniiiinii e 454
Mixing Expression and Operator FOrmsccoocovviiiiiiiiniiiiniiinieincen. 454
Generating Non-numeric Datac.cooveiiiiiiiiiiiinii e 455

13 Programming Interactive EIEmentsc.ccoeeuuiiiiiiiiiiiiiiiiniiiiniiccie e, 457
13.1 In This Chapteroceuniiiiiiii e e 457
13.2 Programming Embedded Componentscceeeuviinniinniieiineiineinannnnes 457
Adding Embedded Components to a Documentccovevuviineiineiinnnnnn. 457
Editing Component Propertiesccoveiuieiiieiiiiiniiieiineiieeieeeeeaeeaeeens 458
Example: Creating a Tic-Tac-Toe GaAMEoevvveneiineiieiieiineieeineeennnn. 459
Retrieving and Updating Component Propertiesc.ccoeeeevienviinnieneennne. 461
Using the GetProperty Command to Retrieve Propertiesc...ccecenee.n. 461
Using the SetProperty Command to Update Propertiesceevveennennn. 462
Using the Do Command to Retrieve and Update Component Properties 462
13.3 Programming Mapletsocueiuieiiieiiiiiiiie e e e 463
Layout Managersocuuviuniiiniiineiiei ettt 463
BOX Layout ...oonini e 464
(25 1 B 57 1 1 P 466
Border Layoutooueieneiie e 468

14 Advanced CONNECHIVILYuvuuieneiieii ettt et e e e et e e e e e e eaneeaneees 473
14.1 In This Chapteroceuniiiiiiii e 473
Connecting to the Maple Engineccooiiiiiiiiiiiiiiniinec e, 473
Using External Libraries in Mapleccoviiiiiiiiiiiiiiiieieeeeeeei, 473
Connecting Maple to Another Programccc.ccooviiiiiiiiiniiiniini, 473
C0de GENETATIONeeeuniiiieiii ettt et ettt eai e 474
LY o) (<) < N 474
Computation on Demandcoooiviiiiiiiiiiiii e 474
Embedding a Maple Application in a Web Applicationc...cccveennneene. 475
14.3 OPENMAPIC ...uoiiiiiiiiei i 476
Runtime Environment Prerequisitesccouviiuniiiniiiiniiiiniiineineeann, 477
INtErfAce OVEIVIEW ...uvvuniiiiiiieii et e e et e e e e e e eens 477

(O @ e ol 251111) 479
L0 25 1111 o) LN 481
Java EXAMPIE ...oiiniiiii e 483
Visual Basic 6 EXamplecoooiiiiiiiiiiiii e 484
Visual Basic .NET Exampleccoovuiiiiiiiiiiiiiie e 485
MEMOTY USAZE ..evnieiiiiiiit ettt e e e 487
14.4 The Maple Command-line Interfaceccc.ccooiiiiiiiiiniiiniinine. 487
Batch FIles ..o.uieniiii e 488
Directing Input to @ Pipelineccoooviiiiiiiiiiiii e 488
Specifying Start-up Commandsceeeuviiniiineiiieiineiieei s 488

14.5 External Calling: Using Compiled Code in Maplec.cocceveiiiniiinnninnn.e. 489

Contents e« xiii

Calling a Function in a Dynamic-link Libraryccooooiiniiiiiinn. 489
Specifying Parameter Types for Function Specifications 492
Scalar Data FOIMALScc.viiuiiiiiiieii ettt e e e 492
Structured Data FOrmatscovveiiiiiiiiiiiie e 493
External Function Interfacecooeoviiiiiiiiiiii e 493
Specifying Parameter Passing Conventionscoeeveeueiieinnrinnrinenennnnn. 496
Generating Wrappers Automaticallyccoviiiiiiiiiiiiiiniinineee, 497
Passing Arguments by Referencecooeeviiiiiiiiiiiiiiiiiin 498
External APT ...c..iiiniiiii e 500

N 1S 10 L1173 0 1 AP 500
14.6 Accessing Data over a Network with TCP/IP Socketsc...ccoeevennniennne. 501
SOCKEE SEIVETiiiiiiii et 501
SOCKEE CLENE ..eeuiiiiie it e 501
14.7 Code GENEIALIONeeuueiiieiiieiii ettt et ettt ea e e e e 502
Calling CodeGeneration Commandsc.oeeuneiueiieiineiinrieeieeieeennenn. 502
Notes on Code Translationcoeuvveiuiiiiiiiiiniiiineie e 503
Translation PrOCESSuiiniiieiie et e e 503
Example 1: Translating a Procedure to Javacccoeceiiiiiiniiiiniiinncinneen, 504
Example 2: Translating a Procedure to Cc.ccoiviiiiiiiiiniiiniiiiiciicenen. 504
Example 3: Translating a Procedure to Fortrancoooiiiiiinn. 505
Example 4: Translating an Expression to MATLAB®ccooevevviennniennn. 505
Example 5: Translating an Expression to Perlcc...ccooviiiiinn. 506
Example 6: Translating an Expression to Pythonccoooeviiiiiiinnno, 506
Example 7: Translating Commands to Rccoooiiiiiiiniiniie 507
Example 8: Translating a Procedure to Visual Basicc...cccoeviiviiinne. 507
Example 9: Using the defaulttype and deducetypes Options 507
Example 10: Using the declare Optionccecevviiiiiiiiiiiiiieiieieeiieens, 508
The Intermediate Codecovuiiiiiiiiiiiiiiini e 508
Extending the CodeGeneration Translation Facilitiescccooeevneienneen. 509
The Printing Phasecoouiiiiiiiiiiini e 509
Defining a Custom Translatorc.cceviiiiiiiiiien e 510
Using a Printer Moduleo.oiiiiiiiiiiiiei e 510
Language Translator Definitionccooviiiiiiiiniiiiniin e, 511
Using the Define Commandoviuiiiiiiiniiiiiiei e 511
Creating a Language Definition Moduleccooviiiiiiiiiiiiiniinineeeenn, 512
Using a New Translatorcc.vvieiiiiiiiiie e 513
14.8 CAD CONNECLIVILY ..evvneiiieeiietii ettt ettt et ettt et eaieeaanes 514
14.9 Maple Plug-in for EXCelcooiiiiiiiiiiiiii e 514
14.10 Connecting MATLAB® and Maplecccoveeiiiiiiiiiiiiiniiiiniiiineciieeene, 515
Accessing the MATLAB® Computation Engine from Maple 516
Accessing the Maple Computational Engine from MATLAB® 516

15 Parallel Programmingcoouuviiuiiiiiiniiiieiii e 519

15.1 In This Chapteroeeuniiiiiiii e e 519

xiv * Contents

15.2 TNEFOAUCHION «vteiiiee it et 519
15.3 Introduction to Parallel Programming with Tasksc.c.cccoveiiiiiiinnennnne. 520
Parallel EXECULIONcc.ouuiiiiiiiiiii e 520
Controlling Parallel EXECULIONc.vviniiiniiiiiieie e 524
15.4 Task Programming Modelcooiiiiiiiiiiiinii e 528
TASKS e 528
The Task TIEEuniiiiiiiiiii e 529
SArting TASKS ..evuueeiineiiie e 529
Task Mana@emMENtoeuueiuneiineiieiiei e et e e et e e e e e e eaneeaneenns 531
15.5 EXAMPIES oeueiiiiiiieiii et 536
The N Queens Problemoooiiiiiiiiiiiiii e 536
15.6 Limitations of Parallel Programmingc...ccoooiiiiiiiiniiiiniineiinennnnn. 539
) 331) A o T (<P 539
MaPIE INTETPIOLET ..eevueeiiteiiii e 539
15.7 Avoiding Common Problemscoeeeuiiiiiiiiiiiniiinii e 539
Every Execution Order Will Happenccooceiiiiiiniiiiniiiiniiinnee 539
Lock around All ACCESSESuueeruneiiieiiieiiiet e e 540
Debugging Parallel Codeooouiiiniiiiiiiieiie et 540
15.8 Introduction to Grid Programmingcccoeeeiiiiiiiiniiineiineiiineiineenen. 540
Starting a Grid-Based Computationcceveieieinieinniiieiieiieiineineeennnn. 540
Communicating between NOAEScc.uviiiiieiieiieiiei e een 541
15.9 Grid EXAMPILES ...covuniiiniiiiiiie e 543
Computing a Mandelbrot Setc.vviiiiiiiiieiiie e 543
15.10 The Grid Computing TOOIDOXccuuuieriniiiiiiiiiiiiiin e 550
15.11 LIMIEATIONS ..evtneiineeiti et ettt eae e e 550
MEMOTY USAZE ..evnieiiiiiiiie ettt e e e 550
Cost of COMMUNICATIONuuiitiiiiineiiie ittt et eai e 550
Load BalancCingc.oeeuiiniiiiiie et 551
15.12 TroubleShOO NGc..ueiiiiiiiiiiiir e 551
DeadloCKINg ...uoveniiieeie e 551
libname and Other Engine Variablesccooviiiiiiiiniiiiniiiniiinccene, 551
MiSSINg FUNCHONSuveniiiiiiiie e e 551

16 Testing, Debugging, and Efficiencycccooeiiiiiiiiiiiiniininceeen, 553
16.1 In This Chapteroceuuiiiiiiii e e 553
16.2 The Maple Debugger: A Tutorial Exampleccoovieiiniiiiniiinniininn. 553
EXAMPIE ..ot 554
Numbering the Procedure Statements Iccoooiiiiiiiiiiiiiiiniieen, 555
Invoking the Debugger Iooouiiiiiiiiiiii e 556
Setting a Breakpointiiuiiieieie e 556
Controlling the Execution of a Procedure during Debugging I 557
Invoking the Debugger ITcoouiiiiiiiiiii e 561
Setting @ WatChpOIntcouiiuiiiiiie e 561

16.3 Maple Debugger Commandscc.veueiiieinneiieeieeieiineineeeeaneeanenns 565

Contents ¢ xv

Numbering the Procedure Statements ITccooviiiiiiiiiiiiiiniiie, 565
Invoking the Debugger Ic..ooiiiiiiiiiiii e, 565
Controlling the Execution of a Procedure during Debugging IT 573
Changing the State of a Procedure during Debuggingccooooiiiiin 573
Examining the State of a Procedure during Debuggingcc.coveiniinns. 576
Using Top-Level Commands at the Debugger Promptcooociiieiniinnnn. 580
RESLIICHIONSeiiie i 580
16.4 Detecting EITOTSiiuniiiiiiie i e 581
Tracing @ Procedurecovuuiieiiiieii e 581
USING ASSEITIONS ..vueeieiiieiineetette et e eai et et et e e eeneeaneeaneeaneeneaneanaeannns 584
Handling EXCEPLIONSoiuuiiiniiieiiieiiie et e e 587
ChecKing SYNtaX ...c.uniieiiiieii ettt e e e eenns 589
16.5 Creating Efficient Programsccoouiiiiiiiiiiiiii e 590
Displaying Time and Memory StatiStiCsc..veeeueiiiiiirineiineiiineeiineenn. 590
Profiling @ Procedurecooiiiiiiiiiiiii e 593
16.6 Managing RESOUICESuiuneiineieeii et et et e e e e e et e e e e eaneeanees 597
Setting a Time Limit on Computationscccceeeuueriinieinneeiiineeiineennneenn. 597
Garbage COlECHIONuueieeiiei et e e e e e eans 598
Other Kernel Options for Managing Resourcesccceveuvvenniineinneinnnnnn. 599
16.7 Testing YOUT COAE ...ceuuiiiiiiiieiiieiii e 599
Verifying Results with Verifycoooviiiiiiiiiiii 600

A Simple Test HArnesscouvveeiniiieiie et 600
WIItING GOOA TESS ..vuevneiieiieeie et eens 601
TSt COVEIAZE «.eneniiiteiie ittt et et ettt et et eaes 602
160.8 EXCICISES .uevvneieneieeiieeeieei et et e te et e e e e e e et e e e e e et e et e et e eaeeneenns 603
A Internal RepreSentationeiieeiineiineiieine e e et e e e e e e e 605
A1 Internal FUNCHIONSovuiiiiiie e e e 605
EVAIUALOTS .. evniiii it 605
Algebraic FUNCHONSiiiiiiiiiiiiiicii e 606
Algebraic Service FUNCHIONScc.viiiiiiniiiei e 606
Data Structure Manipulation Functionsc...ccooviiiiniiiniiniinnnneen, 606
General Service FUNCHONSc..ocivuiiiiiiiiiiiiin e 606
A2 Flow Of CONLIOLvvniiiiee et 606
A.3 Internal Representations of Data TYPesoeeuuviiiiiiiiiniiiiniiiiiiiiinciinn 607
AND: Logical ANDiiiiiiiiiiiie e 607
ASSIGN: Assignment Statement or EXpressionccovveeiviiinieineennne. 608
BINARY: Binary ObJECtcc..uviiiuiiiiiiiiineiiieeiie e 608
BREAK: Break Statementc.uvvveiiniiiiiieiiei e e e 608
CATENATE: Name Concatenationveeueeeneeunerineenneenneenneeneeeneeens 608
COMPLEX: Complex ValUecovuviiiiiiieiiiiieii e 609
CONTROL: Communications Control Structureccceeevuneierneennneennn. 609
DCOLON: Type Specification or TeStcceuvieneieneinneiiieiieeieeieeieennenn 609

DEBUG: DEDUZ ... oeeviiiiieiiie et 609

xvi * Contents

EQUATION: Equation or Test for Equalitycccooceviiiiiniiiiniiiniiinennn.. 610
ERROR: Error Statementcoveuiiiiiiiiiiiiiiiiiiii e 610
EXPSEQ: EXPression SEQUENCEc.uvvneiineiineiieiieeiieeeeeieeieeneenneaanaennnns 610
FLOAT: Software Floating-Point Numberccoeviviiiiiineiieiineiieennens 611
FOR: For/While Loop Statementccoveeuveiniiineiineiieiieeieeieeieeeneeen. 611
FOREIGN: Foreign Datacccuviiiiiieiieieiee e 612
FUNCTION: Function Callcouviiiiiiiieieiie e e e 612
GARBAGE: Garbagec.ueiiiiiiiiiiie e 613
HFLOAT: Hardware FLoatc.oviuiiiiiiiiiieiee e 613
TF: T StAtemMENt ..oo.ueeiiiiii e 613
IMPLIES: Logical IMPLIESccooiiiiiiiiiiie e 614
INEQUAT: Not Equal or Test for Inequalitycccoveevuniiiiniiiiiiiiineenn. 614
INTNEG: Negative INteEETovvneieneiieiiieie et 614
INTPOS: POSItiVe INtEZET ...vvneieneiieiieeie e 614
LESSEQ: Less Than or Equalccoooviiiiiiiiiiii e 615
LESSTHAN: Less Thancccuviiniiiieiieiiieie e 615
LEXICAL: Lexically Scoped Variable within an Expression 615
50 S 5 616
LOCAL: Local Variable within an EXpressionccc.ccooveeiniiiinieinnniena. 616
MEMBER: Module MemDETc..oeeuuniiiiiiiiiniiineiiieciie e 616
MODDEF: Module Definitionccc.oevuieiiiiiiiiiniieiieee e 617
MODULE: Module INStancecceuuveiiniiiiineiiiniiiineiiieeiieccie e, 618
NAME: Tdentiflerocevuiiiiiiiiiiie e 619
NEXT: Next Statementccovieuiiiiiiiiiiiie e 619
NOT: Logical NOT ...ooiiiiieiiiie it e e 619
OR: L0gICal OR ..oiiniiiiiiiiieii e 619
PARAM: Procedure Parameter in an EXpressionccceevvvieneinneinnnnnnnnn. 620
POLY: Multivariate Polynomials with Integer Coefficientsc.......... 621
POWER: POWET ... 622
PROC: Procedure Definitionceuviuneiineiiieiieieei e eie e ieeae e 622
PROD: Product, Quotient, POWErcccviiiiiiiiiiiiiiiiiiie e 624
RANGE: RaNEovviiniiiiiiiiie e 624
RATIONAL: Rationalccouuiiiiiiiiiiiiiiiniin e 624
READ: Read Statementc.uviuneiineiieiieeie ettt e e e e e 625
RETURN: Return Statementccooeeuiiiiniiiiiiiiiiiiii e, 625
RTABLE: Rectangular Tablecovvuiiiiiiiiiniiiiiieie e 625
SAVE: Save Statementc.oiuuiiiiiiiiiiee e 627
SDPOLY: Sparse Distributed Multivariate Polynomial 627
SERIES: SETIES ..uteiineiiieiii ettt et e eeans 627
SE T SOt ettt 628
STATSEQ: Statement SEQUENCEc.ueuuiuniiniiniiiieieieieiee e 628
STOP: Quit StateMENTtuvviniitiieiit i e et ee e e e eenens 628

STRING: Character Stringcevuueiuneinneiirei e eeeeaieeaeeieeineeeaenns 628

Contents ¢ xvil

SUM: Sum, DIfferencecc.ovniniiiiiiiie e 629
TABLE: Table ...ceiuiiiiiiii e 629
TABLEREF: Table Referencec.oovuviiiiiiiiiieiieiieie e 629
TRY: Try Statementc..euniuiiiiiiie e e 630
UNEVAL: Unevaluated EXPressioncoeuvieneinneiniinneieeieineiinennnannnns 630
USE: Use Statementouuiiniiniiniiiiiieie e 630
XOR: Logical EXCIUSIVE-OFccuuiiiiiiiiieiieie e 631
ZPPOLY: Polynomials with Integer Coefficients modulon 631
A4 Hashing in Maplecoieiiiiieie e 632
Basic Hash Tablesoviuiiiniiieieie e 632
Dynamic Hash Tablesovuiiiiiiiieie e 633
Cache Hash Tablesc..uiiiiniiiiiiiiiii e 633
The Simplification Tablecoiiiiiiiiiiiii e 634
The Name Tablecouuiiiiiiiiii e 635
Remember Tablesc.uviiniiiiiie e 635
Maple Language Arrays and Tablesccouvviiiiiiiiiiiiiiiei e 636
Maple Language Rectangular Tablesc.ccveiiiiiiiiiniiiiineiieieeeeeens 636
POTtability «...oeeeneiie i 637

xviii ¢ Contents

List of Figures

Figure 1.1: Maple ToOIDArocouuiiiiiie e 11
Figure 2.1: EXPIession Tccuuuiiiuniiiiieii et 35
Figure 2.2: EXpression DAGcoouiiiiiiiiie e 36
Figure 2.3: Actual Expression DAGcociiiiiiiiiiiii e 37
Figure 3.1: eXpr DAG ..o 80
Figure 3.2: subsop EXample DAGSceeuiiiiiiiiiiiiiii e 118
Figure 11.1: Organization of Package Source Filesccooeiiiiiiiiiiiiiiiinni, 400
Figure 11.2: Design of Packageoovviiiiiiiiiiieie e, 401
Figure 13.1: Code Region for an Embedded Componentcccuvveeiiieinnnaennn.. 459
Figure 13.2: Border Layout Diagramcccoeeiuiiiniiiiiiiieiiieiieiieeiie e eieeanean 469
Figure 14.1: Maple in EXCeliiiiiiiii e, 515
Figure 16.1: The Maple Debugger in the Standard Interfacecco.ooiiiinniii. 554

XiX

xx * List of Figures

List of Tables

Table 2.1:
Table 2.2:

Special Charactersuviiiiieiiie e e ea e 15
Reserved KeyWOrdscoueiiniiiiiiiiiiiiie e 16

Table 2.3: BiNAry OPEIratorsScvuuiiuiineiineiieiietieeiteetteereeetnetierieeseeeneeaneraneenns 17
Table 2.4: UNAry OPEratorsc.uueiuneirneiirieetinetierieeteetneerneeaneranerreereseeernaeaens 18
Table 2.5: Element-wise OPEIatorscceurieeiineiineiineeieeiieiieeineeierieeiesnaerneaens 19
Table 2.6: TOKEN SEPATALOLSuuiveiieeiineiieieeiieeiteeie et e et e e e et ereeereeerneerneenneeens 28
Table 2.7: SUDLYPE ..ovniiiiiieie et 33
Table 3.1: Initially KNnown NaMESoivuiiiiiieieiieiie e e e eieeieeineeanns 44
Table 5.1: Operators That Can Be Reboundccooovviiiiiiiiiiniiiice, 196
Table 6.1: Procedure OPerandsccc.eiuneiueinieinniiieeieeieeieeiieeeieeaeerneerneenns 269
Table 7.1: Floating-Point Contagion Rulesc.ccoeiviiiiiiiiiiiiniiiniieceecee, 287
Table 11.1: RandomnessTEStSieuuiiineiiieiiie e 397
Table 14.1: Basic Data TYPEScvvuivniiineiieieeiee et e e e aens 492
Table 14.2: Compound Data TYPESeivviiiniiieiiieiieieiee e 493
Table 14.3: Printer Commandsoeeeuuiiiieiiieiii e 510
Table 16.1: SIeVETEStINPL ..ovuiieiiniii i e aens 600
Table 16.2: sieVETeSt2.MPL ..ovivniiiiiiiie e e 601
Table 16.3: Modified sieveTest2.mplccoivviiiiiieiieie e, 602

Table A.1:

MaAPLE SIUCLUIES 1.uvvniiiiieii i e e e e et e e e e e e e e e e e aeeans 605

XX1

xxii ¢ List of Tables

Preface

Technical computation forms the heart of problem solving in mathematics, engineering,
and science. To help you, Maple™ offers a vast repository of mathematical algorithms
covering a wide range of applications.

At the core of Maple, the symbolic computation engine is second to none in terms of
scalability and performance. Indeed, symbolics was the core focus when Maple was first
conceived at the University of Waterloo in 1980 and to this day Maple continues to be the
benchmark software for symbolic computing.

Together with a large repository of numeric functionality, including industry-standard lib-
raries such as the Intel® Math Kernel Library (MKL), Automatically Tuned Linear Algebra
Software (ATLAS), and the C Linear Algebra PACKage (CLAPACK), as well as a broad
selection of routines from the Numerical Algorithms Group (NAG®) libraries, you can
rely on Maple to support you a across many domains and applications. Using its unique
hybrid technology, Maple integrates the symbolic and numeric worlds to solve diverse
problems more efficiently and with higher accuracy.

The Maple user interface allows you to harness all this computational power by using context-
sensitive menus, task templates, and interactive assistants. The first steps are intuitively
easy to use and quickly lead you into the captivating, creative, and dynamic world of Maple.

As you get more proficient, you will want to explore more deeply and directly access all of
the computational power available to you. You can accomplish this through the Maple
programming language. Combining elements from procedural languages (such as Pascal),
functional languages (such as Lisp) and object-oriented languages (such as Java™), Maple
provides you with an exceptionally simple yet powerful language to write your own programs.
High-level constructs such as map allow you to express in a single statement what would
take ten lines of code in a language like C.

Maple allows you to quickly focus and reliably solve problems with easy access to over
5000 algorithms and functions developed over 30 years of cutting-edge research and devel-
opment.

Maple's user community is now over two million people. Together we have built large col-
lections of Maple worksheets and Maple programs, much of which is freely available on
the web for you to reuse or learn from. The majority of the mathematical algorithms you
find in Maple today are written in the Maple Programming Language. As a Maple user, you
write programs using the same basic tools that the Maple developers themselves use.
Moreover you can easily view most of the code in the Maple library and you can even extend
the Maple system, tying your programs in with existing functionality.

Xx1i1

xxiv ¢ Preface

This guide will lead you from your first steps in Maple programming to writing sophisticated
routines and packages, allowing you to tackle problems in mathematics, engineering, and

science effectively and efficiently. You will quickly progress towards proficiency in Maple
programming, allowing you to harness the full power of Maple.

Have fun!

Audience

This guide provides information for users who are new to Maple programming, as well as
experienced Maple programmers. Before reading this guide, you should be familiar with
the following.

* The Maple help system
* How to use Maple interactively

* The Maple User Manual

Maple User Interfaces

You can access Maple functionality through several user interfaces. Maple interfaces accept
user input, communicate with the Maple computational engine, and display solutions to
mathematical problems.

The Standard Interface

The standard interface facilitates the performance of computations and lets you manipulate
mathematical expressions. It also provides layout and document processing features that
you can use to annotate your problem-solving process. The standard interface will be the
focus of this guide.

To display the standard interface, double-click your Maple desktop icon (Windows® and
Macintosh®) or run the xmaple command (UNIX®).

Other Maple Interfaces

* MapleNet™ lets you publish your interactive Maple documents on the web. Users with
an Internet connection can then view and manipulate your published documents in a web
browser. MapleNet also provides a web service interface that allows connected applications
to pass data to Maple, run a program, and retrieve results. It also lets you create custom
JavaServer™ Pages (JSP) applications and Java applets. For more information about
MapleNet, see MapleNet (page 474).

* OpenMaple™ is the Maple application programming interface (API) that lets you build
custom user interfaces or embed Maple in an existing application. OpenMaple can be

Preface ¢ xxv

used with a variety of languages including C, C++, Java, Fortran, Visual Basic®, and
C#. For more information about OpenMaple, see OpenMaple (page 476).

* The Maple command-line interface is a console-based application that can be used for
batch processing Maple command files. For more information, see 7The Maple
Command-line Interface (page 487).

* Maplet™ applications are custom interfaces that are created using the Maple programming
language. For more information, see Programming Interactive Elements (page 457).

For more information about the Maple user interfaces, refer to the Maple User Manual or
the versions help page.

Programming in the Standard Interface

Most of the time, you will enter Maple code directly in a worksheet or document. The
standard interface also provides other functionality for entering Maple code. For example,
you can enter your code in a startup code region if you want to run certain commands or
procedures automatically when a Maple document is opened. You can also enter your code
in a code edit region if you want to keep a set of Maple commands or procedures in a con-
fined region within your document. For more information, refer to the worksheet,document-
ing,startupcode and CodeEditRegion help pages.

You can also include your code in an external text file to be read by a worksheet or document,
or batch processed. For more information, refer to the file help page.

Document Mode and Worksheet Mode

Two modes of interactive operation are available in the standard interface: document mode
and worksheet mode.

In document mode, you enter mathematical expressions within document blocks; no Maple
input prompt (>) or execution group boundaries are displayed in the document. You can
use this mode to create professional reports that combine text and typeset math with plots,
images, and other interactive components.

In worksheet mode, you enter mathematical expressions at input prompts, which are displayed
at the start of each input line in a Maple document. When you type an expression and press
Enter, the expression is evaluated and a new input prompt is displayed in the next line. In
both modes, the default format for entering mathematical text is 2-D math notation.

Both modes are equally suitable for creating and running programs in Maple. Select the
mode that suits your preferences and tasks. For more information about both modes, refer
to the worksheet,help,documentsvsworksheets help page.

xxvi ¢ Preface

1-D and 2-D Math Notation

When programming in Maple, you must also consider whether to use 2-D math notation or
1-D math notation. In 2-D math notation, typeset mathematical text is displayed in black
italicized characters.

J sin(x) dx

In 1-D math notation (or Maple input), mathematical text is displayed in a red fixed-width
font that is not typeset.

> int(sin(x) ,x):

1-D math notation can be used in external text files to write Maple code that can be read
by a worksheet or batch processed. You can enter individual statements in 1-D math notation
or configure Maple to display mathematical input in 1-D math by default in all future Maple
sessions.

Note: While 2-D math is the recommended format for mathematical text and equations
and can be used for short command sequences and procedures, it is generally not recom-
mended for long programs and package definitions.

Most input in this guide is shown in 1-D math notation. To clearly distinguish commands
and input, this guide uses a leading prompt character (>) and all input is entered in worksheet
mode.

For more information on starting Maple, toggling between 1-D and 2-D math notation, and
managing your files, refer to the Maple User Manual or enter ?managing at the Maple
prompt.

Web Resources

* Maplesoft Application Center: The Application Center provides thousands of complete
applications that you can download and use in Maple. For more information, visit

http://www.maplesoft.com/applications.

* MaplePrimes™: MaplePrimes is an online forum where you can search for tips and
techniques, read blogs, and discuss your work in Maple with an active community. For
more information, visit http://www.mapleprimes.com.

* Maplesoft Online Help: Documentation included with Maple is also posted online. The
web version offers the latest updates, Google™-based searching, and an easy way to
provide feedback on help documentation. For more information, visit,

http://www.maplesoft.com/support/help.

http://www.maplesoft.com/applications
http://www.mapleprimes.com
http://www.maplesoft.com/support/help

Preface * xxvii

* Teacher Resource Center: The Teacher Resource Center provides course content, lecture
notes, demonstrations, and other resources to help teachers incorporate Maple in their
classrooms. For more information, visit http://www.maplesoft.com/TeacherResource.

» Student Resource Center: The Student Resource Center provides online forums, training
videos, and other resources to help students with their work in Maple. For more inform-

ation, visit http://www.maplesoft.com/studentcenter.
For additional resources, visit http://www.maplesoft.com.

Conventions

This guide uses the following typographical conventions.

* bold font - Maple command, package name, option name, dialog box, menu, or text field
* italics - new or important concept

» Note - additional information that is relevant to a concept or section

* Important - information that must be read and followed

Customer Feedback

Maplesoft welcomes your feedback. For suggestions and comments related to this and other
manuals, contact doc@maplesoft.com.

http://www.maplesoft.com/TeacherResource
http://www.maplesoft.com/studentcenter
http://www.maplesoft.com

xxvili ¢ Preface

1 Introduction to Programming in Maple

Maple provides an interactive problem-solving environment, complete with procedures for
performing symbolic, numeric, and graphical computations. At the core of the Maple com-
puter algebra system is a powerful programming language, on which the Maple libraries of
mathematical commands are built.

1.1 In This Chapter

» Components of the Maple software
* Maple statements

* Procedures and other essential elements of the Maple language

1.2 The Maple Software

The Maple software consists of two distinct parts.
* The user interface

* The computation engine

The User Interface

You can use the Maple user interface to enter, manipulate, and analyze mathematical ex-
pressions and commands. The user interface communicates with the Maple computation
engine to solve mathematical problems and display their solutions.

For more information about the Maple user interface, refer to the Maple User Manual.

The Computation Engine

The Maple computation engine is the command processor, which consists of two parts: the
kernel and math library.

The kernel is the core of the Maple computation engine. It contains the essential facilities
required to run and interpret Maple programs, and manage data structures. In this guide,
the kernel commands are referred to as built-in commands.

The Maple kernel also consists of kernel extensions, which are collections of external
compiled libraries that are included in Maple to provide low-level programming functionality.
These libraries include Basic Linear Algebra Subprograms (BLAS), GNU Multiple Precision
(GMP), the NAG® C Library, and the C Linear Algebra PACKage (CLAPACK).

The math library contains most of the Maple commands. It includes functionality for nu-
merous mathematical domains, including calculus, linear algebra, number theory, and
combinatorics. Also, it contains commands for numerous other tasks, including importing

2 « 1 Introduction to Programming in Maple

data into Maple, XML processing, graphics, and translating Maple code to other programming
languages.

All library commands are implemented in the high-level Maple programming language, so
they can be viewed and modified by users. By learning the Maple programming language,
you can create custom programs and packages, and extend the Maple library.

1.3 Maple Statements

There are many types of valid statements. Examples include statements that request help
on a particular topic, display a text string, perform an arithmetic operation, use a Maple
library command, or define a procedure.

Statements in 1-D notation require a trailing semicolon (;) or colon (:). If you enter a state-
ment with a trailing semicolon, for most statements, the result is displayed. If you enter a
statement with a trailing colon, the result is computed but not displayed.

>2 + 3;
5 (1.1)
>2 + 3:

For more information about statements in Maple, see Maple Statements (page 171).

Getting Help

To view a help page for a particular topic, enter a question mark (?) followed by the corres-
ponding topic name. For example, ?procedure displays a help page that describes how to
write a Maple procedure.

For more information about getting help in Maple, refer to the help and HelpGuide help
pages.

This type of Maple statement does not have a trailing colon or semicolon.
Displaying a Text String

The following statement returns a string. The text that forms the string is enclosed in double
quotes, and the result (the string itself) is displayed because the statement has a trailing
semicolon.

> "Hello World";

"Hello World" (1.2)

Normally, you would create a string as part of another statement, such as an assignment or
an argument for a procedure.

1.3 Maple Statements * 3

For more information about strings in Maple, see Maple Language Elements (page 15).

Performing an Arithmetic Operation

The arithmetic operators in Maple are + (addition), - (subtraction), * (multiplication), / (di-
vision), and ” (exponentiation). A statement can be an arithmetic operation that contains
any combination of these operators. The standard rules of precedence apply.

> (44%3+13)~2/116;

725
— 1.3
4 (1.3)

Maple computes this result as an exact rational number.

Assigning to a Name

By naming a calculated result or complicated expression, you can reference it. To assign
to a name, use the assignment operator, :=.

> a := 103993/33102;

_ 103993 (14)
33102 :
>2 * a;
103993 15)
16551 '

For more information about names and assignment, see Maple Language Elements (page 15).

Using Maple Library Commands

After a value is assigned to a name, for example, the value assigned previously to a, you
can use the name as if it were the assigned object. For example, you can use the Maple library
command evalfto compute a floating-point (decimal) approximation to 103993/33102 divided
by 2 by entering the following statement.

> evalf (a/2);

1.570796326 (1.6)

You can use the Maple library of commands, introduced in The Computation
Engine (page 1), for many purposes. For example, you can find the derivative of an ex-
pression by using the diff command.

4 < 1 Introduction to Programming in Maple

> diff(x*2 + x + 1/x, x);

2x—i—1—L 1.7)

X

Note the difference between the names used in these two examples. In the first example, a
is a variable with an assigned value. In the second example, x is a symbol with no assigned
value. Maple can represent and compute with symbolic expressions.

For more information about the Maple library commands, refer to the Maple User Manual
or the help system.

1.4 Procedures

This section introduces the concept of procedures in Maple. For more information about
procedures, see Procedures (page 201).

Defining a Simple Procedure

A Maple procedure (a type of program) is a group of statements that are processed together.
The easiest way to create a Maple procedure is to enclose a sequence of commands, which
can be used to perform a computation interactively, between the proc(...) and end proc
statements.

Entering a Procedure Definition

The following procedure generates the string "Hello World". Enter this procedure in a Maple
session by entering its definition on one line.

> hello := proc() return "Hello World"; end proc;
hello := proc() return "Hello World" end proc (1.3)

You can also enter a procedure or any Maple statement on multiple lines. To move the
cursor to the next line as you are entering a multiline statement, hold the Shift key and press
Enter at the end of each line.

Note: This is necessary in the interactive worksheet environment only. If you enter code in
a code edit region, you can simply type the text and press Enter to move the cursor to next
line. For more information on code edit regions, refer to the CodeEditRegion help page.

For more information about using Shift+Enter, see Unexpected End of Statement (page 12).

You can indent lines in a procedure by using the spacebar. After you enter the last line, end
proc;, press Enter.

1.4 Procedures * 5

> hello := proc()
return "Hello World";
end proc;

hello := proc() return "Hello World" end proc (1.9)

To run this procedure, enter its name followed by a set of parentheses and a semicolon:

> hello();

"Hello World" (1.10)

Procedures can also accept arguments. Consider the following example.

> half := proc(x)
evalf (x/2);
end proc;

half .= proc(x) evalf(1/2*x) end proc (1.11)

This procedure requires one input, x. The procedure computes the approximation of the
value of x divided by 2. When a return statement is not specified, a Maple procedure returns
the result of the last statement that was run. Since evalf(x/2) is the last calculation performed
in the procedure half (in fact, it is the only calculation), the result of that calculation is re-
turned.

The procedure is named half by using the := notation in the same way that you would assign
any other object to a name. After you have named a procedure, you can use it as a command
in the current Maple session. The syntax to run your procedure is the same syntax used to
run a Maple library command: enter the procedure name followed by the input to the pro-
cedure enclosed in parentheses.

> half(2/3);

0.3333333333 (1.12)
Recall, a was assigned the value 103993/33102.
> half (a);

1.570796326 (1.13)
> half (1) + half(2);

1.500000000 (1.14)

The basic syntax for a procedure is given below.

6 < 1 Introduction to Programming in Maple

proc(P)

end proc

The letter P indicates the parameters. The body of the procedure is between the proc and
end proc keywords.

Consider the following two statements, which calculate the angle in a right triangle given
the lengths of two sides.

> theta := arcsin (opposite/hypotenuse) ;
0 := arcsin(om)osnej (1.15)
hypotenuse
> evalf (180/Pi*theta) ;
57.29577950 arcsin(‘W"’S"e] (1.16)
hypotenuse

The following example shows a procedure that corresponds to these statements. The proced-
ure definition contains two input parameters for the length of two sides of a right triangle.
> GetAngle := proc(opposite, hypotenuse)
local theta;
theta := arcsin(opposite/hypotenuse) ;
evalf (180/Pi*theta) ;
end proc;

GetAngle = proc(opposite, hypotenuse)
local theta;

theta := arcsin(opposite | hypotenuse); (1.17)
evalf(180*theta /Pi)
end proc

When you run the procedure definition, the output shown is the Maple interpretation of this
procedure definition. Examine it carefully and note the following characteristics.

* The name of this procedure (program) is GetAngle. Note that Maple is case-sensitive,
so GetAngle is distinct from getangle.

» The procedure definition starts with proc(opposite, hypotenuse). The two names in
parentheses indicate the parameters, or inputs, of the procedure.

» Semicolons or colons separate the individual commands of the procedure.

» The local theta; statement declares theta as a local variable. A local variable has meaning
in the procedure definition only. Therefore, if you were to declare another variable called

1.4 Procedures * 7

theta outside of the procedure, that variable would be different from the local variable
theta declared in the procedure and you could use theta as a variable name outside of
the procedure GetAngle without conflict.

For more information about local variables, see Variables in Procedures (page 223).

* Piisapredefined variable in Maple. Two predefined functions, evalf and arcsin, are used
in the calculation.

* The end proc keywords and a colon or semicolon indicate the end of the procedure.

* As you enter the procedure, the commands of the procedure do not display output. The
procedure definition is displayed as output only after you complete it with end proc and
a semicolon.

» There is no explicit return statement, so the result of calling the procedure is the result
of the last calculation.

» The procedure definition that displays in the output is equivalent to, but not identical to,
the procedure definition you enter. When Maple parses the statement, the commands of
the procedure may be simplified.

The procedure definition syntax is flexible. You can do the following:

» Enter each statement on one or more lines

» Enter multiple statements on one line, provided they are separated by colons or semicolons
* Place extra semicolons between statements

* Omit the semicolon (or colon) from the statement preceding end proc

To hide the output resulting from a complicated procedure definition, use a colon instead
of a semicolon at the end of the definition.

Adding Comments to a Procedure

Consider the following example.

(* this procedure computes an interior angle of a right
triangle given the length of the side opposite the angle, and
the length of the hypotenuse.
*)
GetAngle := proc(opposite, hypotenuse)
local theta;
theta := arcsin(opposite/hypotenuse);
convert the angle from radians to degrees
evalf (180/Pi*theta);

end proc:

8 < 1 Introduction to Programming in Maple

You can include single line comments anywhere in the procedure. They begin with a pound
character (#). You can also enter multiline comments between (* and *) symbols as shown
in the example above.

Note: Multiline comments cannot be entered in 2-D math notation. As an alternative, in a
Maple document, you can enter comments as text by adding a paragraph above or below
the Maple statement.

Calling a Procedure

Running a procedure is referred to as an invocation or a procedure call. When you invoke
a procedure, Maple runs the statements that form the procedure body one at a time. The
result of the last computed statement within the procedure is returned as the value of the
procedure call.

For example, to run the procedure GetAngle--that is, to cause the statements that form the
procedure to be run in sequence--enter its name followed by parentheses enclosing the inputs,
in this case, two numbers delimited (separated) by commas (,). End the statement with a
semicolon.

> GetAngle (4,5);
53.13010234 (1.18)

Only the result of the last calculation performed within the procedure GetAngle is returned-
-the result of evalf(180/Pi*theta). The assignment theta:=arcsin(opposite/hypotenuse);
is performed, but the statement result is not displayed.

Maple Library Commands, Built-in Commands, and User-Defined
Procedures

Maple comes with a large collection of commands and packages. Before writing custom
procedures, refer to the Maple help system to find out which commands are available. You
can easily include complex tasks in your user-defined procedures by using existing Maple
commands instead of writing new code.

Maple commands are implemented in one of two formats: those written and compiled in
an external language such as C and those written in the Maple programming language.

The commands that are compiled as part of the Maple kernel are referred to as built-in
commands. These are widely used in computations, and are fundamental for implementing
other Maple commands.

For more information about built-in kernel commands, see The Computation
Engine (page 1) and The builtin Option (page 217).

1.4 Procedures ¢ 9

The commands in the Maple library are written in the Maple programming language. These
commands exist as individual commands or as packages of commands. They are accessed
and interpreted by the Maple system as required. The code for the library commands and
the definitions of user-defined procedures can be viewed and modified. However, before
exploring library commands, it is important that you learn about evaluation rules to under-
stand the code.

Full Evaluation and Last Name Evaluation

For most expressions assigned to a name, such as e defined with the following statement,
you can obtain its value by entering its name.

> restart;
> e = 3;

e:=3 (1.19)

3 (1.20)

This is called full evaluation--each name in the expression is fully evaluated to the last as-
signed expression in any chain of assignments. The following statements further illustrate
how full evaluation works.

> c = b;
c=Db (1.21)
>b := a;
b:=a (1.22)
>a = 1;
a=1 (1.23)
> c;
1 (1.24)

This group of statements creates the chain of assignments. ¢ > b — a — 1, and ¢ fully
evaluates to 1.

If you try this approach with a procedure, Maple displays only the name of the procedure

instead of its value (the procedure definition). For example, in the previous section, GetAngle
is defined as a procedure. If you try to view the body of procedure GetAngle by referring

to it by name, the procedure definition is not displayed.

10 + 1 Introduction to Programming in Maple

> GetAngle;
GetAngle (1.25)

This model of evaluation is called last name evaluation and it hides the procedure details.
There are several reasons for this approach relating to advanced evaluation topics. The most
important concept to understand is that you will only see the name of a procedure when you
reference it by itself or when it is returned unevaluated; you will not see the full procedure
definition. To obtain the value of the name GetAngle, use the eval command, which forces
full evaluation.

Last name evaluation applies to procedures, tables, and modules in Maple. For more inform-
ation, refer to the last name_eval help page.

> eval (GetAngle) ;

GetAngle (1.26)

Viewing Procedure Definitions and Maple Library Code

You can learn about programming in Maple by studying the procedure definitions of Maple
library commands. To print the body of Maple library commands, set the Maple interface
variable verboseproc to 2, and then use the print command.

For example, to view the procedure definition for the Maple least common multiple command,
lcm, enter the following statements.

For more information about interface variables, refer to the interface help page.
> interface (verboseproc = 2):
> print(lcm) ;

proc(a, b) ... end proc (1.27)

Because the built-in kernel commands are compiled in machine code, and not written in the
Maple language, you cannot view their definitions. If you print the definition of a built-in
procedure, you will see that the procedure has only an option builtin statement and no
visible body.

> print(add) ;

proc() option builtin = add; end proc (1.28)

1.5 Interrupting Computations and Clearing the Internal Memory + 11

1.5 Interrupting Computations and Clearing the Internal
Memory

Interrupting a Maple Computation

To stop a computation, for example, a lengthy calculation or infinite loop, use one of the
following methods.

Note: Maple may not always respond immediately to an interrupt request if it is performing
a complex computation. You may need to wait a few seconds before the computation stops.

* Click the interrupt icon (I) in the toolbar (in worksheet versions). See Figure 1.1.

o=@ «&5E BT == Cm Lo C @ aaqa g Oy

Figure 1.1: Maple Toolbar

Note: For more information on the toolbar icons, refer to the worksheet/reference/Work-
sheetToolbar help page.

* Hold the Ctrl key and press the C key (in UNIX and Windows command-line versions).

* Hold the Command key and press the period key (.) (in Macintosh command-line and
worksheet versions).

To perform a hard interrupt, which stops the computation and exits the Maple session, in
the Windows command-line interface, hold the Ctrl key and press the Break key.

Clearing the Maple Internal Memory

Clear the internal memory during a Maple session by entering the restart command or
clicking the restart icon (_; in the worksheet toolbar. When you enter this command, the
Maple session returns to its startup state, that is, all identifiers (including variables and

procedures) are reset to their initial values.

> restart;

For more information on clearing the Maple internal memory and the restart command,
refer to the restart help page. For more information on the toolbar icons, refer to the work-
sheet/reference/WorksheetToolbar help page.

Maple tracks the use of permanent and temporary objects. Its internal garbage collection
facility places memory that is no longer in use on free lists so it can be used again efficiently
as needed. For more information on garbage collection and the gc command, see Garbage
Collection (page 598).

12+ 1 Introduction to Programming in Maple

1.6 Avoiding Common Problems

This section provides a list of common mistakes, examples, and hints that will help you
understand and avoid common errors. Use this section to study the errors that you may en-
counter when entering the examples from this chapter in a Maple session.

Unexpected End of Statement

Valid statements in Maple can end with a semicolon or nothing to execute a command, or
with a colon to suppress the output of a command. However, semicolons are required for
procedure statements. An error message is displayed if you press Enter in an input region
that is incomplete.

Tip: You can use the parse command to find errors in statements, and the Maple debugger
to find errors in programs. For more information on the debugger, see The Maple Debugger:
A Tutorial Example (page 553) or refer to the parse and debugger help pages.

If you press Enter to move the cursor to a new line when you are entering a procedure
definition on multiple lines, the following error is displayed.

> p:=proc()

To prevent this error message from displaying as you enter a procedure definition, hold the
Shift key and press Enter at the end of each line, instead of pressing only Enter.

> p = proc()
"Hello World";
end proc;

p := proc() "Hello World" end proc (1.29)

Missing Operator

The most common error of this type is omitting the multiplication operator.

>2 a + b;

You can avoid this error by entering an asterisk (*) to indicate multiplication.

> 2*a + b;
2a+b (1.30)

Implicit multiplication, which can be used in 2-D math input, is not valid syntax in 1-D
math input.

Invalid, Wrong Number or Type of Arguments

An error is displayed if the argument(s) to a Maple library command are incorrect or missing.

1.6 Avoiding Common Problems < 13

> evalf();

Error, invalid input: evalf expects 1 or 2 arguments, but received 0
> solve (y=3*x+4, 5);

Error, (in solve) a constant is invalid as a variable, 5

> cos(x, y);

Error, (in cos) expecting 1 argument, got 2

If such an error occurs, check the appropriate help page for the correct syntax. Enter ?top-
ic_name at the Maple prompt.

The same type of error message is displayed if you call a user-defined procedure, such as
GetAngle, with the wrong number of the arguments.

Unbalanced Parentheses
In complicated expressions or nested commands, it is easy to omit a closing parenthesis.
> {[1,01, [O,1};
In a valid statement, each (, {, and [requires a matching), }, and], respectively.
> {[1,01, [0,1]};
{[0,1],[1,0]} (1.31)

Assignment Versus Equality

When you enter statements in a Maple session, it is important to understand the difference
between equality (using =) and assignment (using :=).

The equal sign, =, is used in equality tests or to create equations. Creating an equation is a
valid Maple statement.

> x = y*"2+3;

X:yZ+3 (1.32)

> solve(%,y)

> x;
X (1.33)

In the example above, % is a special name that stores the value of the last statement. The
solve command is used to isolate y in the equation defined in the first statement. The first
statement is not an assignment; X remains a symbol with no assigned value.

14 + 1 Introduction to Programming in Maple

You can use the assignment operator, :=, to assign x the value y*2+3. The assignment op-
erator assigns the value of the right-hand side to the left-hand side. After an assignment is
made, the left-hand side can be used in place of the value of the right-hand side. The left-

hand side cannot be a number; it must be a name, indexed name, function call, or sequence
of these values.

> x = y*"243;

X:=)" +3 (1.34)

> solve (x,y);

/3, -1/3 (1.35)

Vo +3 (1.36)

For more information about equations and Boolean testing, see Boolean and Relational
Expressions (page 86) or refer to the evalb help page. For more information about names
and assignment, see Names (page 42) and Assignments (page 172).

1.7 Exercises

1. Assign the integers 12321, 23432, and 34543 to the names a, b, and ¢. Use these names
to find the sum and difference of each pair of numbers.

2. Write two procedures. The first requires two inputs and finds their sum. The second re-
quires two inputs and finds their product. Use these procedures to add and multiply pairs
of numbers. How could you use these procedures to add and multiply three numbers?

3. Display your procedure definitions. Are they identical to the code you entered to write
them?

2 Maple Language Elements

Before programming in Maple, it is important to learn the properties and roles of the basic
elements of the Maple language. This chapter introduces some of the main concepts, which
will be described in more detail later in this guide.

2.1 In This Chapter

 Basic elements of the Maple language: the character set and tokens

* Maple tokens: reserved words, operators, names, strings, and natural numbers; function
types

 Using special characters

* Maple data types related to the tokens

2.2 Character Set

The Maple character set consists of letters, digits, and special characters. These include 26
lowercase letters, 26 uppercase letters, and 10 decimal digits.

abcdefghijklmnopgrstuvwzxyz

ABCDEFGHIJKLMNOPQRSTUVWIXYZ

There are also 33 special characters, which are listed in Table 2.1. These characters, or
combinations of these characters, have special meanings in the Maple language.

Table 2.1: Special Characters

Character | Meaning Character | Meaning
blank (left parenthesis
; semicolon) right parenthesis
colon [left bracket
+ plus] right bracket
- minus { left brace
* asterisk } right brace
/ slash ’ left single quote (back quote)
~ caret ' right single quote (apostrophe)
! exclamation " double quote
= equal | vertical bar
< less than & ampersand
> greater than _ underscore

15

16 + 2 Maple Language Elements

Character | Meaning Character | Meaning
@ at sign % percent
$ dollar \ backslash
period # pound sign (sharp)
s comma ? question mark
~ tilde

These are the only characters used in the Maple language. However, all character types can
be used in names and strings, including international characters. For more information on
how to create names using international characters, see Names (page 20).

Note: When you manipulate a string or determine the length of a string, non-ASCII and
international characters may be counted as more than one byte.

Many string manipulation commands interpret multibyte characters as multiple characters.

> s := "\xC3\xBC";
S = Hl-in (21)
> convert (s, bytes);

[195, 188] 22)

2.3 Tokens

The Maple language combines characters into tokens. The set of tokens consists of reserved
words (also called keywords), programming-language operators, names, strings, and natural
integers.

Reserved Words

Maple keywords are reserved words that have special meanings. Therefore, you cannot
change them or use them as variables in procedures. The keywords are listed in Table 2.2.
You can find information about specific keywords in later chapters of this guide or the help
system.

For more information about reserved words in Maple, refer to the keyword help page.

Table 2.2: Reserved Keywords

Keywords Purpose

break, next loop control

if, then, elif, else if statement

for, from, in, by, to, while, do for and while loops

2.3 Tokens

17

Keywords Purpose
proc, local, global, option, error, return, options, procedures
description

export, module, use modules

end

ends structures

assuming

assume facility

try, catch, finally

exception handling

read, save

read and save statements

quit, done, stop

ending Maple

union, minus, intersect, subset

set operators

and, or, not, xor

Boolean operators

implies

implication operator

mod

modulus operator

Programming-Language Operators

There are two main types of Maple language operators: unary and binary. Simply put, a
unary operator acts on one operand, as in -a, where the operator - is applied to a. A binary
operator acts on two operands, as in a+b, where + is the operator and the operands are a

and b.

The Maple binary and unary operators, and their meanings, are listed in Table 2.3 and Table
2.4. For more information about these operators, refer to the operators,binary and operat-

ors,unary help topics.

For information about the order of precedence of programming-language operators, refer

to the operators/precedence help page.

Table 2.3: Binary Operators

Operator Meaning Operator Meaning

+ addition < less than

- subtraction <= less or equal

* multiplication > greater than

/ division >= greater or equal

" exponentiation < not equal

$ sequence operator |= equal or equation

@ composition union set union

@@ repeated composition |minus set difference

&string neutral operator intersect set intersection

R expression separator type declaration and
pattern binding

18 + 2 Maple Language Elements

Operator Meaning Operator Meaning

I concatenation in membership
non-commutative and logical and
multiplication

> arrow operator or logical or
ellipsis xor exclusive or

mod modulo implies implication

= assignment subset subset

Table 2.4: Unary Operators

Operator Meaning

+ unary plus (prefix)

- unary minus (prefix)

! factorial (postfix)

$ sequence operator (prefix)
not logical not (prefix)
&string neutral operator (prefix)

decimal point (prefix or postfix)

Most of the unary and binary operators can also be used in element-wise form with objects
that have multiple elements. To perform an element-wise operation, add a trailing tilde (~)
after an operator that has an element-wise form. An element-wise operation allows you to
apply an operation to the elements of a list, set, table, Array, Matrix, or Vector. For example,
compare Matrix multiplication with element-wise multiplication of paired entries in a
Matrix.

><1,2;3,4> . <2,2:2,2>;

6 6
(2.3)
14 14
><1,2;3,4> .~ <2,2;2,2>;
2 4
(2.4)
6 8

The Maple element-wise operators are listed in Table 2.5. For more information about these
operators, refer to the operators,elementwise help page.

2.3 Tokens

19

Table 2.5: Element-wise Operators

Element-wise Meaning Element-wise Meaning

Operator Operator

+~ addition or unary plus | <~ less than

-~ subtraction or unary |<=~ less or equal
minus

* multiplication >~ greater than

/~ division >=~ greater or equal

A~ exponentiation <~ not equal

I~ factorial (unary =~ equal or equation
postfix)

@~ composition union~ set union

@@~ repeated composition | minus~ set difference

&name ~ neutral operator intersect~ set intersection

&name ~ neutral operator in~ membership
(unary prefix)

subset~ subset or~ logical or

~ non-commutative and~ logical and
multiplication

|~ concatenation Xor~ exclusive or

mod~ modulo implies~ implication

funct~ element-wise not~ logical not (unary

prefix)

Also, three special nullary operators (also called ditto operators) can be used in interactive

sessions. These are special Maple names that can be used to refer to previously computed
non-NULL expressions.

o°

last expression

oo

% second-last expression

o

%% third-last expression

While they can be used for simple computations, the ditto operators should be avoided when
writing programs. For results that need to be used in subsequent expressions, assign values
to variables instead.

Note: In a worksheet, the ditto operators do not necessarily reference the results of the
lines located above the execution groups in which they are used. They reference the results
of the most recently performed computations in the Maple session, regardless of the exe-
cution group or document in which they are located. Also, in terms of evaluation, the
ditto operators are treated differently than local variables in a procedure. They are fully
evaluated, which may require more processing than one-level evaluation of local variables.
For more information about local variables, see Local Variables (page 224).

20 + 2 Maple Language Elements

For more information about the ditto operators, refer to the ditto help page.

Names

A name in Maple is a sequence of one or more characters that uniquely identifies a command,
file, variable, or other entity.

The simplest instance of a name consists of a letter followed by a sequence of letters, digits,
and underscores.

> My Name 1;
My_Name_1 (2.5

If you need to create a name that includes blank spaces or international characters, use left
single quotes ().

> "A quoted name;

A quoted name (2.6)
> 1. A silly name’;

1. A silly name 2.7

In general any name that can be formed without left single quotes is identical to the same
name with quotes. For example, x and "x" refer to the same name x. Left single quotes are
similar to double quotes in that double quotes are used to build strings while left single
quotes are used to build names.

Note that the reverse is not true, some names can be formed with left single quotes that are
not identical to expressions typed in without quotes. One example is the name “2°. By putting
quotes around the 2 here, a name is formed instead of a number. Another example is a
quoted keyword, like “module’. To test if an expression is of type module, check type(ex-
pr, module"). Without the quotes, the Maple parser determines that this is the start of a
module definition and the parser will flag a syntax error.

Characters in Maple are case-sensitive. Therefore, for example, the name Apple is different
from the name apple.

> Apple 4;

Apple := 4 (2.8)

I
(8]

> apple :

apple := 5 (2.9)

2.4 Natural Integers * 21

> Apple + apple;
9 (2.10)

Other Maple names are used for

» mathematical functions such as sin and cos

* Maple commands such as expand or simplify

* type names such as integer or list

* symbols, for example, x and y in the expression x+y

* variables, or names with assigned values

For example, in the first statement below, y is a name that does not have a value. In the
second statement, the variable x has the value 3.

> 2*y - 1;
2y—1 (2.11)

>x = 3; x*2 + 1;

10 (2.12)

You can create an empty name, which has no characters in its spelling.
> type("7, 'name');

true (2.13)

Early versions of Maple did not have separate types for names and strings. As a result, many
commands for string processing will also accept names and process their characters the
same way. It is generally better to use strings for such processing as strings can never have
assigned values.

For more more information about names, see Names (page 42).

2.4 Natural Integers

A natural integer is a sequence of one or more decimal digits.

> 00003141592653589793238462643;

3141592653589793238462643 (2.14)

For more information about integers, see Integers (page 53) and Numeric Types in
Maple (page 273).

22 + 2 Maple Language Elements

2.5 Strings

A string is a sequence of characters that evaluates to itself. To create a string, enclose any
sequence of characters in double quotes.

> "This is a string";
"This is a string" (2.15)

You cannot assign a value to a string.

> "hello" :=5;

In the following sections, strings and string operations are described. For information on
the StringTools package, refer to the StringTools help page.

Length of a String

Use the length command to determine the number of bytes in a string.

> length("What is the length of this string?");

34 (2.16)

All of the characters between, but excluding, the double quotes are counted. Each blank
space is counted as one character. Non-ASCII characters may be counted as more than one
byte.

The maximum string length is system-dependent and ranges from about 268 million bytes
on 32-bit systems to more than 34 billion bytes on 64-bit systems.

Substrings

You can extract a substring of a string by using a subscripted integer range (also called a
selection operation).

> S := "This is a string";
S := "This is a string" (2.17)
> S[6];
" (2.18)
> S[6..9];

"is a" (2.19)

2.5 Strings « 23

Negative numbers in the range count backwards from the end of the string. -2 is the second
last character in the string. Either range endpoint can also be left off to indicate from the
beginning, or to the end.

> s[-6..-11;
"string" (2.20)
> s[1l..]1;

"string" (2.21)

Searching a String

To perform case-sensitive and case-insensitive string searching, use the SearchText and
searchtext commands, respectively.

SearchText (pattern, exprString, range);

searchtext (pattern, exprString, range);

The SearchText command searches for exact matches of pattern in exprString. The
searchtext command performs the same search, but it is case-insensitive. If pattern is found,
Maple returns an integer indicating the position of the first character in pattern in ex-
prString. If the pattern is not found in exprString, 0 is returned.

> SearchText("my s", "This is my string.");
9 (2.22)
> searchtext("My S", "This is my string.");

9 (2.23)

The optional range restricts the search to the specified range. It is equivalent to performing
a search on a substring, and it is useful when the pattern occurs more than once in the string.

> SearchText("is", "This is my string.", 4..-1);
3 (2.24)
String Concatenation

Strings can be formed through concatenation by using the cat command.

cat (sequence)

Here, the sequence parameter can contain any number of expressions that are separated by
commas.

24 + 2 Maple Language Elements

The cat command is commonly used to concatenate strings with names and integers, and
the result returned has the type (name or string) of the first argument to cat.

>i :=5;
=5 (2.25)
> cat("The value of i is ", i, ".");
"The value of i is 5." (2.26)
> filename := cat(kernelopts(mapledir), kernelopts(dirsep), "1lib"
)i
"C:\Program Files\Maple 16\lib" (2.27)

Mutability of Strings

Strings are not mutable objects in Maple. This means that appending text to a string is not
done in-place, but involves allocating new storage for the result and copying the original
text, plus the appended text, into that new space. This is typically not an issue unless you
are incrementally processing large amounts of text. In the latter case, the StringBuffer
command may be useful.

> with(StringTools):

> s := StringBuffer();
gi="" (2.28)
> s:-append("The quick brown fox"):
> s:-newline () :
> s:-append (" jumped over the lazy dog"):
> s:-value() ;

"The quick brown fox

(2.29)
mped over the lazy dog"

For more information, refer to the StringBuffer help page.

Special Characters in Strings

To display the double quote character in a string, enter a backslash character (\) followed
by a double quote (") where you want the double quote character to appear. For more in-
formation, refer to the backslash help page.

2.5 Strings « 25

> n a\ llb " ;

nanbn (230)
Similarly, to display a backslash character as one of the characters in a string, enter two
consecutive backslash characters, \\. You must escape the backslash in this manner because

backslash is itself a special character. For more information, see Blank Spaces, New Lines,
Comments, and Continuation (page 27).

> "a\\b";

"a\b" (2.31)

The special backslash character mentioned above counts as only one character, as demon-
strated by using the length command.

> length((2.31));
3 (2.32)

Doubling up backslashes is most notable when entering full path names in Maple. For this
situation it is easier to use forward slash instead. Forward slash is recognized as a directory
separator on all platforms including Windows.

Parsing Strings

The parse command accepts any Maple string and parses the string into a Maple expression
as if it had been entered or read from a file.

parse(exprString, option);

The parse command is especially useful when you want to interpret commands typed into
text components inside your Maple document. For more information, see Using the
GetProperty Command to Retrieve Properties (page 461).

Without specifying extra options, the string should contain exactly one Maple expression.
The expression is parsed and returned unevaluated.

> parse ("at+b") ;
a+b (2.33)

> parse("a+b;");
a+b (2.34)

If the string is syntactically incorrect, the parse command displays an error message of the
form incorrect syntax in parse: ... (number).

26 + 2 Maple Language Elements

The number indicates the offset in characters, counted from the beginning of the string, at
which the syntax error was detected.

> parse("a++b") ;

Error, incorrect syntax in parse: missing operator or '; (near 4th

character of parsed string)

If the option statement is specified, the string is parsed and evaluated, and then the result
is returned.

> parse("sin(Pi)");
sin(r) (2.35)
> parse("sin(Pi)", 'statement');

0 (2.36)

Partial statements or incomplete expressions cannot be parsed. Multiple statements or ex-
pressions can be interpreted via multiple calls to parse using the lastread and offset options.

For more information, refer to the parse help page.

Converting Expressions to Strings
To convert an expression to a string, use the convert command.

Maple can convert a variety of expressions. For more information about expressions, see
Maple Expressions (page 41). For more information about conversions in Maple, refer to
the convert help page.

> convert(a, 'string');
nan (237)

> convert (a+b-c*d/e, 'string');

"a+b-c*d/e" (2.38)

> convert (42, 'string');
"42" (2.39)
2.6 Using Special Characters

Token Separators

You can separate tokens by using white space characters or punctuation marks. The separ-
ator indicates the end of one token and the beginning of the next.

2.6 Using Special Characters <« 27

Blank Spaces, New Lines, Comments, and Continuation

The white space characters are space, tab, return, and line-feed. This guide uses the term
new line to refer to a return or line-feed since the Maple system does not distinguish between
these characters. The term blank refers to a space or tab.

The white space characters separate tokens, but are not themselves tokens. White space
characters cannot normally be used within a token.

> a: = b;
However, you can use white space characters between tokens.
> a * x + x*y;
ax+xy (2.40)
White space characters can be part of a token in a name or string formed by enclosing a

sequence of characters in left single quotes or double quotes respectively. For more inform-
ation, see White Space Characters within a Token (page 38).

Except in a string, all characters that follow a pound sign "#" on a line are part of a comment.
For information about adding comments in Maple procedures, see Adding Comments to a
Procedure (page 7).

>a =1+ x + x*2; #This is a comment

a=x+x+1 @41

Since white space and new line characters are functionally identical, you can continue
statements from line to line, as described in Entering a Procedure Definition (page 4).

>a:=1+ x +

x"2;
a=x+x+1 242)

Note: Press Shift+Enter to continue typing on the next line without evaluating the ex-
pression.

To enter a long number or string on multiple lines, use the backslash character (\) as a line
continuation character.

Line continuation functions as follows: if a backslash \ immediately precedes a new line
character, the Maple parser ignores both the backslash and the new line. If a backslash is
in the middle of a line, Maple usually ignores it. For more information about the backslash
character and exceptions to this rule, refer to the backslash help page.

28 + 2 Maple Language Elements

You can use the backslash character to break up a long sequence of digits into groups of
smaller sequences to enhance readability.

> "The input should be either a list of \
variables or a set of variables";

> G:= 0.57721566490153286060\
6512090082402\43104215933593992;
G =
0.577215664901532860606512090082402431042\ (2.43)
15933593992
You can also enter long strings by using a continuation character. Maple automatically
concatenates string constants that are on separate lines, so another way to enter a long string

is to close one set of double quotes at the end of a line and enter a new double quote at the
beginning of the next line.

> S:= "This is the start of a long string "
"and this is part of the same string with no line in between";

S := "This is the start of a long string and this is part

. (2.44)
of the same string with no line in between

Punctuation Marks

The punctuation marks that act as token separators are listed in Table 2.6.

Table 2.6: Token Separators

; semicolon (left parenthesis
colon) right parenthesis
left single quote |[left bracket

! right single quote |] right bracket
vertical bar { left brace

< left angle bracket |} right brace

> right angle bracket |, comma

Semicolon (;) and Colon (:)

Use the semicolon and the colon to separate statements. During an interactive session, a
semicolon displays the result of the statement while a colon prevents the result of the
statement from displaying.

2.6 Using Special Characters * 29

> fi=x->x"2;

f:: x—>X2 (2.45)

> p:=plot(f(x), x=0..10):

Right Single Quotes (')

Enclosing an expression, or part of an expression, in right single quotes (or apostrophes)
delays the evaluation of an expression (subexpression) by one level. This is often used to
ensure that procedure options are passed correctly as unevaluated names even when they
have a value. For more information, see Unevaluated Expressions (page 46).

> 'sin' (Pi), sin(Pi);

sin(n), 0 (2.46)
> right := 42;
right := 42 (2.47)
> 1limit(1/x, x=0, 'right');
0 (2.48)

Left Single Quotes (')
To form a name, enclose an expression in left single quotes.
> "My Var' := 4;
My Var := 4 (2.49)

Basic names do not need to be enclosed in left single quotes. For information on when left
single quotes are necessary, see Names (page 20).

Parentheses

The left and right parentheses group terms in an expression, arguments in a function call,
and parameters in a procedure definition.
> (a+b) *c; cos(Pi);
proc(x, y, z)
x+y+z;
end proc:

(a+Db)c
-1 (2.50)

30 < 2 Maple Language Elements

The left and right parentheses are also used to select components from certain data structures
(programmer indexing).

Square Brackets

Use the left and right square brackets to form indexed (subscripted) names and to select
components from data structures such as Arrays, tables, and lists. For more information on
selection, see Indexed Expressions (page 62). For more information on mathematical index-
ing and programmer indexing, see Basic Data Access (page 147).

> al[l]; L:=[2,3,5,7]; L[3];

4

L=123,5,7]
5 2.51)

Square Brackets and Braces

Use the left and right square brackets ([]) to form lists, and the left and right braces ({}) to
form sets. For more information on sets and lists, see Immutable Data Structures (page 127).

> L:=[2,3,5,2]; s:={2,3,5,2};
L:=12,3,5,2]
S:=1{2,3,5} (2.52)

Angle Brackets

The left and right angle brackets (<>) in conjunction with the the comma, semicolon, and/or
vertical bar (|) can be used to create Matrices and Vectors. For more information, refer to
the Matrix and MVshortcut help pages.

><1,2,3; 4,5,6>;

123
456

(2.53)

><1,2,3| 4,5,6>;

(2.54)

w N =
S Ul

2.7 Types and Operands « 31

Comma

Use the comma to form an expression sequence. Expression sequences are used to specify
the arguments of a function call or the elements of a list or set.

> sin(Pi), 0, limit(cos(xi)/xi, xi=infinity);

0,0,0 (2.55)

Escape Characters

An escape character indicates that the character that follows the escape character must be
handled in a special manner. The escape characters in Maple are ?, !, #, and \.

? - The question mark character, if it appears as the first non-blank character on a line,
opens the Maple help system. The words following ? on the same line determine the

terms used to display a help page. Use either "," or "/" to separate the words that follow
the question mark character. For more information, refer to the help help page.

! - The exclamation mark character, if it appears as the first non-blank character on a line,
passes the remainder of the line as a command to the host operating system. For more
information, refer to the system and escape help pages.

and (*, *) - The pound sign character indicates that the characters that follow it on the
line are a comment. The multiline comment characters, (*, and *) indicate the beginning
and end of a comment. For more information, see Adding Comments to a

Procedure (page 7) or refer to the comment help page.

\ - The backslash character is used to continue lines, to group characters in a token, and
introduce control characters. For more information, refer to the backslash help page.

2.7 Types and Operands

In most programming languages, data is divided into different classes of information called
data types. In Maple, there is a logical or mathematical notion of #ype that is related to, but
distinct from, the underlying data structure.

DAGs

All data in Maple is stored as a directed acyclic graph (DAG). An identifying tag for each
DAG indicates what type of data it stores and how it is stored. Names, strings, lists, and
positive and negative integers are examples of some DAG types. For a list of DAG types
and how they are stored in memory, see Internal Representation (page 605). The op command
(short for operand) can often be used to determine the DAG type of the underlying data by
returning the zeroth operand. This only applies to certain data structures where op(0,e),

32 « 2 Maple Language Elements

where e is an expression, is defined as a special case. For more information, see the partic-
ular data structure help page.

>op(0, [1,2,3]);

list (2.56)
> op(0, "some text");
string (2.57)
> op(0, “some name’) ;
symbol (2.58)
> op (0, 123456) ;
Integer (2.59)

However, the correspondence is not exact. A notable exception to this is function calls
where the zeroth operand is the function name.

>op(0, £(x));

f (2.60)
> op(0, op(0, £(x)));

symbol (2.61)

When names are assigned to data, they act as pointers in other languages. However, for
most purposes, the Maple evaluation rules are such that you can think of them as variables.
If you want to manipulate an assigned name rather than the data assigned to it, you can use
right single quotes (also called unevaluation quotes), which are described in more detail
in Unevaluated Expressions (page 46).

Assigned names that are pointers do not require type declarations as in low-level program-
ming languages. This means that a name a may be assigned an integer and then later assigned
a list without discretion. This system of weak typing means that, when writing robust code,
you must verify types since variables may be assigned any value.

Maple Types

The type facility in Maple is accessed by using the type command. It is a mathematical type
facility; however, some basic types such as integer or list map directly to the type of DAG.
Some types, such as numeric, encapsulate a group of many different kinds of structures
and structured types, such as name”~integer, can match a very specific value.

Type checking is important in Maple to decide whether an expression is valid input for
procedure calls and Maple commands. You can use the the type command or the :: operator

2.7 Types and Operands * 33

for type checking. The operator form is primarily used to declare the type of a procedure
parameter. For more information on :: see The Double Colon Operator (page 111). For in-
formation on declaring the type of a procedure parameter, see Procedures (page 201). The
type command has the following syntax.

type (expression, typeName); ‘

If the expression is of type typeName, the type command returns a value of true. Otherwise,
a value of false is returned.

> type([1,2,3], 'list');

true (2.62)
> type ("string", 'list');

false (2.63)
> type (123456, 'integer');

true (2.64)
> type (£(x), 'function');

true (2.65)

The type of any integer is integer. The type command can also interpret many subtypes of
integers, some of which are listed in Table 2.7.

Table 2.7: Subtype

Subtype Meaning

integer|[8] 64-bit sized integer
integer[4] 32-bit sized integer
negint negative integer
posint positive integer
nonnegint non-negative integer
nonposint non-positive integer
even even integer

odd odd integer

prime prime number

For more information, refer to the type help page, which also contains a complete list of
types in Maple.

The type facility can also interpret compound or structured types such as list(integer) for a
list of integers or list({negint,prime}) for a list of negative or prime integers.

34 + 2 Maple Language Elements

> type([-1, 2, 11], 'list({negint,prime})');
true (2.66)
> type ([0, 2, 11], 'list({negint,prime})’');

false (2.67)

For more information about structured types, see type,structure.

Operands and op

In addition to providing information about the underlying type, the op command can provide
information about the other operands or parts of a data structure. Most data structures in
Maple can be divided into components. For example, an equation of the form x=y+x can
be divided as follows.

* the operator, =
« the left-hand side, x
* the right-hand side, y+x

To determine the operands and the number of operands in an expression, use the op and
nops commands respectively. These commands have the following basic syntax.

op(1, expression);

nops (expression);

If the optional first argument i to the op command is a positive integer, the ith operand of
expression is returned.

> eq = x=y+x:

> nops (eq) ;

2 (2.68)
> op(0, eq);

=0 (2.69)
> op(l, eq);

X (2.70)

> op(2, eq);

Y+ X (2.71)

2.7 Types and Operands * 35

> op(0, eq) (op(l,eq), op(2,eq));
X=y+X (2.72)

The op command can also determine the operands of an expression at various levels of a
structure with the following syntax.

op((i1, i2, ...], expression);

This syntax is equivalent to and more efficient than a nested call to the op command.
> op([2,0], eq);

NN 2.73)
> op(0,0p(2, eq));

I (2.74)

This hierarchical structure of expressions explains the name DAG. The internal representation
of X =y + X looks like an infix expression tree. See Figure 2.1

Figure 2.1: Expression Tree

For efficiency, Maple does not store multiple copies of identical objects, so the two x nodes
in the tree can be represented in a picture like the one in Figure 2.2. In Figure 2.1 you see

36 + 2 Maple Language Elements

two "x" nodes in the tree, implying a copy of each "x". Figure 2.2 shows that the same in-
stance of "x" is referred to in both places.

Figure 2.2: Expression DAG

The term directed acyclic graph simply refers to this variation of a tree where nodes may
have multiple parents.

The tree form of an expression can be displayed using the dismantle command.

> dismantle (eq) ;

EQUATION (3)
NAME (4) : x
SUM (5)
NAME (4) : vy
INTPOS (2): 1
NAME (4) : x

INTPOS (2): 1

This model is not exactly what is used in practice but the principle of uniqueness, with respect
to nodes, still applies. Maple uses a more sophisticated internal representation for sums as
described in Internal Representation (page 605). The real structure of the DAG shown in
Figure 2.3.

2.8 Avoiding Common Problems <« 37

(SUMI*I-*l

Figure 2.3: Actual Expression DAG

The next three chapters introduce many of the other types in Maple and describe how to
create and use them in programs.

2.8 Avoiding Common Problems

This section provides you with a list of common mistakes, examples, and hints that will
help you understand and avoid common errors. Use this section to study the errors that you
may encounter when entering the examples from this chapter in a Maple session.

Attempting to Assign to a Protected Name

An exception is raised if you attempt to assign a value to a protected name. To resolve this
error, specify a different name.

For more information about protected names, see Protected Names (page 45) or refer to
the protect help page.
> int := 10;

Error, attempting to assign to “int’ which is protected. Try declaring

‘local int’; see ?protect for details.

38 « 2 Maple Language Elements

Invalid Left-Hand Assignment
An exception is raised if you attempt to assign a value to a string.

For more information about strings, see Strings (page 22) or refer to the string help page.
> "my string" := 10;

Use only valid names on the left-hand side of an assignment statement.

Incorrect Syntax in Parse

The parse command accepts a string as its argument. An exception is raised if the string is
syntactically incorrect.

For more information, refer to the parse help page.
> parse ("a*2--b") ;

Error, incorrect syntax in parse: missing operator or '; (near 6th
character of parsed string)

The error message indicates the character number (counted from the left double quote)
where the error was detected. In this case, the 6th character (the second minus sign) caused
the error.

White Space Characters within a Token

An exception is normally raised if a white space character occurs in a token.

> evalb(2 < = 3);

The less-than-or-equal operator <=is a token in Maple. Therefore, it cannot contain a space.

> evalb (2 <= 3);

true (2.75)

Incorrect Use of Double and Single Quotes

In Maple, double quotes form a string, left single quotes form a name, and right single
quotes delay evaluation of an expression. Confusing a string with a name, or a name with
delayed evaluation causes errors. Study the following examples to see the different uses of
these quotes.

For more information about using quotes, see Punctuation Marks (page 28) or refer to the
quotes help page.

To form a string, enclose the expression in double quotes.

2.8 Avoiding Common Problems + 39

> ||2 + 3|| ;
"2 + 3" (2.76)
> type((2.76),'string');

true 2.77)

To form a name, enclose the expression in left single quotes. Unlike a string, which is dis-
played with double quotes around it, names are usually printed without quotes. The name
in this example only looks like an expression.

> 2 + 37,

2+ 3 (2.78)
> type((2.78), 'name"') ;

true (2.79)
To delay the evaluation of an expression, enclose it in right single quotes.
>x :=2:y :=3: £ :='x+y';

fim x4y (2.80)

> eval (f) ;

5 (2.81)

Avoid Using Maple Keywords as Names

If you use a Maple keyword in a name, and do not enclose it in left single quotes, an excep-
tion is raised.

>1 + end;
To resolve this issue, select a variable name that is not a Maple keyword.

Note: It is possible to use a Maple keyword as a name by enclosing it in left single quotes.
For example,

> ‘end’ := 2;
end := 2 (2.82)
>1 + “end’;

3 (2.83)

40 + 2 Maple Language Elements

However, this approach is not recommended, since it makes it very likely that errors will
be introduced if, for example, you forget to place back-ticks around keywords. When pos-
sible, avoid using keywords as names.

2.9 Exercises

1. Using Maple operators, do the following:
a Compute the sum of 5434 and 6342.
b Compute the product of 92 and 310.
¢ Compute the quotient of the result from a) divided by the result from b).
d Create a list containing the numbers from a), b), and c).
e Square each element of the list from d).

2. Create variables named "my quotient" and "my remainder". Use these variables and the
irem command to find the integer quotient and remainder of 12345 divided by 234. Tip:
Because the irem command stores extra results by assigning to the third argument you
will need to make sure the name is passed and not its assigned value. Do this by using
uneval quotes (').

3. Compute 3*(3498) modulo 7.

4. Concatenate the three strings "int", "(x2,", and "x)". Parse the resulting string. Evaluate
the parsed string.

5. Determine a random integer between 40 and 100 using the command rand(40..100).
Concatenate this number with the string, "The student's grade is ". Extract the student's
grade from the resulting string.

6. Assign the expressions x*2 and x*x to the names a and b. Find the three operands of a
and b. Compare the results with those returned by using the dismantle command, that
is, dismantle(a) and dismantle(b). The dismantle command displays the internal data
structure used.

3 Maple Expressions

This chapter introduces Maple expressions associated with scalar data structures.

3.1 In This Chapter

* Introduction: automatic simplification and evaluation; syntax and constructors
» Using names, strings, and numbers in expressions
* Unevaluated expressions

» Expression types: arithmetic, Boolean, relational, and set-theoretic expressions; expressions
for data structures; indexed expressions; function and member selection expressions

» Assigning attributes

* Classifying, examining, and manipulating expressions
3.2 Introduction

Expressions and Statements

Maple language elements can be classified as either expressions or statements. An expression
is a first-class data element in the Maple language. In other words, expressions can be stored
in data structures, passed as arguments to procedures, and manipulated in various ways;
they are often used to represent mathematical objects. Statements, on the other hand, are
not first-class data elements; they generally describe non-mathematical programming con-
structs and are used to affect the state of Maple.

This chapter describes expressions associated with scalar data structures. For information
about non-scalar data structures, see Basic Data Structures (page 127).

For more information about Maple statements, see Maple Statements (page 171).

Automatic Simplification and Evaluation

Maple uses two processes to compute expressions: automatic simplification and evaluation.
Automatic simplification is a process that Maple applies to the input immediately; this
process cannot be controlled. Expression evaluation occurs after an initial round of automatic
simplification; this process can be controlled in certain ways. For each kind of expression
described in this chapter, the rules for both automatic simplification and expression evaluation
are described.

Syntax and Constructors

You can create most expressions by entering the appropriate syntax. However, some expres-
sions, such as expressions that include tables or a series, can only be created by calling a

41

42 + 3 Maple Expressions

constructor. A constructor is a command that can be used as an alternative method of creating
certain expressions.
For example, a sum that would normally be entered using the syntax for addition

>a+b+c+ d;

a+b+c+d (3.1

can also be entered using the constructor "+".

>+ (a, b, ¢, d);
a+b+c+d (3.2)

With some exceptions (for example, series, lists, sets, and procedures), the name of the
constructor for an expression can be displayed by using the op command with its first argu-
ment equal to 0.

>op(0, a+b+c+d);
T+ (3.3)

The example above shows that the constructor for the expression a + b + ¢ + d is the com-
mand assigned to the name "+.

3.3 Names

Names have several purposes in Maple. They can be used to reference algebraic indeterm-
inates, symbols, and variables in your code.

Names (page 20) provided a basic introduction to Maple names. The following section
describes concepts related to names in more detail.

A Maple name can be either global or local, depending on its scope. In this chapter, only
global names are used. A global name is created either by referring to it at the top level of
your program or by declaring it to be global in either a procedure or module definition. For
more information about scope, see Variables in Procedures (page 223).

Two names are the same if they have the same spelling and scope. Maple keeps only one
copy of any name in memory, so in a large expression that includes an indeterminate x,
only one copy of the name x is kept in memory. Each occurrence of x in the expression
refers to the same name x.

The polynomial

> x~3 - 3*x72 + 3*x - 1;

X -3x¥+3x-1 (34)

3.3 Names °* 43

contains three occurrences of the name x, but all three point to the same location in memory.

Maple is unique in that names can represent themselves. As a result, you can use names as
algebraic indeterminates, for example, to construct polynomials or other algebraic expres-
sions.

Names can also be used to represent variables in your code. When a name is assigned a
value, that name is associated with another expression and evaluating the name results in
its assigned value being returned. When a name is unassigned, evaluating the name results
in the name itself.

In this example, the name a is assigned to the value 2.

>a = 2;

a=?2 (3.5)
Before using a name on the left side of an assignment, the name has no assigned value.
> Db;

b (3.6)

When a value is assigned to a name, subsequent evaluation of the name results in its assigned
value.

> a;
2 3.7)
For more information about assigning values, see Assignments (page 172).

Creating Names: Lexical Conventions

When creating names in Maple, you must be aware of certain lexical conventions.

Environment Variables

Names beginning with an underscore character (_) are reserved for use by the Maple library.
You should nof create names that begin with an underscore.

As a special case, any name beginning with the four character sequence " Env" is treated
as an environment variable.

Environment variables are a special kind of variable in that an assignment to one within a
procedure is automatically unassigned when the procedure has finished running. Therefore,
environment variables only affect subprocedures called from that procedure, unless they
are superseded locally.

44 < 3 Maple Expressions

The following predefined environment variables do not begin with _Env: Testzero, Use-
HardwareFloats, Rounding, %, % %, % % %, Digits, _ans, index/newtable, mod, Order,
printlevel, Normalizer, NumericEventHandlers.

Environmental Variables Scope

Unlike a local variable, whose scope is restricted to the procedure containing the local
variable itself, an environment variable can be referenced globally by all sub-procedures
called by or deeper than the current procedure, but the environment variable cannot be ref-
erenced by procedures above the current procedure.

For more information about environment variables, refer to the envvar help page. For more
information about procedures, see Procedures (page 201) or refer to the procedure help
page.

Constants

In addition to keywords, as described in Reserved Words (page 16), Maple has several
predefined constants.

You can display a sequence of all the names that represent symbolic constants in Maple by
using the global variable constants.

> constants;
false, vy, «, true, Catalan, FAIL, &t (3.8)
> seq(i=evalf (i), i in constants);
false = false, y = 0.5772156649, « = Float(«), true

= true, Catalan = 0.9159655942, FAIL = FAIL, &t (3.9
= 3.141592654

Maple also has several other special constants. Table 3.1 lists some of them. For more in-
formation, refer to the initialconstants help page.

Table 3.1: Initially Known Names

Name Meaning Name Meaning

lasterror the most recent error constants initially known symbolic
constants

libname path of the Maple libraries | Digits number of digits in

floating-point computations

NULL empty expression sequence |FAIL cannot determine value

Order truncation order for series |printlevel control display of information

3.3 Names °* 45

Name Meaning Name Meaning

1 complex number undefined |undefined numeric quantity

For more information about constants in Maple, refer to the constant help page.

Protected Names

A protected name has a predefined meaning; you cannot directly assign a value to a protected
name. For example, the names of built-in commands such as sin; utility operations such as
degree; commands such as diff; and type names such as integer and list, are protected
names. An error occurs if you attempt to assign a value to any of these names.

> 1list := [1,2];

Error, attempting to assign to “list’® which is protected. Try

declaring “local list’; see ?protect for details.

The Maple system prevents these names from re-assignment. However, even though it is
not recommended, it is possible to reassign values to these names by first unprotecting them
as illustrated by the following statements.

Note: You can unassign values to Maple system names by entering a restart command or
by ending your Maple session. In general, using the unprotect command to modify Maple
system names is not recommended.

> unprotect(sin) ;
> sin := "a sin indeed";

sin := "a sin indeed" (3.10)
As a result, Maple components that rely on the sine function may not work as expected.
> plot(sin, 0..2*Pi, coords=polar);
To check whether a name is protected, use the type command.
> type(sin, protected);

false (3.11)

> type (sine, protected);

false (3.12)

To prevent values from being assigned to a name, use the protect command.

> mysqgr = x -> x*2;

mysqr .= x—x° (3.13)

46 + 3 Maple Expressions

> type (mysqr, protected) ;

false (3.14)
> protect(mysqgr);
> mysqgr := 9;

Error, attempting to assign to ‘mysqr’ which is protected. Try

declaring “local mysqgr ; see ?protect for details.

3.4 Unevaluated Expressions

In general, Maple evaluates all expressions immediately. In some situations, it is necessary
to delay the evaluation of an expression. An expression enclosed in right single quotes is
called an unevaluated expression. It takes the general form

'expr'

where expr is an arbitrary expression. All of the expressions contained within the right
single quotes are not evaluated.

For example, the sin command normally performs the following computations.
> sin(0.5);

0.4794255386 (3.15)
>sin(Pi / 2);

1 (3.16)

To prevent the evaluation of these computations, you can enclose the expressions in right
single quotes (also called unevaluation quotes) as follows.

> 'sin(0.5)';
sin(0.5) (3.17)
> 'sin(Pi / 2)';
(1
sin| —x (3.18)
2
You can enclose expressions of any length or complexity in unevaluation quotes.
> 'sin(0.5)*2 + cos(0.5)*2';

sin(0.5)% + cos(0.5)? (3.19)

3.4 Unevaluated Expressions * 47

Also, you can enclose subexpressions in unevaluation quotes to prevent certain parts of an
expression from evaluating.

> 'sin(0.5)'*2 + cos(0.5)*2;
sin(0.5)° + 0.7701511530 (3.20)
The sections below describe cases in which you may want to delay evaluation.

Protecting Names and Options

Unevaluation quotes can be used to prevent the evaluation of names.

>a =x"2 +x + 1;
a=x+x+1 (321)
> a;
X +x+1 (3.22)
> 'a' ;
a (3.23)

This is important when you want to use a variable as a name, regardless of whether it has
an assigned value.

Also, unevaluation quotes can be used to protect options. Names are often used as options
to control the behavior of a command. If the name of that option has been used as a variable,
the command that has been called uses the value of the variable and not the option name as
expected. Unevaluation quotes can be used around option names to protect against this.

> symbolic := 4;
symbolic := 4 (3.24)

> sqrt(-9*x*2*y, 'symbolic');

3xy -y (3.25)
In the next example, an exception is raised because the name of a command option is not
enclosed in unevaluation quotes.
> output := 2:
> CodeGeneration:-C(x”2, output = string);

Error, (in Translate) options [2 = string] not recognized

48 + 3 Maple Expressions

In this example, the best way to use the output option is to quote the name, thus preventing
its evaluation in case the name output has an assigned value.

> CodeGeneration:-C(x*2, 'output' = 'string');

"cg = X*X;

"

(3.26)

Tip: It is also recommended that you also use unevaluation quotes for the names of types
and conversions. For more information, see Structured Types (page 120).

For more information on types and conversions, refer to the type and convert help pages.

Generic Expressions

Expressions sometimes describe the operation to take place in a generic sense. For example,
BJi] can be used in certain contexts with unevaluation quotes to denote a generic index into
B. If unevaluation quotes are not used, Maple will try to look up the specific ith element of
B.

>B :=<1,2,3,4>;
1
2
B:= (3.27)
3
4
> sum(B[i], i = 1..4);
Error, bad index into Vector
> sum('B[i]', 1i = 1..4);
10 (3.28)

Pass by Reference

Some commands accept a name as an argument, with the intent that it will be used to store
a result. Unevaluation quotes ensure that the variable name (and not the value assigned to
the variable) is used in the procedure.

> remainder := irem (45,3, 'quotient'); quotient;

remainder := 0

15 (3.29)

3.4 Unevaluated Expressions * 49

> remainder := irem(44,3,'quotient'); quotient;
remainder = 2

14 (3.30)

If quotient is not enclosed in unevaluation quotes, the second call in the above example
raises an exception because 15, the value of quotient, is not a valid third argument to the
irem command.

Displaying the Original Command

For display purposes, it is sometimes useful to show the original command before a solution
is computed.

> v := 'int(x*y*2, [x=0..1, y=0..11)';
1.1
v:zj J xy2 dxdy (3.31)
070
> v
1
— 3.32
6 (3.32)

Unassigning Names

To reset the value of a name, assign the unevaluated name (its initial value) to the name.
For example,

> x = 243;

X==5 (3.33)

X=X (3.34)
Now, the value of x is reset to x.

Evaluation and Automatic Simplification

It is important to note the differences between computations that occur during the evaluation
process and those that occur during the automatic simplification process. Unevaluation
quotes do not prevent automatic simplifications from occurring. For example, basic numeric
arithmetic is one form of automatic simplification. In the following expression, the unevalu-
ation quotes do not prevent the numeric addition from occurring.

50 < 3 Maple Expressions

> 12 +3';
5 (3.35)

In this example, Maple first simplifies the unevaluated sum '2 + 3' to the expression 'S'.
During the evaluation process, Maple "removes" the right single quotes and produces the
numeric result 5.

All unevaluated expressions are of the type uneval. You can use the type command to check
whether an expression is an unevaluated expression.

> type(''x'', 'uneval');
true (3.36)

In the example above, the first argument to the call to the type command is the name x,
which is enclosed in two sets of unevaluation quotes. The result of evaluating the first argu-
ment is the unevaluated expression 'x' because the evaluation process removes one set of
unevaluation quotes. The resulting expression is therefore of type uneval.

On the other hand, if you enclose the first argument to type in only one set of unevaluation
quotes, the evaluation process removes the only set of unevaluation quotes, leaving the
result as the name x, which is not an unevaluated expression.

> type('x', 'uneval');
false (3.37)

In other words, the type command accesses the name x, rather than the unevaluated expres-
sion 'x', since the type command accesses the result of its arguments that have been evaluated.

In the example above quotes were also used around the type name uneval. This provides a
measure of protection just in case the variable name, uneval has an assigned value (which
is unlikely because uneval is protected). During normal function evaluation, each argument,
x and uneval is evaluated. With quotes, 'x' becomes x, and 'uneval' becomes uneval as
seen by the type procedure. Without quotes, x would become the value of x (which may be
the symbol x itself), and uneval would become the value of uneval, which is usually the
symbol uneval itself. Unevaluation quotes make the displayed call robust against cases
where the variable you are using unexpectedly has a value. It is rarely necessary to use this
level of caution in interactive use, but when you write programs, it is a good practice to in-
clude unevaluation quotes to make your code as robust as possible.

Another special case of unevaluation arises in function calls.

'f'(a)

Suppose f is not assigned to anything. Since evaluating f does not call a procedure, Maple
returns the unevaluated function call f(a).

3.4 Unevaluated Expressions * 51

> £(a) ;
(¥ +x+1) (3.38)

Similarly, using uneval quotes around a function evaluation will cause Maple to behave as
if the named function had no value.

> '"'sin''(Pi);

'sin'(n) (3.39)

> (3.39);
sin(r) (3.40)

> (3.40);
0 (3.41)

You will find this facility useful when writing procedures that need to act on the whole
original expression, not the evaluated result.

For more examples and information on unevaluated expressions, refer to the uneval help
page.

Example: Defining a Procedure That Is Returned Unevaluated

You may need to use unevaluation quotes when you are defining a procedure that is returned
unevaluated. This is necessary, for example, when you are defining a procedure that evaluates
a numeric result for numeric inputs, but does not produce a numeric result otherwise. (The
procedure may perform normalizations and apply symmetries, if appropriate.) It is important
to write procedures using this method so that they can be plotted, optimized, or numerically
integrated, for example.

Consider the following procedure.

> f := proc(x)
if x > 2 then
x
else
2
end if
end proc:

Using the wrong calling sequence in a call to plot results in an error.

52 « 3 Maple Expressions

>plot(£(x), x = -10 .. 10);

Error, (in f) cannot determine if this expression is true or false:
2 < x

The correct calling sequence would be either plot('f'(x), x=-10..10), which puts uneval
quotes around f, or plot(f, -10..10), which avoids computing f(x) by omitting the variable

altogether. Remember that arguments in a function call are evaluated first before the called
procedure sees them.

Here, the precursor evaluation of f(x) tries to apply f to the unassigned symbol, x.
>f(x);

Error, (in f) cannot determine if this expression is true or false:
2 < x

The procedure could be rewritten so that it returns unevaluated whenever it encounters ar-
guments that cannot be processed. This trick causes f(x) to evaluate to itself when non-nu-
meric input is passed in.
> f := proc(x)
if type(x, 'numeric') then
if x > 0 then
X
else
2
end if
else
'procname (_passed)'
end if
end proc:

The unevaluated expression 'procname(_passed)' returns the full calling sequence unevalu-
ated.

>£(x);
f(x) (342)

The expression procname(_passed) must be enclosed in unevaluation quotes to prevent
an infinite loop.

3.5 Numbers * 53

3.5 Numbers

Maple supports computation with exact numerical quantities, as well as approximate com-
putation to arbitrarily high accuracy with floating-point numbers.

Integers

A natural integer is any sequence of one or more decimal digits.

> 12345;

12345 (3.43)

The maximum number of digits is system-dependent. To determine the maximum number
of digits, use the following command.

> kernelopts('maxdigits');
38654705646 (3.44)

A signed integer is formed by appending + or - before any natural integer.
> -42;

-42 (3.45)
> +42;

4?2 (3.46)
An integer is either a natural integer or a signed integer.

You can use the length command to determine the number of digits in an integer.
> 2742;

4398046511104 (3.47)
> length(2%42);

13 (3.48)

Fractions

A rational number (fraction) is the quotient of two integers, where the denominator is always
positive.

Use the division operator (forward slash) / to enter a fraction.

integer / natural

54 « 3 Maple Expressions

For example,

>2/ 3;

2
— 3.49
3 (3.49)

You can enter a fraction in which the numerator and denominator have a common (integer)
factor, but Maple automatically simplifies this to the lowest terms.

>4 / 6;
2
- 3.50
3 (3.50)
In addition, Maple automatically moves a negative sign to the numerator.
>2/(-3);
2
- 3.51
3 (351

Fractions are automatically simplified to an integer if the denominator is a divisor of the
numerator.

> 6/3;

2 (3.52)

You can use the numer and denom commands to extract the numerator and denominator,
respectively, of a fraction.

> numer (2/3);
2 (3.53)
> denom(2/3);

3 (3.54)

Fractions can also be created by using the Fraction constructor with the numerator and
denominator as arguments.

> Fraction(2, 3);

= (3.55)

Floats

Maple supports computation with floating-point numbers to arbitrary precision.

3.5 Numbers * 55

A float can be input using a period for the decimal.

> 2.3;
2.3 (3.56)
>2.;
2, (3.57)
> .7;
0.7 (3.58)
> -.567;
-0.567 (3.59)

Or, using exponent form using a suffix containing the letter "e" or "E" followed by an integer
with no spaces between.

> 4e3;
4000. (3.60)
> 2.3e6;
2.310° (3.61)
> .2E3;
200. (3.62)

Observe that spaces are significant. The first example is a difference rather than a float in
exponent form.

> .2e -3;
-2.8 (3.63)
> . 2e-3;

0.0002 (3.64)

Also, the following is invalid.

> 3.e4;

Floats represent numbers of the form s*10”e, where the number s is called the significand
or mantissa of the float, and the number e is called the exponent. The significand is a Maple
integer. Therefore, it is restricted to values that have, at most, the number of digits indicated
by the kernelopts('maxdigits') command.

56 <« 3 Maple Expressions

> kernelopts('maxdigits');
38654705646 (3.65)

The maximum value of the exponent is a platform-dependent quantity whose value may be
queried by using the Maple floats command.

> Maple floats('MAX EXP');
9223372036854775806 (3.66)

Similarly, the minimum value of the exponent is given by the value
> Maple floats('MIN_EXP');

-9223372036854775806 (3.67)

returned by the Maple_floats command. For more information, refer to the Maple floats
help page.

You can also create software floats by using the constructor SFloat. This constructor accepts
the significand and exponent as arguments, and has the general form

SFloat(m, e)

> SFloat(23, -1);
2.3 (3.68)

To extract the significand and exponent of a software float, use the SFloatMantissa and
SFloatExponent commands.

> SFloatMantissa(2.3);
23 (3.69)
> SFloatExponent(2.3);

-1 (3.70)

The significand and exponent are also the operands of a software float.

>op(2.3);
23, -1 (3.71)

Two software floats are equal if they represent the same number. However, equal floats by
themselves do not need to be the same object in memory.

> evalb(2.3 = 2.30);

true (3.72)

3.5 Numbers * 57

> addressof(2.3); addressof(2.30);
18446884058939350430
18446884058839538462 (3.73)
Observe that the significands (and therefore, also, the exponents) differ in this example.
> SFloatMantissa(2.3);
23 (3.74)
> SFloatMantissa(2.30);

230 (3.75)

Note that equal floats with different significands inside of two otherwise identical objects
will require something stronger than evalb for comparison. evalb is the implicit comparison
used when evaluating conditionals in if statements.

> evalb(2.3 + x = 2.30 + x);

false (3.76)
> evalb(<2.3,4.5> = <2.30,4.50>);
false (3.77)

Testing the difference of the two expressions, or calling a command to do a deeper compar-
ison may be necessary.

> evalb((2.3 + x) - (2.30 + x) =0);

true (3.78)
> EqualEntries(<2.3,4.5>, <2.30,4.50>);
true (3.79)

The names of the constructor SFloat and accessors SFloatMantissa and SFloatExponent
all begin with the letter S. The S stands for "software" because these floating-point numbers
are implemented in software. Maple also supports the floating-point numbers supported by
the underlying hardware, called hardware floats or hfloats. You can create a hardware float
by using the hardware float constructor HFloat.

> HFloat(24375, -3);

24.3750000000000 (3.80)

58 < 3 Maple Expressions

> h := HFloat(24.375);
h = 24.3750000000000 (3.81)
>op(h);

243750000000000000, -16 (3.82)

Note, however, that hfloats are binary floating-point numbers, rather than decimal floating-
point numbers. That means that unlike the example above, there is often round-off error
when decimal numbers are converted into hfloats. For more information, see Hardware
Floating-Point Numbers (page 278).

> op(HFloat(2.3));

229999999999999982, -17 (3.83)

The SFloatMantissa and SFloatExponent commands also accept hardware floats as input.
> SFloatMantissa(h);

243750000000000000 (3.84)
> SFloatExponent(h);

-16 (3.85)

For more information on floating-point numbers, see Floating-Point Numbers (page 276).

Complex Numbers

Maple supports arithmetic with complex numbers of the form a + bi, where i= -1 is
the imaginary unit. In Maple, the imaginary unit is normally denoted by I; that is, the upper-
case letter "I" is used rather than the lowercase "i". Therefore, the complex number with

the real part equal to 2 and imaginary part equal to 3 is entered, naturally, as follows.

> 2 + 3*I;
2+31 (3.86)

In general, a complex number has the form

re + im * I

where re and im are the real and imaginary parts of the complex number, respectively. If
the expressions e and im are of type extended_numeric; the resulting complex number
will be of type complex(extended numeric). (It is not necessary that re and im are reals;
they may be arbitrary algebraic expressions. However, in this case, the result of the syntax
above will generally be an algebraic expression that will not be a complex numeric constant.)

3.5 Numbers * 59

You can also create complex numbers using the Complex constructor. It can be called using
either one or two arguments. The single-argument form has the following syntax.

Complex (expr)

If the argument expr is of type complex, the Complex constructor returns the value of expr.
Otherwise, if expr is of type extended_numeric, the Complex constructor returns expr *
L.

> Complex(2), Complex(O), Complex(0.0);

21,0,0.1 (3.87)

> Complex(2 + 3*I), Complex(infinity), Complex(undefined) ;
2 + 31, » I, undefined1 (3.88)

The two-argument form has the following syntax.

Complex (re, im)

The first argument is interpreted as the real part and the second argument is interpreted as
the imaginary part, of the complex number constructed.

> Complex(2, 3), Complex(2.1, 3), Complex(0, 0);
2+3L21+3.L0 (3.89)

Note that if either of the arguments is a float, the real and imaginary parts of the complex
number created are both of type float.

A complex zero with floating-point real and imaginary components can have four sign
combinations.

>zl := 0.0 + 0.0*%I; z2 := 0.0 - 0.0*I;
z3 := -0.0 - 0.0*I; z4 := -0.0 + 0.0*I;
z1:=0.4+0.1
z2:=0.-0.1
z3 = -0.-0.1
z4:=-0.+0.1 (3.90)

Similar to 0.0 = -0.0, numerically, these four complex zeros are numerically equivalent.

> evalb(zl1 = z2 and z2 = z3 and z3 = z4);

true (3.91)

60 <« 3 Maple Expressions

If the arguments re and im are not of type extended_numeric, the Complex constructor is
returned unevaluated.

> Complex(u, v);
Complex(u, v) (3.92)
Except if one of the arguments is complex, in which case, an exception is raised.

> Complex(2 + 3*I, 1);

Error, invalid arguments for Complex constructor

It is important to understand that there is a single complex infinity, which is a point on the
Riemann sphere. It can be denoted in different ways:

> infl := infinity + infinity * I; inf2 := infinity - infinity * I;
inf3 := -infinity - infinity * I; inf4 := -infinity + infinity *
I;
infl == o + w1

inf2:= o — ol
inf3:= -0 — I
inf4d:= -0 4+] (3.93)
However, all of these forms are numerically equivalent.
> evalb(infl = inf2 and inf2 = inf3 and inf3 = inf4);
true (3.94)
They are all treated as distinct from the positive and negative real infinities.

To select the real or imaginary part of a complex number, use the Re and Im commands,
respectively.

> Re(2.3 + sqrt(2)*1);
23 (3.95)

> Im(2.3 + sqrt(2)*I);

J2 (3.96)

Note that, for a symbolic expression of the form a + b*1, it is not assumed that a is the real
part and b is the imaginary part. Therefore, the Re and Im commands are not unevaluated
on such input.

3.5 Numbers * 61

> Re(a + b*I);
R(a+1b) (3.97)
> Im(a + b*I);

S(a+1b) (3.98)

However, the evale command uses special rules for processing complex expressions, in
which any unknown symbol is assumed to be real. Therefore, when the evalc is used, these
expressions are returned as follows.

> evalc(Re(a + b*I));
a (3.99)
> evalc(Im(a + b*I));

b (3.100)
For more information, refer to the evalc help page.

You can change the default name used to input and display the imaginary unit by using the
interface command.

> interface('imaginaryunit' =i);

I (3.101)
(The previous value is returned.) After calling the command above, the name i is used to
represent the imaginary unit.

> Complex(2, 3);
2+31 (3.102)

When this command is used, the name i can no longer be used as a program variable. As
an example, the following statements display error messages.

>1i = 2;

Error, illegal use of an object as a name

>add(i%2, i =1 .. 5);

Error, illegal use of an object as a name

To restore the default imaginary unit, use the following command.

> interface('imaginaryunit' =1);

i (3.103)

62 <« 3 Maple Expressions

3.6 Indexed Expressions

Indexed expressions represent selection operations. The general form of an indexed expres-
sion is

‘ expr [index]

where expr is an arbitrary expression and index represents a sequence of expressions. The
following are examples of indexed expressions.

>2[3, 41;

23, 4 (3.104)
> all;
a (3.105)
>al[11;
a, (3.106)
>a[b];
a, (3.107)
>a[b, ¢ 1;
a, . (3.108)
> map[2];
map, (3.109)

>[01,2,31[2..3]1[11;
2 (3.110)
Note that the last example above contains a nested (or iterated) indexed expression.

The constructor for indexed expressions is the name ?[].

> ?[1°(s, [a, b, c]);

S (3.111)

a b, c
Note that the indices must be enclosed with square brackets in a list.

All or some of the elements of an index sequence can be extracted by using the op command.
The nops command will tell you how many elements are in the index sequence.

3.6 Indexed Expressions ¢ 63

>nops(a[b, ¢, d 1)

3 (3.112)
>op(al b, ¢, d]);
bcd (3.113)
>op(2, alb, c,d]);
C (3.114)
>op(2..3, al b, ¢, d 1);
¢ d (3.115)

Indexed expressions are often used to perform selection operations. The behavior of a selec-
tion operation depends on the type of expression, expr, and the index sequence given.

If expr is itself a sequence of expressions, the index sequence must evaluate to a positive
integer, an integral range, or the empty sequence. The following are all examples of valid
ways to index a sequence.

> expr := (1,2,3,4);
expr:=1,2,3,4 (3.116)
> expr[3];
3 (3.117)
>expr[1 .. 3];
1,2,3 (3.118)
> expr[];
1,2,3,4 (3.119)

>expr[2 .. 11;

The result of evaluating an indexed sequence is a selection of the components of the sequence.
The indexing sequence must represent a valid index or range of indices. Attempting to select
an entry beyond the length of the sequence and will raise an error.

> expr[88];

Error, invalid subscript selector

Similarly, components of lists, sets, arrays, matrices, and vectors can be selected

64 <« 3 Maple Expressions

>L :=[1,2,3,4]1;
L:=[1,2,3,4]
> L[3 1;
3
>L[1..317;
[1,2,3]
> L[];
1,2,3,4
>M :=<1,2,3;4,5,6>;
123
“l4a56
> M[2,3];
6
> MJ[1..2,1..2];
12
45
> S := { red, blue, green, orange };

S := {blue, green, orange, red}

>S[31;

orange

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

Note that, because sets are sorted data structures, the order at construction time may not
match the order stored internally. It is not predictable what color will be returned by the

index used to specify the third entry above. (It may not be green.)

A negative number may be used as an index, which selects elements starting from the end
of the list. Positive and negative indices mixed in a range return an empty selection.

> L[-1 1;

(3.129)

3.6 Indexed Expressions ¢ 65

>L[-3 .. -2 1;
[2,3] (3.130)
>L[-3 .. 11;

[] (3.131)

Lists can be used as an index to pick out specific entries, such as the first and third entries
of a list, or the four corners of a matrix.

> L[[1,3] 1;

[1, 3] (3.132)
>M[[1,2],[1,3]1];
1 3
(3.133)
4 6

Indexing on arrays, matrices and vectors is very flexible. In the case of these data structures,
round-brackets can also be used to index in a way that is useful to programming. For example,
where M[1] will return the first row of the matrix, M(1) will return the first entry (regardless
of the number of dimensions).

> M[1];
[1 2 3] (3.134)

> M(1);
1 (3.135)

This class of data structures are known as rectangular tables, or "rtables" for short. For more
information on what ways they can be indexed, refer to the rtable indexing help page.

If expr is a name with no assigned value, the result of evaluating the indexed expression is
an indexed name. In this case, the index can be any sequence of expressions, and if desired,
it is up to your program to define the meaning of the expression.

> aName|[x72 - 3*x, "a string", anotherName[2, b]];

aName
X2 —3x, "a string”, anot‘herName2 b (3.136)

A string may be indexed by a positive integer, a positive integral range, or a general sequence.
The indexed string expression evaluates to itself, unless the indexing sequence is an integer
or integral range, in which case, the result is a substring of the indexed string.

66 < 3 Maple Expressions

> "abede"[3 1;

"c" (3.137)
> "abcde"[2 .. 4];
"bed"” (3.138)
> "abcde"[u, v*2 - s*t];
"adee”u, Y (3.139)
> "abecde"[];
"abcde"[] (3.140)

If expr evaluates to a table, and if the index given is found in the table the expression eval-
uates to the corresponding entry. Otherwise, the indexed expression evaluates to itself.

>+t := table([a=1, b=2, (¢,d) =31);

t:==table([b=2,a=1, (¢ d) =3]) (3.141)
>tlal;
1 (3.142)
>tl e, d];
3 (3.143)
>t[u, v];
Ly (3.144)

If expr evaluates to a module, the index must evaluate to the name of an export of the
module, and then the entire indexed expression evaluates to the value of expr:-index.

> m := module() export e, £ := 2; end module:
>m[e];
e (3.145)
> evalb(e =m[e]);
false (3.146)
>m[£];

2 (3.147)

3.7 Member Selection * 67

For more information about modules, see Programming with Modules (page 313).

3.7 Member Selection

The member selection operator :- is used to select exports of a module, and also to designate
a symbol as a global symbol. Member selection expressions have one of the following
general forms.

modexpr :— expname

¢~ name

The first form above is used to select a member of a module.
> m := module() export e, f£:= 2; end module:
> m:-e;
e (3.148)
> evalb(e = m:-e);

false (3.149)

2 (3.150)

The first operand, modexpr, must evaluate to a module. The second operand, expname, must
be a literal name; it is not evaluated. If expname is not a name, or is not the name of an export
of the module modexpr, an exception is raised. The syntax m:-e is similar to m[e], in that

they both evaluate module m's export e. The difference is that the index selection form will
evaluate e before resolving the export.

In the second form, the operand name must be a literal name. The expression :-name then
evaluates to the global instance of the name name.

The following example defines, and then immediately calls, a procedure which declares a
local variable t. Since this local variable is never assigned, it evaluates to itself. The call to
the evalb command then compares, on the left-hand side of the equation, the local name t
to the global name t resulting from applying the member selection operator to t. The result
is false because the global name t and the name t local to the procedure are different expres-
sions.

> proc() local t; evalb(t = :-t) end proc();
false (3.151)

For more information on modules and member selection, see Programming with
Modules (page 313).

68 < 3 Maple Expressions

3.8 Functions

A function expression is a Maple expression of the form

‘ expr(sequence)

that contains zero or more expressions in the sequence within the parentheses. It represents
a function call.

>F();
F() (3.152)
>F(x);
F(x) (3.153)
>F(x,y5);
F(x y) (3.154)
>sin(x +y);
sin(x + y) (3.155)

Typically, expr is the name of a procedure or mathematical function. It can be a general
expression.

The zeroth operand of a function expression is expr.
>op(0, F(x,y, 2));

F (3.156)
The other operands are the arguments,
>op(F(x,y, z));

XV Z (3.157)

and the number of operands is the number of arguments.
>nops(F(x, y, z));

3 (3.158)
> nops(F())’

0 (3.159)

Maple supports an algebra of operators, so that complicated expressions such as

3.8 Functions ¢ 69

> (£72 + g@h - 2) (x);
f(x)?%+ g(h(x)) — 2 (3.160)

can be formed. Note that Maple applies such "operator expressions" to the arguments. @
is the composition operator. For more information on composition of functions, see
Composition (page 105).

It is important to know that Maple computes numeric quantities as applicable operators with
constant values. Therefore, for example, the expression

>2(x);

2 (3.161)

is computed as an application of the constant operator 2 to the argument x, which evaluates
to 2. In fact, numeric "operators" can accept any number of arguments.
>2(x,y, 3);

2 (3.162)

Note that an expression such as
>'2(3)";

2(3) (3.163)
(in which unevaluation quotes are used to delay the evaluation process) appears to be a

product. However, this expression is, in fact, a function expression. When permitted to
evaluate fully, the result is the constant value of the operator.

>2(3);

2 (3.164)

Calls to Procedures

The most important kind of function expression to understand is the case in which the zeroth
operands is a procedure or, more commonly, an expression (typically, as a name) that
evaluates to a procedure.

p(argl, arg2, ..., argN) ‘

In this case, p is a procedure or an expression, such as a name, that evaluates to a procedure,
and argl, arg2, ..., argN are zero or more argument expressions.

70 < 3 Maple Expressions

For example, the name sin evaluates to a procedure that computes the mathematical sin
function. A function expression of the form

sin(expr)

computes the sin of its argument expr. This is performed as follows: Maple evaluates the
name sin and finds that it is assigned a procedure. The argument expr is evaluated to produce
a result. That result is then passed to the procedure assigned to the name sin and the result
computed by that procedure for the specific input is returned as the overall value of the
function call sin(expr).

For information on defining functions and procedures, see Functional Operators (page 105)
and Procedures (page 201).

3.9 Arithmetic Expressions

Arithmetic Operators

The arithmetic operators in Maple include + (addition), - (subtraction), * (multiplication),
/ (division), and ~ (exponentiation). These operators are used to create rational expressions,
such as polynomials.

> x*"2 - 3*x + 1;
X —3x+1 (3.165)

Addition and Subtraction

The addition operator "+ and the subtraction operator "-* are typically used as binary infix
operators, but may also be used as unary prefix operators to indicate a signed expression.

>a+ b+ 3;

a+b+3 (3.166)
>u - v;
u—v (3.167)
> +7;
7 (3.168)
> -42;
-42 (3.169)

A sum resulting from the evaluation of either an addition or subtraction operation is an ex-
pression of type "+".

3.9 Arithmetic Expressions * 71

> type(u-v, '""+7');

true (3.170)
The expression u-v has the operands u and -v; that is, it is a sum of the summands u and -
V.
>op(u-v);

u, -v (3.171)

Note that subtraction is not an associative operator.
>(1-2)-3<>1-(2-3);
-4 #2 (3.172)

However, addition is both associative and commutative:

>b+a+c=a+b+c;
b+a+c=b+a+c (3.173)

Although sums are formed by using the binary operator "+, they are actually expressions
of arbitrarily large arity (greater than unity). Since addition is associative, Maple "flattens"
all sums of more than two summands during the automatic simplification process. Therefore,
an expression of type "+ can have many operands.

>nops(a+b+c+d+e);

5 (3.174)

You can use the name "+ as a constructor to form a sum.
>+ (a, b, c);

b+a+c (3.175)
Since Maple performs automatic simplification, the number of operands of a sum may not
be apparent from the input.

>nops(a+2+b+3+c+4);

4 (3.176)

In this example, Maple combines the integer terms in the sum.

>a+2+b+3+c+ 4;

a+9+b+c G.177)

72 « 3 Maple Expressions

To see that this occurs during the automatic simplification process, enclose the input in
unevaluation quotes to delay evaluation.

>'a+2+b+3+c+4';

a+9+b+c (3.178)

In a sum such as
> 12 4+ 3';

5 (3.179)
the addition is performed, as indicated, during the automatic simplification process. The
same sum can be computed in another way:
>u = 3:
>'2 + u';

2+u (3.180)
In this example, the arithmetic is not performed because the value of the variable u does
not replace the name u during the automatic simplification process. If the unevaluation

quotes are removed to allow the full evaluation of the expression, numeric addition is per-
formed.

>2 4+ u;
5 (3.181)
Since addition is commutative, the order of summands in an expression of type "+ is arbit-

rary. It is fixed within a Maple session, but may vary from one session to another. Therefore,
you must not rely on the operands of a sum occurring in any specific order.

Operands of a sum are automatically simplified, recursively.
> '2/3 + sin(5*Pi/6 - 2*Pi/3)';
2 (1
— +SsSmm| - w 3.182
5 +sin(¢ 7 6.182)
Since procedures are not called during the automatic simplification process, the example
above does not fully simplify to the result
> 2/3 + sin(5*Pi/6 - 2*Pi/3);

7
— 3.183
6 (3.183)

3.9 Arithmetic Expressions * 73

during the automatic simplification process. However, the argument to the sin command is

computed to the simpler form % 7, just as it would if it had been entered by itself.
> '5%Pi/6 - 2*Pi/3';

% T (3.184)

If any numeric literal in a sum is a float, all the numeric operands are converted to floats
and their sum is computed as a float. For more information, see Floating-Point
Contagion (page 285).

>'a+2+b+3.7+c+ Pi';
a+ 8.841592654 + b+ ¢ (3.185)

Arithmetic computed during the automatic simplification process includes arithmetic with
values of infinity, undefined values, and signed (floating-point) zeroes.

> '2.3 + undefined’';

Float(undefined) (3.186)
> '2.3 + infinity';
Float() (3.187)
> 1-0.0 + 0';
-0. (3.188)

> 'infinity - infinity';
undefined (3.189)
> 'infinity - Float(infinity)';
Float(undefined) (3.190)

Sums of non-algebraic summands can be formed. A sum of lists of the same length returns
the corresponding list of sums. This occurs during the automatic simplification process.

>'[a, b,cl +[x,y, 21"
[x+a,y+bz+c] (3.191)

Sums of arrays, matrices, and vectors occur during the regular evaluation process.

74 + 3 Maple Expressions

><1,2;3,4> + <5,6;7,8>;

6 8
10 12

(3.192)

Attempting to add lists or matrices of different sizes results in an error.
>[11,21+1[1, 2, 31;

Error, adding lists of different length

><1,2;3,4> + <1,2>;

Error, (in ‘rtable/Sum’) invalid input: dimensions do not match:
Matrix (1l .. 2,1 .. 2) cannot be added to Vector[column] (1 .. 2)

Since the addition of sets (which are not ordered) is not well-defined, a sum formed with a
set is returned unevaluated.

>{1, 2} + {3, 41};
{1, 2} +1[3,41;

{1,2} +{3,4}
{1,2} +[3, 4] (3.193)

Multiplication and Division

Products are formed by using the **" and */* operators. The result of evaluating either a
multiplication or division operation is an expression of type "*".

> type(a * b, ''*');
type(a / b, "*');

true

true (3.194)

You can use the dismantle command to print a representation of the internal structure of
any Maple expression.

> dismantle(a / b);

PROD (5)
NAME (4) : a
INTPOS (2): 1
NAME (4) : b

INTNEG (2) : -1

3.9 Arithmetic Expressions * 75

The output shows that the quotient is actually stored as a product of two factors: one con-
sisting of the expression a with a power of 1 and the other consisting of the expression b

with a power of -1: al’ p=b.

Similar to sums, products are commutative and associative. Also, products are flattened due
to associativity, even though the *** operator is binary. Automatic simplification is applied
to products, so as with sums, numeric factors are automatically combined.

> 12 % 3 % x *y';
6xy (3.195)

Also like sums, the order of factors in an expression of type “*" is arbitrary, and may vary
between Maple sessions.

> 'y * x *x 3 x 2';
6X)/ (3.196)

The number of operands reflects the number of factors remaining after automatic simplific-
ation has taken place.

>nops(2 * 3 *x *vy);
3 (3.197)
>op(2*3*x*y);
6, Xy (3.198)
The name *** can be used as a constructor to form products.
>'*"(a, b, c);

abc (3.199)

If any numeric constant in a product is a float, the result of gathering all of the constants
into a single factor is a float.

>'3.1*a/2/b*4';

6.200000000 a
b

> 1'2.3 * (5%pPi/6 - 2*Pi/3)';

1.204277184 (3.201)

(3.200)

This effect does not extend into function calls.

76 <+ 3 Maple Expressions

> 12.3 * sin(5*%Pi/6 - 2*Pi/3)';
(1
2.3 sin 6 T (3.202)

You can multiply a list by a number and the product is applied to all of the list elements
during the automatic simplification process.

>'2*12,31";
[4, 6] (3.203)

Matrix multiplication is done with the *." operator rather than **'. Division is not defined
for matrices.

><1,2;3,4> . <5,6;7,8>;

19 22
(3.204)
43 50
><1,2;3,4> . LinearAlgebra:-MatrixInverse(<5,6;7,8>);
3 2 (3.205)
2 -1 ’

Multiplying or dividing two arrays of the same size will perform paired element-wise oper-
ations on the individual entries. The element-wise operators *~ and /~ can be used on both
arrays and matrices to achieve the same result.

> Array([[1,2],[3,4]]1) * Array([[5,6],[7,81]);

5 12
(3.206)
21 32
> Array([[1,2],[3,4]11) / Array([[5,6]1,[7,8]11);
11
5 3
(3.207)
3 1
7 2

3.9 Arithmetic Expressions * 77

><1,2;3,4> [/~ <5,6;7,8>;

11
5 3
(3.208)
3 1
7 2
><1,2;3,4> *~ <5,6;7,8>;
5 12
(3.209)
21 32
For more information on element-wise operators, see Programming-Language
Operators (page 17).
Exponentiation
Powers are formed by using the " operator.
> a’*b;
a (3.210)
It is strictly a binary operator; nested powers must be written with parentheses.
> (a”b) *c;
C
(ab) 3.211)
> a* (b”*c) ;
K¢ (3:212)

a
The following input results in a syntax error.
> a“b”c;

Rational number powers are used to represent roots. Exact roots are left uncomputed, while
floating-point roots are computed during the automatic simplification process.

> 4%(1/2);
J4 (3.213)
> 1 (2.1)4(1/3)";

1.280579165 (3.214)

78 <« 3 Maple Expressions

Expressions to a power of 0 are reduced to unity during the automatic simplification process.
The type of the resulting 1 depends on the type of the zero power, unless the base of the
expression is a float, in which case the result is a float.

> 1a ~0';

1 (3.215)
> 1a ~0.0';

1.0 (3.216)
> (x22 - 1 + 3)20";

1 (3.217)

There are some exceptions when infinity and undefined values are raised to a float zero
power.

> 'Float(undefined) ~ 0.0';

Float(undefined) (3.218)
> 'Float(infinity) ~ 0.0';
Float(undefined) (3.219)

> 'Float(-infinity) ~ (-0.0)"';
Float(undefined) (3.220)

Note the distinction between Float(-infinity) * (-0.0) and -Float(infinity) ” (-0.0): the
latter is first automatically simplified to - Float(undefined) and then to Float(undefined).

In Maple, the indeterminate form 00 with an exact base is interpreted as 1.

> 040;
1 (3.221)
>0.0 ~ 0;
1. (3.222)
>0 ~0.0;
Float(undefined) (3.223)

Although a complex floating-point zero does not automatically simplify to a real zero, ex-
pressions raised to a complex zero are simplified automatically to an exact or floating-point
unity.

3.9 Arithmetic Expressions * 79

> a*r (0.0 + 0.0*I);
1

(3.224)

Powering of matrices is done in the mathematical sense achieving repeated matrix products.

Powering of arrays is done element-wise.
><1,2;3,4> ~3;

37 54
81 118

> Array([[1,2],[3,4]]) *3;

1 8
27 64

Rational Expressions

Using sums and products, more complicated expressions can be formed.

>expr := (a+a*b) / (a*b - b);
expr = ab+a
ab—>b

Conceptually, Maple creates the following structure.

(3.225)

(3.226)

(3.227)

80 < 3 Maple Expressions

[SUM‘*l*lj[SUMI*ly*-]D

Figure 3.1: expr DAG

Here, expr is a product of two operands
> nops(expr);

2 (3.228)
> op(expr);

1

ab+a;;5:5

(3.229)

and each operand is itself an expression with two operands.

> el, e2 := op(expr);

1
ab—>b

el,e2:=ab+q, (3.230)

> nops(el); nops(e2);

2 (3.231)

3.9 Arithmetic Expressions * 81

Maple does not automatically simplify the following expression. To perform such simplific-
ations, use the normal command.

> expr := (x - 1)/(x*2 - 1);
expri= - 1 (3.232)
X -1 '
> normal(expr);
1
3.233
x+1 ()

The normal command only performs normalization of rational expressions with rational
coefficients.

> expr := ((sin(t)”2 + cos(t)?2)*(x - 1)/(x*2 - 1));
. 2 2
expr i— (sin(t)* + cos()?) (x—1) (3.234)
X -1
> normal (expr);
. 2 2
sin(t)” + cos(t) (3.235)
x+1
Note: Use the simplify command to apply more powerful simplifications.
Maple also does not automatically expand the products of sums.
> (a+b) * (c +d);
(a+b) (c+4d) (3.236)

Use the expand command (or the normal command, with the expanded option) to perform
such expansions.

> expr := (a +b) * (c +d);

expr:= (a+ b) (c+d) (3.237)

> expand(expr);

ac+ad+bc+bd (3.238)

> normal (expr, 'expanded');
ac+ad+bc+bd (3.239)

Similarly, you must use the normal command to simplify the following rational expression.

82 « 3 Maple Expressions

> expr2 := expand(expr) / (a + b);

ac+ad+bc+bd
a+b

expr2 = (3.240)

> normal (expr2);

c+d (3.241)

Noncommutative Multiplication

Noncommutative multiplication is represented by the dot operator (.), which is used mainly
in linear algebra computations for multiplication of matrices and vectors. It may also be
used to represent the noncommutative product of other types of mathematical expressions.

A . B; ‘

If A and B are of type constant, then A . B=A * B during the evaluation process (but not
during the automatic simplification process). However, if one of A and B is a Matrix or a
Vector, and the other is a Matrix, Vector, or constant, the product is interpreted as a matrix
or vector product. If A or B is an Array (and the other is not a Matrix or Vector), then A .
B is interpreted as element-wise multiplication. For arguments that are not of type Matrix,
Vector, or constant, A . B remains unevaluated, but more importantly, it is not automatically
simplified to or interpreted as being equal to B . A.

>7 . 6;
42 (3.242)
> 17 . 6';
. (7,6) (3.243)
> A.B <> B.A;
(A, B) # . (B, A) (3.244)

> M:=<<1,0,2>|<0,1,2>|<0,0,2>>;

100
M=[0120 (3.245)
2 2 2

3.9 Arithmetic Expressions * 83

> V:=<10,0,0>;

> B

10
V= 0
0
v;
10
0
20
> lambda . M . V;
10
A0
20
:= Array([[1,2]1,13,41]1);
1 2
13 4
:= Array([[a,b,c],[d,e,f]]);
abc
ldef
B;
a 2b
3d 4e
B;
3a 3b 3c
3d 3e 3f

The dot character has three meanings in Maple:

(3.246)

(3.247)

(3.248)

(3.249)

(3.250)

(3.251)

(3.252)

- as a decimal point in a floating-point number (for example, 2.3),

- as part of a range (for example, Xx..y), or

84 <« 3 Maple Expressions

- as the noncommutative multiplication operator. To distinguish between these three
cases, Maple uses the following rule: any dot with spaces before and/or after it that
is not part of a number is interpreted as the noncommutative multiplication operator.

For example, 2.3 is a number, 2 . 3 and 2 .3 return 6, and 2. 3 displays an error.
>2.3,2 .3, 2 .3;
2.3,6,6 (3.253)

> 2. 3;

Factorials

The unary, postfix factorial operator ! is used to represent the mathematical factorial opera-
tion.

> 51;
120 (3.254)

Maple can compute large factorials quickly.

> length(1000000!);
5565709 (3.255)

If the argument of the ! operator is symbolic, it is returned unevaluated.
> (a + b)!;

(a+Db)! (3.256)
The argument of the ! operator is subject to automatic simplification, but factorials are not
computed during the automatic simplification process.
> '(2+3)'';

5! (3.257)

If the argument of the ! operator is a float, the expression is computed using the GAMMA
function.

>2.3! = GAMMA(3.3);

2.683437382 = 2.683437382 (3.258)

If the argument is a non-negative integer, Maple computes the factorial. If the argument is
a negative integer, a numeric event is triggered.

3.9 Arithmetic Expressions * 85

> (=3

Error, numeric exception: division by zero

However, if the argument is a negative integer float, the complex number Float(-infinity) -
Float(infinity)*I is returned.

> (-3.0)!;
-Float() — Float(«) I (3.259)

For other arguments, the factorial operator is returned unevaluated after first evaluating its
argument.

> sin(Pi / 6)!;

[1] ! (3.260)

The command factorial is the same as the ! operator.

> factorial(5);

120 (3.261)

Forming Sums and Products

Since creating structures within loops may be inefficient, Maple provides commands for
creating sums and products efficiently.

add(expression, i=m .. n);

mul (expression, i=m .. n);

where i is a name, m and n are numeric values, and expression is an expression that depends
on i.

The add command is semantically equivalent to the following loop:

>SS :=0;
old := i;
for i from m to n do
S := S+expression;
end do;
i := old;
S; # the result

The add command is more efficient since it does not build each of the many intermediate

sums. The semantics of mul are similar with the exception that if n < m, the resultis 1,
rather than 0.

86 < 3 Maple Expressions

> mul (a+i, i=1..4);
(a+1)(a+2)(a+3)(a+4) (3262)
> add(a||i, i=0..3);
a0+ al + a2 + a3 (3:263)

In the loop example shown above, each of the expressions a0, a0 + al, and

a0 + al + a2 are constructed, stored in memory, and then removed by the garbage col-
lector. That overhead is part of what makes the loop less efficient than the add command
in this case.

For more information on the add and mul commands, refer to the add help page. For more
information on the concatenation operator, ||, see The Concatenation Operator (page 110).

Note: The add and mul commands differ from sum and product in that the former are
straightforward construction commands while the latter are commands for computing closed
forms for symbolic sums and products.

3.10 Boolean and Relational Expressions

Boolean Constants

The Boolean constants in Maple are the names true, false and FAIL. These are otherwise
ordinary names, but have a special meaning in a Boolean context.

When you call the Boolean evaluator evalb, the expression passed as its argument is inter-
preted as a Boolean-valued expression if possible, and evaluated as such.

FAIL is used to mean an unknown or undetermined value. For more information on the
constant FAIL, refer to the FAIL help page.

Boolean Operators

Maple supports several operators for the Boolean combination of expressions: not, and,
or, xor, and implies.

The not Operator

The not operator represents logical negation. It has the following general syntax.

not expr

When applied to a Boolean-valued expression, it returns a value according to the following
table.

3.10 Boolean and Relational Expressions < 87

expr not expr
true false
false true
FAIL FAIL
For example,
> not true;
false (3.264)
> not false;
true (3.265)
> not FAIL;
FAIL (3.266)

The and Operator

The and operator represents logical conjunction. It is a binary operator of the form

exprl and expr2

If both operands evaluate to a truth value, the entire expression is evaluated according to
the following truth table.

exprl expr2 exprl and
expr2
true true true
true false false
true FAIL FAIL
false true false
false false false
false FAIL false
FAIL true FAIL
FAIL false false
FAIL FAIL FAIL

If a truth value cannot be determined, the expression is returned unevaluated.

> x and y;
x and y (3.267)

However, some automatic simplifications are applied to and expressions.

88 ¢ 3 Maple Expressions

> true and x;

X (3.268)

The or Operator

The or operator represents logical disjunction. It is a binary operator of the form

exprl or expr2

If both operands evaluate to a truth value, the entire expression is evaluated according to
the following truth table.

exprl expr2 exprl or
expr2
true true true
true false true
true FAIL true
false true true
false false false
false FAIL FAIL
FAIL true true
FAIL false FAIL
FAIL FAIL FAIL

If a truth value cannot be determined, the expression is returned unevaluated.

> x or y;
xXory (3.269)

However, some automatic simplifications are applied to or expressions.

> false or x;
X (3.270)
The xor Operator

The xor operator represents logical exclusive disjunction. It is a binary operator of the form

exprl xor expr2

If both of its operands evaluate to truth values, the entire expression is evaluated according
to the following truth table.

3.10 Boolean and Relational Expressions < 89

exprl expr2 exprl xor
expr2

true true false
true false true
true FAIL FAIL
false true true
false false false
false FAIL FAIL
FAIL true FAIL
FAIL false FAIL
FAIL FAIL FAIL

The implies Operator

The implies operator represents logical implication. It is a binary operator of the form

exprl implies expr2

If both of its operands evaluate to truth values, the entire expression is evaluated according
to the following truth table.

exprl expr2 exprl implies
expr2
true true true
true false false
true FAIL FAIL
false true true
false false true
false FAIL true
FAIL true true
FAIL false FAIL
FAIL FAIL FAIL

If a truth value cannot be determined, the expression is returned unevaluated.

> x implies y;
X=Yy (3.271)

Some automatic simplifications are applied to implies expressions.

> false implies x;

true (3.272)

90 < 3 Maple Expressions

> x implies true;

true (3.273)

Relational Operators

Relational operators are used to form comparisons to be evaluated in a Boolean context.
The relational operators in Maple are =, <>, <, <=, and in. Each is a binary operator that
accepts two operands. When evaluated in a Boolean context, each of these operators determ-
ines whether its two operands have a certain relationship.

An equation is formed by using the = operator.

> x = Y
X=y (3.274)

This has the general form

exprl = expr2

It represents an equation with exprl as the left-hand side and expr?2 as the right-hand side.
When evaluated in a Boolean context, it returns a value of true if its operands are equal,
and returns a value of false otherwise.

> evalb(1

2);
false (3.275)

> evalb(2

2);
true (3.276)

Note that comparing distinct unassigned names returns a value of false.

> evalb(x =y);
false (3.277)

The names x and y are distinct and unequal names in Maple and, when they are unassigned,
they are considered different expressions in a Boolean comparison. If the names x and y
have assigned values, those values are first substituted into the comparison, and the equality
computation is performed on the assigned values, rather than the names themselves.

In general, expressions are compared for equality according to their memory address. That
is, two expressions are considered equal in a Boolean context if they have the same address
in memory. However, for certain expressions, a more mathematical test for equality is used.
For example, the floating-point numbers 2.0000 and 2.0 are considered numerically equal,
even though they are distinct objects in memory.

3.10 Boolean and Relational Expressions ¢ 91

> evalb(2.0000 = 2.0);

true (3.278)
> addressof(2.0000);
18446884058943317630 (3.279)
> addressof(2.0);
18446884058943317662 (3:280)

In fact, when the floating-point number 2.0 is compared to the integer 2, they are considered
equal.

> evalb(2.0 = 2);

true (3.281)

Determining whether two procedures are semantically equivalent is an undecidable problem
in Computer Science. However, procedures which are detectably equivalent by simple
transformations are considered to be equal. For example, it is clear that the name of a pro-
cedure parameter is not normally important, so the following two simple procedures are
considered equal, although they are distinct expressions in memory.

> evalb(proc(x) 2*x end proc = proc(y) 2*y end proc);
true (3.282)

An inequation can be formed by using the <> operator. The general form is

exprl <> expr2

This expression represents non-equality and returns a value of true if its operands are un-
equal, and false if its operands are equal.

>x <>y

X#+Yy (3.283)
> evalb(1 <> 2);

true (3.284)
> evalb(2 <> 2);

false (3:285)

Testing for inequality is performed similarly to testing for equality. Comparing two distinct
unassigned names using the <> operator computes the equality of the names. The expression

92 « 3 Maple Expressions

> evalb(x <>y);
true (3.286)
returns a value of true because the names x and y are distinct as names.

A strict inequality is created by using the < operator. This has the general form

‘exprl < expr2

and can also be constructed using the form

‘exprl > expr2

For example,

>x <y

X<y (3.287)
You can also use the > operator.
>y > x;

X<y (3.288)

Maple automatically converts this to the same expression as results from the first form.

When evaluated in a Boolean context, Maple performs the indicated mathematical compar-
ison, or returns the inequality as unevaluated if the operands do not evaluate to comparable
expressions. If the operands are comparable, the inequality evaluates to the value true if
the first operand is less than, but not equal to, the second operand, and evaluates to false
otherwise. If the operands are not comparable, the inequality evaluates to itself.

A non-strict inequality is formed using the <= operator. This has the general form

‘exprl <= expr2

It can also be constructed using the form

‘exprl >= expr2

For example,

> x <= \'E
x<y (3.289)
When evaluated in a Boolean context, and when the operands are comparable, it returns a

value of either true or false according to whether the first operand is less than, or equal to,
the second operand.

3.10 Boolean and Relational Expressions « 93

Membership is represented by the in operator. It is used in the general form

exprl in expr2

When evaluated in a Boolean context, it evaluates to the value true if its first operand exprl
is a member of its second operand expr2. If exprl does not belong to expr2, the expression
evaluates to false. Maple can determine a truth value if the second operand expr2 is a con-
tainer object; that is, either a set or list, or an unevaluated function call of the form SetOf(
T), where T is a Maple type. An expression of the form

‘expr in SetOf(T) ‘

where T is a Maple type is equivalent to the expression type(expr, T).

>evalb(1 in {1, 2, 3});

true (3.290)
> evalb(5 in { 1, 2, 3});
false (3.291)
> evalb(x in X);
xe X (3.292)
> evalb(2 in SetOf(integer));
true (3.293)
> evalb(2/3 in SetOf(integer));
false (3.294)

Note the simplification applied to the statement with the evalb command in the following
example.

> x in A union B;
xe AUB (3.295)

> evalb(x in A union B);
xe Aor x € B (3.296)

If the second operand is not an explicit container object, the expression remains an unevalu-
ated in expression. However, some automatic simplifications may be applied.

Efficient Boolean Iteration

In the same way the commands add and mul can be used to efficiently form + and * expres-
sions, conjunctions and disjunctions can be evaluated efficiently using the andmap and

94 « 3 Maple Expressions

ormap commands, which are similar to the map command described in Maple
Statements (page 171).

andmap (procedure, expression, ...)

ormap (procedure, expression, ...)

The following example considers type(element,name) for each element of the list. ormap
determines whether this statement is true for at least one element of the list. andmap de-
termines whether this statement is true for all the elements of the list.

> ormap (type, [1, "a", "a’, a()], name);
true (3.297)
> andmap (type, [1, "a", "a’, a()], name);

false (3:298)

The main difference between these commands and map is that andmap and ormap have
short-circuit ("McCarthy") semantics, which means that an answer is returned as soon as it
can be determined.

> andmap (proc(x) print(x); x<2 end proc, [1,2,3,4]);
1
2

false (3.299)

3.11 Expressions for Data Structures

This section describes basic concepts related to data structure expressions. For more inform-
ation on programming with data structures, see Basic Data Structures (page 127).

Sequences

The most basic aggregate expression type in Maple is the sequence. Sequences are formed
by using the *,” (comma) operator.

>a, 2/3, sin(x), 5.1;

a,é%,sin(x),s.l (3.300)

A sequence consists of zero or more other expressions, called elements or members. A se-
quence with exactly one member is automatically simplified to its unique member. The
empty sequence, containing zero members, is the value of the name NULL, and may be
written as ().

3.11 Expressions for Data Structures * 95

> evalb(() = NULL);

true (3.301)

Sequences occur in many other data structures as a (principal) component, within which
they acquire additional semantics. Some examples include lists, sets, and function calls.

Automatic simplification of sequences is affected by recursively simplifying the component
expressions.

>'24+3,1-7, 00, sin(Pi / 6)"';

5, -6, 1, sin[é n) (3.302)

Nested sequences are also flattened during the automatic simplification process.

>'(1,2), 3, (4, 5)";
1,2,3,4,5 (3.303)

Because sequences are used to pass multiple arguments to procedures, it is not normally
possible to operate on a sequence as such (the list type described below is designed for ex-
actly for that reason). For example, you cannot pass a (nontrivial) sequence to the type
command to check its type. Therefore, there is no Maple type for sequences. However, the
whattype command returns the name exprseq when it is passed either zero or more than
one argument.

> whattype() ;

exprseq (3.304)
> whattype(1, 2);

exprseq (3.305)
Note that the name exprseq is not the name of any valid type in Maple.

Similarly, you cannot query the zeroth operand of a sequence. For example, the following
results in an error.

>op(0, (1, 2, 3));

Error, invalid input: op expects 1 or 2 arguments, but received 4

This is because the sequence 0, (1, 2, 3) is flattened to the sequence 0, 1, 2, 3 during
automatic simplification of the function call before the op command is actually called.

Therefore, the op command is passed four arguments instead of only the two that are appar-
ently intended.

96 <« 3 Maple Expressions

There is no constructor for sequences, but there is a built-in command for creating sequences,
called seq. The basic syntax of seq is below. It accepts many other types of arguments as
well.

seq(expression, 1 = integerl..integer?2)

> seq(i*2, i =1 .. 5);

1,4,9,16,25 (3.306)
> seq(2 .. 14);
2,3,4,5,6,7,8,9,10,11,12,13, 14 (3.307)
>seq(i, i = 0.4 .. 1.1, 0.3);
0.4,0.7,1.0 (3.308)

For more information on the seq command, refer to the seq help page.

Another way to create sequences is to use the dollar sign ($) operator.

expression $ i1 = integerl .. integer2

>i*2 $i=1..5;
1,4,9, 16,25 (3-309)

The dollar sign operator is a binary operator that performs a similar function to the seq
command, but behaves slightly differently: the $ operator evaluates the expression argument
once before any substitutions, while the command does not evaluate until after each substi-
tution of i.

> cat(a,x) $ x=1..2;
ax, ax (3.310)
> seq(cat(a,x), x= 1..2);

al, a2 (3.311)

In general, it is recommended that you use the seq command instead of the dollar sign op-
erator.

Lists

Lists are created by enclosing a sequence of expressions between square brackets. Lists are
essentially sequences, which are designated as a single unit for other operations.

[sequence]

3.11 Expressions for Data Structures * 97

[1,2,3] (3312)
Unlike sequences, lists can form properly nested structures.
>[01,2,[3, 411;

Use the numelems command to determine the number of members in the enclosed sequence.
Note that lists can contain sublists. These are still counted as a single entry.

> numelems([1, 2, 31);
3 (3314)
>numelems([1, 2, [3, 411);

3 (3.315)

To access the i-th operand of a list, use an index to the list expression.
>L :=[a, b, ¢, d1;

L:=1a,b,c d] (3.316)
> L[31:;

c (3.317)

To access the sequence of all elements in a list, use the op command. Converting back and
forth between lists and sequences can be a common operation, and is very efficient.

> Lseq := op(L);

Lseq:=a, b, c d (3.318)
> L2 := [op(L), op(L) 1;

L2:=1[a,bc d a,b,cd (3.319)

It is common to create a list by using the seq command to create the enclosed sequence.
> [seq(i%*2, i =1 .. 5) 1;

[1,4,9,16,25] (3.320)
Lists are ordered; two lists with the same members in a different order are distinct.
>evalb([1, 2,31 =1[12,1,31);

false (3.321)

98 « 3 Maple Expressions

Lists are immutable; you cannot change the elements of a list once it has been created. You
can, however, create a new list using members of an existing list or lists.

In the next example, we create a new list with second entry d.
>L :=[a, b, ¢ 1;

L:==1[a, b] (3.322)
>L2 := [L[11],d, L[31 1;

L2:=[a,d,] (3.323)
You can also use the subsop command for this purpose.
> L3 := subsop(2 =d, L);

L3:=[a,d, c] (3.324)
> evalb(L2 = L3);

true (3.325)

The example above creates a new list using the original list L by substituting its second
operand for the expression d. If you need to change elements frequently it is usually better
to use an array. Arrays can be changed in-place avoiding the need for a copy. For more in-
formation on the subsop command, refer to the subsop help page.

For more information about lists, see Lists (page 128).

Sets

Sets, similar to lists, are created from a sequence of expressions. However, sets use braces
({}) to enclose the sequence.

‘ { sequence }

> {3, 2, 1};
{1,2,3} (3.326)

In addition to the syntactical differences, sets differ from lists in that they are unordered
and do not have duplicate entries. These two properties are enforced during the automatic
simplification process.

> '{31 _11 0}';

{-1,0, 3} (3.327)

3.11 Expressions for Data Structures * 99

>'{1, 1, 1, 1}';
{1} (3.328)
Note that the sets' ordering in the output may not match the input sets' ordering.

In Maple 11 and earlier, the ordering of sets was unpredictable as it was based on the posi-
tions of the elements in memory. In Maple 12 and later, set ordering is deterministic, session
independent, and based on properties of the contents. This just means that the same set will
now appear in the same order even after restarting Maple. For more information on the or-
dering of sets, refer to the set help page.

For more information on how to use sets in programming, see Sets (page 134). More inform-
ation on Maple expressions related to sets will be described later in this chapter.

Tables

Tables are mutable data structures that associate an index with an entry. Both the index and
entry can be arbitrary expressions. The underlying structure is sparse (a hash table), and
expands as more entries are inserted.

> T := table();

T := table(]]) (3.329)
> T[color] := "red";

Tcolor = "red" (3.330)
> T[color];

"red" (3.331)

> T[1,2,3] := x*2+4;

Tl, 2.3 = X2 +4 (3.332)

Assigning values to indexed names is further described in Indexed Expressions (page 62).

Tables can be initially populated by providing a list of equations as an argument to the table
constructor.

> T := table([a=1l, b=2, c=3, d=4]);
T:= table([d=4,a=1,b=2,c=3]) (3.333)
> T[a] + T[ec];

4 (3.334)

100 « 3 Maple Expressions

For names with tables assigned to them, last name evaluation rules apply. Last name evalu-
ation is explained in more detail in Evaluation Rules for Tables (page 143). The most visible
effect of last name evaluation is that the name of the table is displayed by default rather
than all of its entries.

>T;
T (3.335)
> eval(T) ;

table([d=4,a=1,b=2,c=3]) (3.336)

Rectangular Tables

Rectangular tables, or rtables, are mutable data structures that associate a numeric index
sequence with an arbitrary entry. The bounds of the index are predefined and directly cor-
respond to the amount of memory reserved to hold entries.

The same rtable data structure is used to implement arrays, matrices, and vectors.

> A := Array(0..5,i->2%*ji);

A= Array(0.5,{1=2,2=4,3=6,4=8,5=10}) (3.337)

> A[0];
0 (3.338)

> A[5];
10 (3.339)

>V := Vector([1,2,3]);
1
Vie | 2 (3.340)
3

> VI[1];

1 (3.341)

3.12 Set-Theoretic Expressions * 101

> M := Matrix(3,3,shape=identity) ;

1 00
M:=[010 (3.342)
001
> M[2,2];
1 (3.343)

Rectangular tables are very flexible and offer a rich set of features. For a more in-depth
discussion of them, see Arrays (page 146).

3.12 Set-Theoretic Expressions

Maple includes a full set of set-theoretic operators for membership relation, set inclusion,
and other operations.

Membership

In Maple, the set membership relation is expressed by using the in operator. It has the fol-
lowing syntax.

a in b

where a and b can be arbitrary expressions.
Normally, a membership expression is returned unevaluated.
> a in b;
acb (3.344)

>1in {1, 2, 3 };

1 € {1, 2,3} (3.345)
However, when evaluated in a Boolean context, one of the values true and false is returned
if the expression b evaluates to a set or list and Maple can determine whether the expression

a belongs to the expression b. For more information on Boolean evaluation of membership
expressions, see Boolean and Relational Expressions (page 86).

Use the rhs and lhs commands to extract the right or left hand side of the an in operator.
> 1lhs(a in b);

a (3.346)

102 « 3 Maple Expressions

>rhs(a in b);

Set Inclusion

(3.347)

Set inclusion (the subset relation) is represented in Maple by the binary subset operator. It

has the following syntax.

a subset b

where @ and b are arbitrary expressions that can evaluate to sets.
> a subset b;
achb

>{ 1, 2 } subset {2, 3, 5 };

false
> {} subset T;

true
> T subset {};

T={}

(3.348)

(3.349)

(3.350)

(3.351)

If Maple can determine whether the expressed relation is true or false, the expression eval-

uates to true or false. Otherwise, the expression is returned unevaluated.

An unevaluated set inclusion expression has two operands a and b.

> nops(a subset b);

> op(a subset b);
ab

The individual operands can be accessed by using the lhs and rhs commands.

> lhs(a subset b);

> rhs(a subset b);

(3.352)

(3.353)

(3.354)

(3.355)

3.12 Set-Theoretic Expressions « 103

Other Binary Operators for Sets
You can create new sets from existing sets by using any of the binary set-theoretic operators.

The union of two sets is created by using the union operator, which has the following syntax.

a union b

where a and b are expressions that can evaluate to a set.

> a union b;

aub (3.356)
>{1, 2 } union { 2, 3, 4 };
{1,2,3,4} (3.357)
> {1, 2 } union T;
TuU{1,2} (3.358)

The following expression displays an error message, since the second operand cannot
evaluate to a set.

> { a, b, ¢ } union "a string";

Error, invalid input: ‘union’ received a string, which is not wvalid

for its 2nd argument

A union expression may be returned unevaluated, and the operands of an unevaluated union
expression a union b are the expressions a and b.

> nops(a union b);
2 (3.359)
> op(a union b);

a, b (3.360)

Note that the union operation is commutative.

> a union b;
aub (3.361)
> b union a;

aub (3.362)

The union operation is also associative. A union of three or more operands returns an une-
valuated function call.

104 - 3 Maple Expressions

> a union b union c;
union(a, b, c) (3.363)
The union operation performs certain normalizations.
> a union a;
a (3.364)
> {} union a;

a (3.365)

Intersections of sets are represented using the intersect operator, which has the general
syntax.

a intersect b

The operands a and b are expressions that can evaluate to a set.

> a intersect b;

anb (3.366)
> {1, 2, 3} intersect { 3, 4, 5 };
(3} (3.367)
> {} intersect T;
() (3.368)

Note that although union and intersection are mutually distributive, neither distributes
automatically over the other in a symbolic expression. However, the expand command can
distribute intersections over unions.

> expand(a intersect (b union c));
anNnbUanc (3.369)

Maple takes the canonical form of a set-theoretic expression to be a union of intersections,
so the expand command does not distribute symbolic unions over intersections.

> expand(a union (b intersect c));

aUbnc (3.370)

3.13 Other Expressions * 105

3.13 Other Expressions

Functional Operators

The operator -> (arrow) can be used as a short-hand form to create procedures inline in
commands which take procedures as arguments such as Array constructors and the map
command.

(vars) -> result

The following two procedures are identical except in how they are displayed:
> x -> x°2;
X=X (3.371)
> proc(x) x”*2 end proc;
proc(x) xA2 end proc (3.372)

as are these two:

> (x,y,2z) -> sqrt(x*2+y*2+z*2);

(%, 2) = ¥+ +7° (3373)

> proc(x,y,z) sqrt(x*2+y*2+z”*2) end proc;
proc(x, y, z) sqrt(xA2 + yA2 + zA2) end proc (3.374)

For more information on the arrow operator, refer to the operators/functional help page.
For more information on procedures, see Procedures (page 201).

Composition

Use the operators @ and @@ to represent the composition (of functions). The operator @
denotes the composition of functions and takes the general form

fQegqg ‘

where each of f and g can be an arbitrary expression.

> (fQg) (x);
f(g(x)) (3.375)

106 « 3 Maple Expressions

Note that @ has lower precedence than function application, so that the parentheses sur-
rounding f@g above are necessary:

> f@g(x);

f@ g(x) (3.376)

The @ operator performs numerous simplifications and normalizations, and is (left) associ-
ative.

> (exp @ 1In) (s);
s (3.377)
>a@b@ce@d;
a@b@c@d (3.378)

Repeated composition is represented by the operator @@. It has the general form

f Q@ n

This denotes the n-fold composition of a function f.

> expand((£f@QR3)(x))

ff(f(x)) (3.379)

Note that the iterated composition is not automatically expanded in the example above. It
is necessary to apply the expand command.

It is important to distinguish repeated composition of an expression from the arithmetic
power. The former is represented in Maple using the @@, operator, while the latter is rep-
resented using the * operator.

> expand((£Q@QR2) (x))

f(f(x)) (3.380)

> (£72) (%)

f(X)Z (3.381)

The first example above denotes the 2 -fold composition of f with itself, while the second

denotes the arithmetic square of f. In particular, although the inverses of the circular
functions are commonly denoted by a power-like notation in written mathematics, in Maple,

for example, sin”(-1) denotes the reciprocal of the sin function, while sin@(@(-1) denotes
the arcsine (arcsin).

3.13 Other Expressions + 107

> sin@@(-1) ;

arcsin (3.382)
> (sinQarcsin) (x);
X (3.383)
> sin”~ (-1);
_L (3.384)
Sin
> (sin®(-1)) (x);
- 1 (3.385)
sin(x)

Neutral Operators

Neutral operators are constructions that are treated as operators by Maple, but that have no
predefined meaning so that they can be customized.

A neutral operator symbol is formed by the ampersand character (&) followed either by a
valid Maple name not containing ?, or by a sequence of one or more special characters. For
more information, refer to the neutral help page.

a &name b

> expr := a &your operator_ name here b;
expr := a &your_operator_name_here b (3.386)

A commonly used neutral operator is &* which is often used for representing a non-com-
mutative multiplication. Unlike dot (.), it does not automatically combine scalar constants.

>1 &% 2;
1&2 (3.387)

>1 . 2;
2 (3.388)

Ranges

The .. operator is used to construct ranges, and usually has the following syntax.

a .. b

in which the endpoints a and b can be arbitrary expressions.

108 « 3 Maple Expressions

It is important to distinguish between a range expression, such as 3 .. 7, with explicit numeric
endpoints, and the corresponding sequence 3, 4, 5, 6, 7. The seq command can be used to
produce the latter from the former.

Often, a range is used in an expression of the form i =a .. b, as an argument to a command
(such as add), and denotes the range over which an index such as i is to vary.

>add(i*2, i =1 .. 5);
55 (3.389)

A consecutive sequence of two or more dots (.) is parsed as a range operator. For example,

2.7 (3.390)

If the left-hand endpoint of a range is a float ending with a decimal point, or if the right-
hand endpoint is a float beginning with a decimal point, it is therefore necessary to separate
the endpoint from the range operator with one or more space characters.

>2....3;

2.3 (3.391)

2..0.3 (3.392)

The number of operands of a range expression is equal to 2.
>nops(a .. b);

2 (3.393)
The operands are the left and right-hand endpoints.
>op(a .. b);

a,b (3.394)

Use the lhs and rhs commands to extract the individual operands of a range expression.
>1lhs(a .. b);

a (3.395)
>rhs(a .. b);

b (3.396)

The type of a range expression is range or the equivalent form "..".

3.13 Other Expressions * 109

> type(a .. b, 'range');
true (3.397)
> type(a .. b, ""..7");

true (3.398)

Ranges can be used to index complex data structures as well as strings and sequences.

>[11213/4,5][2..3];

[2,3] (3.399)
>{1,2,3,4,5}[2..31;

{2, 3} (3.400)
> "abede"[2 .. 3];

"bc" (3.401)
>(1,2,3,4,5)[2..31;

2,3 (3.402)

There is a special form of input syntax for ranges in which one or both endpoints is missing.

> .

()-() (3.403)

In the example above, each endpoint is the empty sequence () (or NULL). It is valid to omit
just one of the endpoints.

>a .

.7

a.() (3.404)

().b (3.405)

When used in this way to index a data structure, a missing endpoint denotes the end of the
valid range of indices.

>[01, 2, 3, 4, 51[3 .. 1;

[3,4,5] (3.406)
>[11, 2, 3, 4, 51[.. 41;

[1,2,3,4] (3.407)

110 + 3 Maple Expressions

>[01,2,3,4,51[..1;

[1,2,3,4,5]

Note the distinction between the third example above and the following example

>[1 2,3, 4, 51II;

1,2,3,4,5
in which the index is empty.

The Concatenation Operator

(3.408)

(3.409)

The operator || denotes the concatenation of names and strings. It takes the general form

‘aHb

in which the first operand a can be either a name or a string, and the second operand b can
be a name, a string, an integer, an integral range, a character range, or an expression sequence
of names, strings, and integers. If the second operand b is another kind of expression, an

unevaluated || expression is returned.

> "foo" || "bar";

"foobar"
> foo || bar;

foobar
> foo || "bar";

foobar
> "foo" || bar;

"foobar"
>x || 1;

x1

>x |l (1..3);

x1, x2, x3
>"x" |l (1,2,3);

"Xln, "X2", "x3"

(3.410)

(3.411)

(3.412)

(3.413)

(3.414)

(3.415)

(3.416)

3.13 Other Expressions <« 111

>x |l ("a" .. "£");
xa, xb, xc, xd, xe, xf (3.417)
>x || ("s", ", "w");
XS, Xt; xw (3.418)
>f(y) Il t;
(f) It (3.419)

The type of the result, if not an unevaluated || expression, is determined by the type of the
first operand. If the first operand a is a string, the type of the result (or results, in the case
of a sequence) is a string. If the first operand is a name, the type of the result, or results, is
a name.

The first operand of the || operator is not evaluated, but the second operand is.
>u = 2: v := 3:
>u || v;

u3 (3.420)

The symbol *||", which must be enclosed in left single quotes when not used as an infix op-
erator, is a type name.

>type(£(Cy) Il & " 117");
true (3.421)
If a concatenation expression is returned unevaluated, it has two operands.
>mnops(£(s) || t);
2 (3.422)
>op(£(s) Il t);

f(s), t (3.423)

For most applications, the cat command is more appropriate, as it evaluates all of its argu-
ments. For more information, refer to the cat help page.

The Double Colon Operator

The :: (double colon) operator is used to represent a type test, and takes two operands in
the following form.

112 + 3 Maple Expressions

expr :: t

where expr is an arbitrary expression, and t is a type expression. When evaluated in a
Boolean context, it is equivalent to type(expr, t).

>evalb([1, 2, 3] :: 1list);

true (3.424)
>[01, 2] :: list and 2 > 3;

false (3.425)

In addition to its use as a general Boolean expression, it is used to introduce type annotations
on parameters and type assertions for local variables and procedure return types. For more
information, see Procedures (page 201).

Outside of a Boolean context, the :: operator is essentially inert, and returns an expression
of type :: with two operands.

> type(a :: b, ""::7");

true (3.420)
>nops(a :: b);

2 (3.427)
>op(a::b);

ab (3.428)

You can use the lhs and rhs commands to access the operands of a :: expression.
> 1lhs(a :: b);

a (3.429)
>rhs(a :: b);

b (3.430)

Series

Maple supports generalized power series expansions using a series data structure. This is
a basic symbolic data structure that is used in many fundamental algorithms, such as the
computation of symbolic limits and symbolic integration. There is no syntax for the input
of series; a series structure is created by calling the series constructor, which has the general
forms

3.13 Other Expressions * 113

series(expr, eqgn, ord)

series(expr, name, ord)

where expr is an algebraic expression, eqn is an equation of the form

name = pt

where name is a name and pt is the point of series expansion. The optional argument ord
specifies the order of truncation of the series. This is, by default, equal to the value of the

environment variable Order, whose default value is 6. If the second form using name is

used, the expansion point is taken to be 0.

> series(exp(x), x);

1 1
= — — — 3431
1+x+ A2+6x+24x+120x+0(X0) (3.431)

> series(exp(x), x, 10);

1 l 1 1 1 6
L+x+ 5 L2, x3+ +120x+720x
) .) .) . o (3.432)
e (0]
5040 * T 20320 % T 362880 ¥ T ()
> series(exp(x), x =0);
1 1
1 1 1 1 3.433
L+x+ 5 L2y x3+24x+120x+0() (3.433)
> series(exp(x), x=1);
1 12,1 3. b
e+ e (x 1)+2e(x 1) +Ge(x 1) +24€(X
|) (3.434)
— 5 —
1) +120e()+O((x 1))

In general, a truncated power series expansion to order ord of expr, about the point pt is
computed. If the expansion point pf is infinity, then an asymptotic expansion is computed.

In general, the series expansion is not exact, so there will be an order term of the form

O(pttord)

present as the last term in the series. This is not always present, however. For example, a
series expansion of a low-degree polynomial is exact.

114 + 3 Maple Expressions

> series(x*2 + x + 1, x);
1+x+X (3.435)

The presence of an order term depends also on the truncation order.

> series(x*20 + x + 1, x);

1+x+0(x*Y) (3.436)
> series(x*20 + x + 1, x, 30);
1+x+x0 (3.437)

A series data structure prints very much like a polynomial, but it is a distinct data structure.
In certain cases, a polynomial (sum of product) data structure is returned. This happens
when the generalized series expansion requires fractional exponents.

> s := series(sqrt(sin(x)), x);
1 5/2 1 9/2 13/2
= - O 3.438
s:=X 15 X +1440X +0(x7?) (3.438)

> type(s, 'series');
false (3.439)

The operands of a series expression are as follows.

The Oth operand is an expression of the form X — a, where X is the variable of expansion,

and a is the expansion point. Odd operands are the coefficients of the series, while positive
even operands are the exponents. In general, for a series expression s, op(2*i-1,s) evaluates

to the ith coefficient of s, while op(2*i,s) evaluates to the ith exponent.
> op(0, series(F(x), x=a));

X—a (3.440)
> op(series(exp(x*2), x)),

1,0,1, 2, % 4,0(1),6 (3.441)

Note that the series data structure is sparse in the sense that terms with O coefficient are
not part of the data structure.

A series structure can be converted to a polynomial by using the convert command with
the name polynom as the second argument.

3.14 Attributes * 115

> s := series(exp(x), x);
1 1 3 1 4 1 5 6
=1 I L - 0 3.442
S=lHxt S X+ X o X s +0(x0) (3.442)
> type(s, 'series');
true (3.443)
> p := convert(s, 'polynom');
1 1 1 4 1 5
=l 4X+ = X+ =+ o X e 3.444
P T 6 24 % T 120" G449
> type(p, 'polynom');
true (3.445)

3.14 Attributes

In addition to their operands, certain types of expressions can have other information asso-
ciated with them in the form of attributes. As described earlier in this chapter, protected
names are a type of attribute. If an expression has attributes, they can be examined by using
the attributes command.

> attributes (sin) ;
protected, _syslib (3.446)

Attributes can be assigned to expressions of the following types: name, string, list, set, Array,
Matrix, Vector, equation, procedure, unevaluated function call, or float using the setattribute
command.

setattribute (expression, attributes)

The setattribute command returns a copy of the expression with the attributes assigned. If
the expression is a symbol or string, it is modified in-place. For other data types, the original
expression is left unchanged.

>x :=1.0;
x:=1.0 (3.447)
> setattribute('x', "blue");

X (3.448)
> attributes('x"');

"blue” (3.449)

116 + 3 Maple Expressions

> myname := "Johanessphere":

> setattribute (myname, "Great Name", "Not a Real Name") ;
"Johanessphere" (3.450)

> attributes ("Johanessphere") ;

"Great Name", "Not a Real Name" (3.451)
>y := setattribute('f(z)',"common") ;
y = [(2) (3:452)
> attributes(y) ;
"common" (3.453)

> attributes('£(z) ')
All Maple expressions are valid attributes, including expression sequences.

You can check whether an expression has attributes by using the attributed type. For more
information, refer to the type,attributed help page.

> type(just a name’, 'attributed')
false (3.454)
> type(sin, 'attributed');

true (3.455)

3.15 Using Expressions
Evaluating and Simplifying Expressions

Example 1

To understand how Maple evaluates and simplifies expressions, consider the following ex-
ample.

> x := Pi/6:

> sin(x) + 2*cos(x)”*2*sin(x) + 3;

17

3.456
4 (3.456)

Maple first reads and parses the input. As the input is parsed, Maple builds an expression
tree to represent the value.

3.15 Using Expressions * 117

sin(x) + 2 cos(x)2 sin(x) + 3

Maple simplifies the expression tree and then evaluates the result. The evaluation process
substitutes values for variables and invokes any commands or procedures. In this case, x

1 . _ .
evaluates to 6 7. Therefore, with these substitutions, the expression is

. N .
. (Pi Pi . (Pi
sm[6]+2cos(6) sm(6J+3

When the sin and cos commands are called, Maple obtains a new "expression tree,"
1 1 °1
2+2[2J§j2+3
Maple simplifies this result to obtain the fraction 17/4.
Example 2

Alternatively, consider the next example: evaluation occurs, but no simplification is possible.

>x :=1;
xX:=1 (3.457)
> sin(x) + 2*cos(x)”*2*sin(x) + 3;

sin(1) + 2 cos(1)? sin(1) + 3 (3.458)

Substituting Subexpressions

The simplest method of substitution in Maple is to use the subsop command. This is an
operation on the expression tree. It creates a new expression by replacing an operand in the
original expression with the given value.

subsop (n=value, expr);

subsop (list=value, expr);

>L := [a, b, [c,d,e]]:
> M := subsop(l=A, L):
> L, M;

[a, b [cde]l,[A b]|cd e]] (3.459)

118 + 3 Maple Expressions

> subsop([3,1]=C, L);
[a, b, [C d, e]] (3.460)

Note that most operations in Maple do not alter expressions in-place but, in fact, create new
expressions from old ones. For a list of exceptions, see Mutable Data Structures (page 139).

Also, note that the subsop command acts on the expression tree by changing an arrow in
the DAG, and not by changing the value of a node which would change all identical instances.
That is, in the following example only one instance of a is changed, not all. See Figure 3.2.

> expr := (a+a*b)/(a*b-b);
ab+a
expy .= ————— 3.461
p ab—b (3461)
> subsop([1,1]=2*c, expr);
2c+a
—_— 3.462
ab—b (3462

eroo [s[~ 1[0 pron [y [~ [1[y[~]1)
subsop([1,1]=2%c,expr

L 2 B T Y 1 Y e €1 RS E VAV I EY Y

Figure 3.2: subsop Example DAGs

The subsop command is powerful, but generally useful only in very specific programming
applications. The most generally useful command for substitution is the two-argument
version of the eval command.

The eval command has the following syntax, where s is an equation, list, or set of equations.

eval (expr, s);

> expr := x*3 + 3*x + 1;

expy = X +3x+1 (3.463)

> eval(expr, x=y);

YV +3y+1 (3.464)

3.15 Using Expressions * 119

> eval(expr, x=2);
15 (3.465)
> eval(sin(x) + x*2, x=0);

0 (3.466)

The eval command performs substitution on the expression considered as a DAG rather
than a tree, so it can be quite efficient for large expressions with many repeated subexpres-
sions.

An alternative to the eval command is the subs command, which performs syntactic substi-
tution. It computes the expression as a tree and replaces subexpressions in an expression
with a new value. The subexpressions must be operands, as identified by the op command.
Using the subs command is equivalent to performing a subsop operation for each occurrence
of the subexpressions to be replaced.

The subs command has the following syntax, where s is an equation, list, or set of equations.

subs (s, expr);

> £ 1= x*y*2;

fi=x)" (3.467)

> subs({y=z, x=y, z=w}, £);
y 7 (3.468)
The other difference between the eval and subs commands is demonstrated in the following
example.
> subs(x=0, cos(x) + x*2);
cos(0) (3:469)
> eval(cos(x) + x*2, x=0);
1 (3.470)
In the preceding subs command, Maple substitutes 0 (zero) for x and simplifies the result.

Maple simplifies cos(0) + 0”2 to cos(0). By using the eval command, Maple evaluates
cos(0) to 1 (one).

During the substitution process, operands are compared in the expression tree of expr with
the left-hand side of an equation.

120 « 3 Maple Expressions

> eval(a*b*c, a*b=d);

abc (3.471)
The substitution does not result in d*c because the operands of the product a*b*c are a, b,
c. That is, the products a*b, b*c, and a*c do not appear specifically as operands in the ex-

pression a*b*c. The easiest way to make such substitutions is to solve the equation for one
unknown and substitute for that unknown.

> eval(a*b*c, a=d/b);

dc (3.472)
You cannot always use this method; for certain expressions, it may not produce the expected
results. The algsubs command provides a more powerful substitution facility.
> algsubs(a*b=d, a*b*c);

dc (3473)
Two more useful substitution commands are subsindets and evalindets. These commands

perform substitution on all subexpressions of a given type; the former uses the subs func-
tionality and the latter uses the eval functionality.

subsindets (expr, atype, transformer, rest)

evalindets(expr, atype, transformer, rest)

> evalindets([1,2,3,4,5], prime, x->(x+1)%2);

[1,9, 16,4, 36] (3.474)
> evalindets ((x+1) *2+x*4-1, { * , ~"}, expand);
X+ 2x (3.475)

Structured Types

A simple type check may not always provide sufficient information. For example, the
command
> type(x*2, "7)5

true (3.476)
verifies that X2 is an exponentiation, but does not indicate whether the exponent is, for

example, an integer. To do so, you must use structured types. Consider the following ex-
ample.

3.15 Using Expressions * 121

> type(x*2, 'name”integer');
true (3.477)
Because x is a name and 2 is an integer, the command returns a value of true.

To learn more about structured types, study the following examples. The square root of x
does not have the structured type name”integer.

> type(x*(1/2), 'name“integer');

false (3:478)
The expression (x+1)"2 does not have type name”integer, because x+1 is not a name.
> type((x+1)72, 'name”integer');

false (3.479)

The type anything matches any expression.
> type((x+1)72, 'anything”integer');

true (3:480)
An expression matches a set of types if the expression matches one of the types in the set.
> type(1, '{integer, name}');

true (3.481)
> type(x, '{integer, name}');

true (3482)
The type set(type) matches a set of elements of type type.
> type({1,2,3,4}, 'set(integer)');

true (3.483)
> type({x,2,3,y}, 'set({integer, name})');

true (3.484)
Similarly, the type list(type) matches a /ist of elements of type type.
> type([2..3, 5..7 1, 'list(range)');

true (3.485)

Note that 62 is not of type anything”"2.

122« 3 Maple Expressions

> exp(2);
el (3.486)
> type((3.486), 'anything”2');

false (3.487)

Because €° is the typeset version of exp(2), it does not match the type anything”2.
> type(exp(2), 'exp' (integer));

true (3.488)

The next example illustrates why you should use unevaluation quotes (') to delay evaluation
when including Maple commands in type expressions.

> type(int(f(x), x), int(anything, anything));
Error, testing against an invalid type
An error occurs because Maple evaluates int(anything, anything).

> int(anything, anything);

% anything’ (3.489)

This is not a valid type. If you enclose the int command in unevaluation quotes, the type
checking works as intended.

> type(int(f(x), x), 'int' (anything, anything));
true (3.490)

The type specfunc(type, f) matches the function f with zero or more arguments of type
type.
> type(exp(x), 'specfunc(name, exp)');

true (3491
> type(£(), 'specfunc(name, f)');

true (3.492)

The type function(type) matches any function with zero or more arguments of type type.

> type(£(1,2,3), 'function(integer)');

true (3.493)

3.15 Using Expressions * 123

> type(£(1,x,Pi), 'function({integer, name})');
true (3.494)

In addition to testing the type of arguments, you can test the number of arguments. The type
anyfunc(tl, ..., tn) matches any function with n arguments of the listed types in the correct
order.

> type(£(1,x), 'anyfunc(integer, name)');

true (3.495)
> type(f£(x,1), 'anyfunc(integer, name)');

false (3.496)
> type(£(x), 'anyfunc(integer, name)');

false (3.497)

Another useful variation is to use the And, Or, and Not type constructors to create Boolean
combinations of types. Note that these are different from the and, or, and not logical oper-
ators.

> type(Pi, 'And(constant, numeric)');

false (3.498)
Pi is of type symbol, not of type numeric.
> type(Pi, 'And(constant, Not(numeric))'):;

true (3.499)

For more information on structured types, refer to the type,structured help page. For more
information on how to define your own types, refer to the type,defn help page.

The indets command is useful for extracting a set of all the subexpressions of a given type.

indets (expr, atype)

> indets (z-exp (x*2-1)+1, 'name');
{x, z} (3.500)
> indets (Pi+37(1/2)+4.1, 'integer');

{3} (3.501)

124 - 3 Maple Expressions

> indets (Pi+37(1/2)+4.1, 'numeric');
{3, %, 7.241592654} (3.502)
> indets (Pi+37(1/2)+4.1, 'constant');

{3, % 7.241592654, /3, 7.241592654 +ﬁ} (3.503)

Note that the indets command analyzes the entire expression so that the base of the exponent

J 3 isrecognized as an integer. If you want to select only subexpressions from the top
level, use the command select described in The select, remove, and selectremove
Commands (page 188).

If you want to test whether that an expression has a subexpression of a given type, use the
hastype command rather than the indets command since it avoids building a potentially
large set of expressions.

> hastype([1,2,3.,5.,6.,7.]1, 'float');

true (3.504)

3.16 Exercises

1. Find the numerator and denominator of the irreducible form of 4057114691 divided by
4404825097799.

2. Construct floating-point numbers using the floating-point number constructor. Construct
the number 917.3366 using a positive exponent, and then using a negative exponent.
Construct a floating-point approximation of 1/3.

3. Without using the Digits environmental variable, find the difference between © estimated
to 20 digits and 10 digits.

4. Calculate the negative complex root of -1369, and then sum 3 and the root. Find the in-
verse of this complex sum. Find the inverse of (a*b)/c+((a-d)/(b*e))*]) in standard form,
where a, b, ¢, d, and e are real.

5. The Fibonacci numbers are a sequence of numbers. The first two numbers in the sequence

are zero (0) and one (1). For n greater than two, the nth number in the sequence is the
sum of the two preceding numbers. Assign values to indexed names representing the
first, second, and general Fibonacci numbers.

6. Using the time command, determine the time required to multiply two ten-by-ten matrices.

7. Use Maple to verify de Morgan's laws.

3.16 Exercises * 125

8. Contrast the behavior of functions and expressions by performing the following com-
mands.
a Define a function f equal to X> . Define an expression g equal to X
b Evaluate fand g at 2.
¢ Evaluatefand g aty.
d Assign the value 2 to x. Evaluate fand g.
9. Swap the values of two variables using one statement.

10. Sum the smallest 100 prime integers.

Hint: Use the ithprime or nextprime function.

126 « 3 Maple Expressions

4 Basic Data Structures

The appropriate use of data structures is an important part of writing efficient programs.
Maple provides various data structures that can be used to help make your programs efficient.

4.1 In This Chapter

» Defining and manipulating sets, lists, tables, Arrays, records, stacks, and queues
» Converting between data structures
* Mathematical versus programmer indexing for Arrays

» Performance comparisons of data structures

4.2 Introduction

Maple provides various data structures that you can use for programming and interacting
with Maple functions. This chapter focuses on the use of data structures in programming.
However, the sections Lists (page 128) and Sets (page 134) may be useful for users who want
to construct arguments for Maple functions.

Maple has many data structures that provide similar functionality, but certain data structures
are better suited for certain types of operations. Therefore, when choosing which data
structures to use, it is important to select a structure that performs well on the operations
used in your code.

Many aspects affect the performance of data structures. However, in Maple, the provided
data structures can be divided into two basic classes: mutable and immutable. The mutable
data structures can be modified, that is, the values they store can change. The immutable
data structures cannot be changed after they are created. Instead, copies of these structures
can be made with different contents. This difference in behavior can have significant impact
on the performance of code that uses these structures.

4.3 Immutable Data Structures

Immutable data structures can be useful when storing a fixed collection of elements. Also,
because immutable structures are more compact than mutable data structures, especially
when storing a small number of elements, they are more memory efficient.

Immutable structures are created with their contents fixed. This means that they cannot be
modified in-place. When you change an immutable data structure, a new copy is created
with the modified contents and stored as a distinct object in memory. Thus, immutable
structures may not be the correct choice if you want to modify the contents of a structure.

In Maple, there are two basic immutable data structures: lists and sets.

127

128 < 4 Basic Data Structures

Lists

A list stores an ordered sequence of expressions. The ordering of the elements in a list is
fixed when the list is created. Lists, in contrast to sets, will maintain duplicate elements.

Creating Lists

The easiest way to create a list is to enclose a sequence of expressions in square brackets
([D- A sequence of expressions is a series of comma-separated expressions.

‘ [sequence]

This creates a list that contains the elements of sequence in the specified order. In the case
where sequence is empty, [] represents an empty list. Compare the results of these examples
to those in the Sets (page 134) section.

> [x, v, y1;

[y, ¥l @
> [a, 1, b, 2];
[a, 1, b, 2] (4.2)
> [yl[1ll, %, x[1], y[1]1]1;
[V X% x| 43)
The elements of a list can be any expressions, even other lists.
> L := [[1]1, [2, al, [X, Y, Z]];
L:=[[1],[2,a],[X Y, Z]] “4)

In Maple, nested lists whose inner lists have the same number of elements have a special
name, listlist.

>M := [[a,b], [1,2], [3, 4]1;
M:= [[a, b], [1, 2], [3, 4]] *3)
> type (M, list);
true (4.6)
> type (L, listlist);
false (4.7)
> type (M, listlist);

true (4.8)

4.3 Immutable Data Structures * 129

Many Maple functions return sequences. Thus, enclosing a call to one of those functions
in square brackets [] creates a list. For example, the seq command generates sequences.

> [seq(x*j, j=1..3) I’

[X, X, X3] (4.9)
The op command can be used to extract the sequence of elements in a list.
>L :=[1,2,3];
L:=11,2,3] (4.10)
> op (L) ;
1,2,3 (4.11)

Thus op can be used to create new lists based on existing lists. For example, you can create
a new list with an additional element added to the start of the list.

> L2 := [0, op(L) 1’
L2:=10,1,2,3] (4.12)
A list with another element added to the end of the list can be created in a similar way.
>1L3 := [op(L2), 4 1;
L3:=10,1,2,3,4] (4.13)
Multiple lists can also be combined into a single list.
> L4 := [op(L), op(L2), op(L3)];
14:=1[1,2,3,0,1,2,3,0,1,2,3,4] (4.14)

Accessing Data Stored in a List

The selection operation, [], can be used to read an element from a list.

>L := [1,2,3];
L:=11,2,3] (4.15)
> L[1];
1 (4.16)
> L[2];

2 (4.17)

130 < 4 Basic Data Structures

> L[3];

3 (4.18)

You can also specify a range in the selection operation to extract a sublist containing the
elements that are indexed by that range.

>L := [seq(i*2, i=1..10)];
L:=11,4,9, 16, 25, 36,49, 64, 81, 100] (4.19)

> L[3..6];
[9, 16, 25, 36] (4.20)

> L[5..8];
[25, 36, 49, 64] 4.21)

While it is possible to make an assignment to a list index, this operation can be inefficient
since it creates a new list. In fact, assignment to a large list is not permitted in Maple and
will produce an error. Assigning a list element is a common error, so if you find yourself
wanting to do this, consider using a mutable data structure instead. For more information,
see Mutable Data Structures (page 139).

>L :=[1,2,3]:
> L[1l] := 3;

Ll =3 (4.22)
> L;

[3,2,3] (4.23)

L is now a new list with a different element at index 1. Thus, assigning to a single element
of a list causes the entire list to be copied in the same way as using the subsop command.

In fact, the previous example is equivalent to the following except in how the result is dis-
played.

>L :

[1,2,3]:

>L :

subsop (1=3, L);
L:=13,2,3] (4.24)

If you attempt to assign to an index to a large list, an error will occur. Therefore, if you need
to make a copy of a list with one changed element, it is recommended that you use the
subsop command instead.

4.3 Immutable Data Structures « 131

>LL := [seq(i, i=1..200) 1:
> LL[1] := -1;
Error, assigning to a long list, please use Arrays

> subsop (1=-1, LL);

[-1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15, 16, 17
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46,47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
74,75,76,77,78,79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101,102, 103, 104, 105, 106, 107, 108, 109, 110,
111,112,113,114,115,116,117,118, 119, 120, (4.25)
121, 122,123,124, 125,126,127, 128, 129, 130,
131,132,133,134, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
151,152,153, 154, 155, 156,157,158, 159, 160,
161,162,163, 164, 165, 166, 167, 168, 169, 170,
171,172,173,174,175,176,177,178,179, 180,
181,182,183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 197, 198, 199, 200]

Determining If an Element Is in a List

To test if an expression is contained in a list, use the member function.

> member(1, [1,2,3]);

true (4.26)
> member(1, [2,3,4]);

false (4.27)

You can also use the in operator.

> evalb(1 in [1,2,3]):

true (4.28)

132 < 4 Basic Data Structures

> evalb(1 in [2,3,4]);
false

Getting the Number of Elements in a List

To find the length of a list, use the numelems command.

> numelems([1,2,3 1);

> numelems([1,2,3,4,5]);
5
> numelems([seq(i, i=1..127) 1);

127

(4.29)

(4.30)

(4.31)

(4.32)

This can be useful for many tasks, for example, using lists in a loop. For more information

on selectremove, see Filtering Data Structure Elements (page 155).

> L := [seq(i, i=2..100)]:
> divisor := 2:

> while (numelems(L) > 0)
do

divisible, L := selectremove(i->(i mod divisor

n := numelems(divisible);
if (n > 0) then

printf("%d integer%s whose smallest prime divisor is %d\n",

n, "if'(n>1, "s", ""), divisor):

end if;
divisor := nextprime(divisor);
end do:

4.3 Immutable Data Structures * 133

50 integers whose smallest prime divisor is 2
17 integers whose smallest prime divisor is 3
7 integers whose smallest prime divisor is 5
integers whose smallest prime divisor is 7
integer whose smallest prime divisor is 11
integer whose smallest prime divisor is 13
integer whose smallest prime divisor is 17
integer whose smallest prime divisor is 19
integer whose smallest prime divisor is 23
integer whose smallest prime divisor is 29
integer whose smallest prime divisor is 31
integer whose smallest prime divisor is 37
integer whose smallest prime divisor is 41
integer whose smallest prime divisor is 43
integer whose smallest prime divisor is 47
integer whose smallest prime divisor is 53
integer whose smallest prime divisor is 59
integer whose smallest prime divisor is 61
integer whose smallest prime divisor is 67
integer whose smallest prime divisor is 71
integer whose smallest prime divisor is 73
integer whose smallest prime divisor is 79
integer whose smallest prime divisor is 83

integer whose smallest prime divisor is 89

R T T = T = T e R e e R e R N T e T = T = T = = SR S TN

integer whose smallest prime divisor is 97
Sorting a List

The sort command can create a new list with sorted elements from any given list. By default,
sort arranges elements in ascending order.

>sort([4,2,3 1);
[2,3,4] (4.33)

The sort command can also accept a second argument that specifies the ordering to use
when sorting the elements.

> sort([4,2,3]1, ">);

(4, 3, 2] (4.34)

Applying a Function to the Contents of a List

It is often useful to be able to apply a function to all the elements of a list. The map command
performs this operation in Maple.

134 « 4 Basic Data Structures

>1L := [seq(Pi*i/4, i=0..3)]:

> map(sin, L);
[0, % J2,1, % \/7] (4.35)
> map(cos, L);

[1, % JZ.0, % ﬁ] 4.36)

Maple provides other operations that can work with the members of a list, such as add and
mul.

>add(i, i in [seq(j, j=1..100) 1);

5050 (4.37)
>mul(i*2, i in [1,2,3,4,5,6,7,8,9,10]);
13168189440000 (4.38)

Finally, a for loop can be combined with the in operator to loop over the contents of a list.

> for i in [1,2,3,4]
do
print(i*2);

end do;

1

4

9

16 (4.39)
Sets

A set is an unordered sequence of unique expressions. When a set is created, Maple reorders
the expressions to remove duplicate values and to make certain operations faster.

Creating Sets

The easiest way to create a set is to enclose a sequence of expressions in braces ({}).

{ sequence } ‘

4.3 Immutable Data Structures ¢ 135

When Maple creates the set, it performs automatic simplification. This process creates a set
that contains the elements of sequence; however, during the automatic simplification process,
any duplicate elements are removed and the remaining elements are reordered.

Compare the results of these examples to those in the Lists (page 128) section.

> {x, v, y};

{x v} (4.40)
>{a, 1, b, 2};
{1, 2, a, b} (4.41)
> {yl[1l],x,x[1],y[11};
{X, X, yl} (4.42)

Similar to lists, sets can be created using functions such as seq that return sequences.

> { seq(i mod 3, i=1..10) };
{0, 1, 2} (4.43)

Again, similar to lists, the op command can be used to extract the sequence of elements in
a set.

>8 :={1,2,3};
S = {1,2,3} (4.44)
> op(8);

1,2,3 (4.45)

However, unlike lists, Maple provides operations for set arithmetic, so for sets op is some-
what less important.

Set Arithmetic

Maple provides operators for mathematical set manipulations: union, minus, intersect, and
subset. These operators allow you to perform set arithmetic in Maple.

>s = {x,y,z};
s:={xy z} (4.46)
>t = {y,z,w};

t:=1{w,y, z} (4.47)

136 < 4 Basic Data Structures

> s union t;

{w, X, y, z} (4.48)
> s minus t;

{x} (4.49)
> s intersect t;

{y, z} (4.50)
> s subset t;

false 4.51)
> s subset {w,x,y,z};

true (4.52)

Accessing Data Stored in a Set

The selection operation, [], can be used to read an element from a set. However, unlike lists,
the order in which the elements are specified when creating the set may not correspond to
the order they are accessed by indexing.

>8 := {3,2,1}:

> s[1];

1 (4.53)
> s[2];

2 (4.54)
> S[3];

3 (4.55)

Unlike lists, you cannot use the selection operation to create new sets.
> S[1] := 4;

Error, cannot reassign the entries in a set

You can specify a range in the selection operation to extract the elements indexed by the
range.

> 82 := { seq(i*2, i=1..10) };

§2:={1,4,9, 16, 25, 36,49, 64, 81, 100} (4.56)

4.3 Immutable Data Structures * 137

> 52[3..6];
{9, 16, 25, 36} (4.57)
> §2[5..8];

{25, 36, 49, 64} (4.58)

Determining If an Element Is in a Set

To test if an element is contained in a set, use the member function.

> member(1, {1,2,3});

true (4.59)
> member(1, {2,3,4});

false (4.60)
You can also use the in operator.
> evalb(1 in {1,2,3});

true (4.61)
> evalb(1 in {2,3,4});

false (4.62)

Getting the Number of Elements in a Set

To find the number of elements in a set, use the numelems command.
> numelems({1,2,3});

3 (4.63)
> numelems({1,2,3,4,5});

5 (4.64)

> numelems ({seq(i, i=1..127)});

127 (4.65)

In this example, the features of sets are used to test Collatz's conjecture on the first million
integers. Collatz's conjecture states that given any integer, i, if the following function is
applied repeatedly, the result will eventually be 1.

> collatz := proc(i)
if (i =1) then

138 < 4 Basic Data Structures

1;
elif (type(i, even)) then
i/2;
else
3*%i+1;
end if;
end proc:

Begin with a set S that consists of the integers from 1 to 1 million. Under repeated application
of collatz, as numbers converge to 1, the set automatically removes duplicate values, until
eventually there is only 1 element left. For more information on the use of map, see Applying
a Function to the Contents of a Set (page 138).

> 8 := {seq(i, i=1..1000000)}:

> while (numelems(S) > 1)

do
S := map(collatz, S):
end do:
> g:

{1} (4.66)
Applying a Function to the Contents of a Set

As with lists, it can be useful to apply a function to all of the elements of a set. The map
command works on sets, as it does with lists.

>SS := { seq(Pi*i/4, i=0..3) }:

> map(sin, S);

{0, 1, % ﬁ} (4.67)

> map(cos, S);

[0, 1, —% J2, % ﬁ} (4.68)

Notice that when applying a function to a set, the output is also a set, which means the ele-
ments are reordered and duplicate elements are removed.

Maple provides other operations that can work with the members of a list, such as add and
mul.

4.4 Mutable Data Structures ¢ 139

> add(i, i in { seq(j, j=1..100) });

5050 (4.69)
>mul(i*2, i in { 1,2,3,4,5,6,7,8,9,10 });
13168189440000 (4.70)

Finally a for loop can be combined with the in operator to loop over the contents of a set.
Note that the set has been reordered.

> for i in {1,4,3,2}

do
print(i*2);
end do;
1
4
9
16 4.71)

4.4 Mutable Data Structures

Mutable data structures are structures whose contents can be changed.

The most flexible mutable data structure provided by Maple is the table.

Tables

A table stores a collection of index/entry pairs. For a given index, the table contains a par-
ticular value, called an entry. Index/entry pairs can be created or removed, or the value as-
sociated with an index can be modified.

Creating Tables
A new table can be created by calling the table function.
>t := table();

t := table([]) 4.72)

With no arguments, table creates a new empty table. To create a table that contains certain
index/entry pairs, specify the pairs as a list of equations. The left-hand side of an equation
is the index and the right-hand side is the entry.

140 < 4 Basic Data Structures

>t := table([1=2, a=b, £(x)=y 1)’
t:= table([1 =2,a=Db, f(x) =y]) (4.73)

If the given list contains one or more expressions that are not equations, the list is treated
as a list of entries and the indices are the positions of the entries in the list (1, 2, 3, ...).

>t := table([a, b, ec=d]),
t:=table([1=a,2=b3=(c=4d)]) (4.74)
Note that ¢=d is treated as a entry and not an index/entry pair.

Tables are also created implicitly when you assign to an indexed name.

> t2[new] := 10;

t2 =10 (4.75)

new

> eval (t2) ;

table([new = 10]) (4.76)

Accessing Stored Values

Table indexing is performed using the selection operation, []. To extract data from a table,
specify an index in square brackets. The corresponding entry is returned.

> t := table([1=2,a=b,f(x)=y]);

t:=table([1 =2,a=b, f(x) =y]) (4.77)
> t[1];
2 (4.78)
> t[al;
b 4.79)
> t[f(x)];
y (4.80)

If the table does not contain a entry associated with the index, an unevaluated table reference
is returned.

> t[2];

t, (4.81)

The selection operation can also be used to add new index/entry pairs to the table.

4.4 Mutable Data Structures ¢ 141

> t[2] := 3;
t, =3 (4.82)
> t[e] :=d;
t=d (4.83)
> t[sin(x)] :=1;
siny = 1 (4.84)
> t[2];
3 (4.85)
> t[el;
d (4.86)
> t[sin(x)];
1 (4.87)

Removing an Element

The best way to remove an element from a table is to call the unassign function.

> t[1l] := x;
tl =X (4.88)
> t[sin(x)] :=vy;
tsin(x) =Yy (4.89)
> unassign('t[1]"');
> t[1];
tl (4.90)
> unassign('t[sin(x)]"')
> t[sin(x)];
tsin(x) 4.91)

The selection operation can also be used to remove an index/entry pair from a table. By
assigning the unevaluated table entry to its name, that element is removed from the table.
This can be done by using unevaluation quotes (') or the evaln command.

142 < 4 Basic Data Structures

> t[1l] := x;
tl = X (4.92)
> t[1] := 't[1]';
t1 = tl (4.93)
> t[1];
tl (4.94)
> t[sin(x)] :=y;
tsin(x) =Y (4.95)

> t[sin(x)]

evaln(t[sin(x)]);
bino = Lin(x (4.96)
> t[sin(x)];

Lyin(x) (4.97)

Getting the Number of Elements Stored in a Table
The numelems function returns the number of elements stored in a table.
> numelems (table([1]))

1 (4.98)
> numelems (table([1,2,3,4,5]))

5 (4.99)
> numelems (table([seq(i, i=1..127)]1));

127 (4.100)

Checking If an Index Is Used

It is often useful to know if a particular index has a value in a table. Use the assigned function
to check if a table index has an associated entry.

>t := table([1=1]):
> assigned(t[1]);

true @.101)

4.4 Mutable Data Structures * 143

> assigned(t[2])

false (4.102)

Evaluation Rules for Tables

Tables, like procedures, use last name evaluation. If a name is assigned a table, the result
of evaluating that name is the name and not the table assigned to the name. For more inform-
ation about last name evaluation, refer to the last name_eval help page.

>t := table([1,2,3,4]);

t:= table([1=1,2=2,3=3,4=4]) (4.103)

t (4.104)

To get the assigned value (the table), use the eval command.

> eval (t);

table([1=1,2=2,3=3,4=4]) (4.105)

Extracting Data

Tables are often used as simple containers for data. Sometimes, it is useful to have a list of
the indices used in the table. Maple provides the indices function for this purpose.

>t := table([a=1l, b=2, c=3, d=4]);
t:=table([b=2,a=1,d=4,c=3]) (4.106)
> indices(t);

[b], [a], [d], [c] (4.107)

You may not expect to see that indices returns a sequence of lists, where each list contains
the index. This is because Maple allows sequences to be used as indices in tables.
> t2 := table([a=1, b=2, (a,b,c)=31]);
t2 = table([b=2, (a,b,c) =3,a=1]) (4.108)
> indices(t2);
[b], [a, b, c], [a] (4.109)

If the indices were not wrapped in a list, it would be impossible to determine if an index is
a single expression or a sequence of expressions. Since using sequences as indices is uncom-

144 < 4 Basic Data Structures

mon, indices accepts a nolist option, for which indices returns a simple sequence and does
not wrap each index in a list.

> indices(t, 'nmolist');
b a,d,c (4.110)
Note that, with the nolist option, indices that are sequences are not returned properly.
> indices(t2, 'nolist');
b a, b a 4.111)
You can also use the entries function to get all the values stored in the table.
> entries(t);
(2], [1], [4], [3] (4.112)
> entries(t, 'nolist');

2,1,4,3 (4.113)

To extract the index/entry pairs as a sequence of equations, use the pairs option to either
of the indices or entries commands.

> entries(t, 'pairs');

b=2,a=1,d=4,c=3 (4.114)

Copying Tables

If you assign a table to multiple names, all the names reference the same table. Thus, changes
to the table using one name are visible from the other names.

>t := table([a=1,b=2,c=3]);

t:=table([b=2,a=1,c=3]) (4.115)
> tl = eval(t);
tl := table([b=2,a=1,c=3]) (4.116)
> t[d] := 4;
t,=4 @.117)

>eval(t);

table([b=2,a=1,d=4, c=3]) (4.118)

4.4 Mutable Data Structures * 145

> eval(tl1);
table([b=2,a=1,d=4, c=3]) (4.119)

If you want to create a copy of a table, use the copy function so that the tables can be mod-
ified independently.

> tl = copy(t)

tl := table([b=2,a=1,d=4,c=13]) (4.120)

> tle] :=5;
t,=>5 4.121)

>eval(t);
table([b=2,a=1,e=5,d=4,c=3]) (4.122)

> eval(tl);
table([b=2,a=1,d=4,c=3]) (4.123)

Applying a Function to the Contents of a Table

The map function works with tables as it does with lists and sets. When executing a map
on a table, the mapped function is given the value associated with an index. In the returned
table, the result is the entry associated with the index.

>t := table([x, x*2+2, x*3-x+1, 1/x*2]);

t:=table[1=x,2:x2+2,3=x3—x+1,4:§” (4.124)

> map(diff, t, x);

2

table(1=1,2=2x,3:3¥—1,4=-?

) (4.125)

You can use the indices and entries functions to produce a list that can be mapped over or
used in a for-in loop. You can also use this technique to modify the original table.

> for i in entries(t, 'pairs')
do
t[lhs(i)] := int(rhs(i), x);
end do;

4 (4.126)

>

146 < 4 Basic Data Structures

> eval(t);

table(1=

4.127)

X

|

In Maple, an Array stores data as an n-dimensional rectangular block (rfable), that is, an
Array has 1 or more dimensions and each dimension has an range of integer indices. By
specifying one integer from each range, an element of the Array can be indexed.

Arrays

Because Arrays are mutable, the values stored in an Array can change.

Creating Arrays

To create an Array in Maple, use the Array command and specify the ranges for the dimen-
sions. This creates a new Array with each entry initialized to 0. For Arrays, the ranges do
not need to start at 1.

> Array(1..3); # 1 dimensional Array

[000] (4.128)
> Array(1..3, 1..4); # 2 dimensional Array

00O00O0

0000 (4.129)

00O00O0

> Array(1..3, 2..5, -1..1); # 3 dimensional Array

1.3x2.5x-1..1 Array

Data Type: anything (4.130)

Storage: rectangular
Order: Fortran_order
When creating an Array, you can also specify a generator function to populate the Array

with data. The generator function takes an index as an argument and returns a value for the
corresponding entry.

4.4 Mutable Data Structures 147

> Array(1..3, x->x+1);

[2 3 4] 4.131)
> Array(1..3, 1..4, (x,y)->(x+y))

2345

3456 (4.132)

4 56 7

You can also provide the data for the Array by specifying the data as a list or nested lists.

> Array([1,2,3]);
[1 2 3] (4.133)

> Array([[1,2],[3,4]1,[5,61]);

(4.134)

Basic Data Access

Arrays are implemented in Maple as a type of rtable, a structure also used for Matrices and
Vectors. This means that Arrays have two different indexing mechanisms: mathematical
indexing and programmer indexing. Mathematical indexing is intended for use when the
Array is viewed as a mathematical object. Programmer indexing provides functionality that
is more convenient when using Arrays as a programming tool.

The basic indexing operator, [], provides mathematical indexing. Programmer indexing is
accessed by using round brackets, (). For Arrays whose dimension ranges all start at 1, the
two indices behave similarly.

>A := Array(1..2, 1..3):
>A[1,1] := 1;

Ap=1 (4.135)

>a(2,1) := 2;

100
200

A2, 1) = (4.136)

148 < 4 Basic Data Structures

> A(1,1);

1 4.137)
> Aa[2,1];

2 (4.138)
You may notice that the assignment that uses programmer indexing is displayed differently
than the assignment that uses mathematical indexing. This is because the result of an assign-

ment to a programmer indexed Array is the entire array. This can be important when
working with large sub-Arrays.

When the ranges do not start at 1, mathematical and programmer indexing are different.
Mathematical indexing requires that the indices match the specified ranges, but programming
indexing always normalizes the ranges to start at 1.

> A := Array(3..4, 5..6, (x,y)->x+y):

> A[3,5];
8 (4.139)
> A(3,5);
Error, index out of bounds
>A(1,1);
8 (4.140)

This means that programmer indexing can always take advantage of negative indexing,
which normally only works when the ranges start at 1. Negative indexing counts backwards
from the end of the range.

> A[3,-1]1;
Error, Array index out of range
> A[3,6];
9 (4.141)
>A(1,-1);

9 (4.142)

Sub-Array Access

A sub-Array of an Array can be accessed by specifying a subrange in place of the indices.

4.4 Mutable Data Structures ¢ 149

> A := Array(1..5, 1..5, (x,y)->xt+ty);

(2345 6]
3456 7
A=14567 8 (4.143)
5678 9
| 6 7 8 9 10 |
>A[l..2,1..3];
2 3 4
(4.144)
345
>A(2..4,2..3);
56 (4.145)
6 7
Sub-Array indexing can also be used to assign to the specified sub-Array.
> A[2..4,2..3] := Array([[a,a]l,[a,a],[a,a]])’
Ay 4237 (4.146)
> A(4..5,4..5) := Array([[b,b],[b,b]]):
(23456
3 a
A4.5,4.5)=|4 aa 7 8 (4.147)
5 a a
6 78 bb

Note that the commands perform the same operation, but display the result differently. This
is the consequence of an important difference in how the modification is performed. This

150 < 4 Basic Data Structures

can be important when working with large sub-Arrays. Compare the time to perform the
assignment in the following examples:

>N := 4000:
> A := Array(1..N, 1..N, (x,y)->rand()):
>B := Array(1..N, 1..N):
>t = time():
> B[1001..4000,1001..4000]:=A[1..3000,1..3000]:
> time()-t;
0.195 (4.148)
>t = time():

> B(1001..4000,1001..4000):=A(1..3000,1..3000):

> time () -t;
0.059 (4.149)

The difference in running time of these copies is due to the difference in the result of an
assignment to an Array index. For mathematical indexing, a new 3000 by 3000 Array must
be created as the result. With programmer indexing, the result is the Array being assigned
to in its entirety - an object that already exists.

Automatic Resizing

One of the most important differences between mathematical and programmer indexing is
automatic resizing. When reading from or writing to an entry using mathematical indexing,
an index that is outside the bounds of the Array will raise an exception.

> A := Array([[1,2,3],[4,5,6]]);
123

A= (4.150)
4 56

> A[l,4]1;

Error, Array index out of range

> A[l,4] := a;

Error, Array index out of range

However, programmer indexing allows you to write to an entry that is outside the bounds
of the current Array. Instead of raising an exception, the Array are automatically resized so

that the element can be stored. Reading from an out-of-bounds index will still raise an ex-
ception.

4.4 Mutable Data Structures ¢ 151

>A(1,4) := a;
A(1,4) L23a (4.151)
14560 '
> A(3,5);
Error, index out of bounds
> A(3,5) :=b;
123 ado0
A3,5)=4 5600 (4.152)
000O0UD

More Array Indexing

There are more features of, and differences between, mathematical and programmer indexing.
For more information on Array indexing, refer to the rtable indexing help page.

Getting the Number of Elements in an Array

The numelems function returns the number of elements defined by the bounds of an Array.
> numelems (Array([1,2,3,4,5]))

5 (4.153)
> numelems(Array([[1,2,3]1,[4,5,61]1))’

6 (4.154)

Getting the Bounds of an Array

As Array bounds may not start at 1, it is important that procedures that accept Arrays be
aware of this possibility. The upperbound and lowerbound functions can be used to get
the bounds on the ranges of an Array.

> printer := proc(A)
local lower, upper, i, j;
lower := lowerbound(A);
upper := upperbound(A);
for i from lower[1l] to upper|[1l]
do
for j from lower[2] to upper[2]
do
printf("%a ", A[i,j])

152 « 4 Basic Data Structures

end do;
printf("\n");
end do;
end proc:
> printer (Array([[1,2],[3,4]]1)):
12
3 4
> printer(Array(2..5, 5..7, (x,y)->(x+y))):

789
8 9 10
9 10 11
10 11 12

Copying an Array

As with tables, having multiple variables referencing the same Array does not create new
copies of the Array. You can use copy to copy the Array.

>A := Array(1..2, 1..2):

> B := A;
00
B := (4.155)
00
> A[l,1] := 1:
> B;
10
(4.156)
00
> B := copy(A):
> A[l,2] := 2:
> A;
12
(4.157)
0
> B;
10
(4.158)
00

4.4 Mutable Data Structures * 153

Testing If Two Arrays Are Equal

For Arrays, there are two notions of equality: do two references point to the same Array,
or are they different Arrays that store the same values. To determine if two references refer
to the same Array, use = and evalb. To test if two Arrays contain the same elements, use
the EqualEntries command.

> CompareArray := proc(A, B)
if A = B then
print("two names for one array");
elif EqualEntries(A,B) then
print("same elements");
else
print("at least one element is different");
end if;
end proc:

> A := Array([[1,2],[3,411);

1 2
A= (4.159)
3 4
> AC := copy(A);
1 2
AC = (4.160)
3 4
> CompareArray (A,AC) ;
"same elements" (4.161)
> AR := A;
1 2
AR = (4.162)
3 4
> CompareArray (A,AR) ;
"two names for one array" (4.163)
> B := Array([[1,2],[3,5]])’
1 2
B (4.164)

35

154 < 4 Basic Data Structures

> CompareArray (A,B) ;
"at least one element is different” (4.165)

There are some other advanced notions of equality such as whether or not arrays with un-
defined entries should be treated as having equal entries, and whether a Matrix and Array
with identical entries should be considered the same. The IsEqual command in the Ar-
rayTools package allows for different solutions for these two issues compared to
EqualEntries. The ArrayTools package contains a variety of functions for working with
Arrays. For more information, refer to the ArrayTools help page.

Applying a Function to the Contents of an Array

map can be used with an Array as you would expect

> map (x->(x/2), Array([[1,2,3],[4,5,61]1));

1 3
2 ! 2

- (4.166)
2 il

> 3

indices, entries, and the in operator work with Arrays, so you can use Arrays in add, mul,
and for loops. entries(A,pairs) can also be used to obtain a list of index/value pairs in the
same way that it does for tables.

> A := Array([x,x”*3,sin(x)]):

> for entry in entries (A, 'pairs')
do
A[lhs(entry)] := diff(rhs(entry), x):
end do:

> A;
[13X cos(x)] (4.167)

Better Performance with Numeric Arrays

When creating an Array, you can specify a datatype for the Array elements. The given
datatype can be either a Maple type or a hardware datatype specifier: integer|[n], float[n],
complex|n]. n refers to the number of bytes of data for each element. For integer[n], n can
be 1, 2, 4, or 8. For float[n] or complex[n], n can be 4 or 8. The datatype integer|[4] uses
4-bytes, or 32-bits per integer, and integer[8] uses 8-bytes, or 64-bits. The 64-bit version
has a wider range of signed values, but uses more memory.

4.5 Other Data Structure Operations * 155

When assigning values into the Array, Maple will raise an exception if the given value does
not match the specified type.

> A := Array([1,2,3,4], datatype=float[8]);

A=[1 2. 3 4| (4.168)
> A[l];
1. (4.169)
> A[l] :=1.5;
A =15 (4.170)
> A[2] := x*2;

Error, unable to store 'x"2' when datatype=float[8]

If you are working with numeric values that can be stored in these hardware types, it can
be much faster to use an Array with a hardware type. For more information on numerical
programming in Maple, see Numerical Programming in Maple (page 273).

Deprecated: array

The array data structure is an older implementation of Arrays. Its use has been deprecated,
use Array instead.

4.5 Other Data Structure Operations

Filtering Data Structure Elements

The select, remove, and selectremove functions provide ways to filter the elements of data
structures.

select(£, x)

remove (£, x)

selectremove(£, x)

The parameter f must be a Boolean-valued function. This function is applied to each of the
elements of the data structure x. select returns the a data structure containing those elements
for which f returns true. remove returns a data structure containing those elements for which
f returns false. selectremove returns two structures, the first consisting of the elements for
which f returned true and the second consisting of the elements for which f returns false.

The type of the return value of these functions matches the type of the argument x.

156 < 4 Basic Data Structures

> x = [seq(i,i=1..10)];
x:=[1,2,3,4,5,6,7,8,9,10] (4.171)
> select(isprime, x);
[2’ 3,5, 7] (4.172)
> remove (isprime, x);
[1,4,6,8,9,10] (4.173)

> selectremove(isprime, x);
[2,3,5,7],[1,4,6,8,9,10] (4.174)
Calling selectremove is more efficient than calling select and remove separately.

Converting Data Structures

Maple provides the convert function, which allows various expressions to be converted
from one form to another.

convert (x, t)

convert attempts to convert the expression x into the form t. In particular, Maple supports
conversions between the list, set, table, and Array types.

>x := [1,2,3,4];
x:=[1,2,3,4] (4.175)
> convert(x, 'set');
{1,2,3,4} (4.176)
> convert(x, 'table');
table([1=1,2=2,3=3,4=4]) (4.177)

> convert(x, 'Array');

[123 4] (4.178)

4.6 Other Data Structures * 157

4.6 Other Data Structures

Records

In Maple, a record is a structured data type. It allows you to create a fixed-size structure
with user-defined fields. You can use records to create customized structures that can make
Maple code easier to read and write.

Create a Record

To create a new record, use the Record command. Record accepts a sequence of names as
parameters. Each name becomes a field in the returned record.

> r := Record('expression', 'variable');
¥ := Record(expression, variable) (4.179)
> r:-expression := x"*2;
expression = XZ (4.180)
> r:-variable := x;
variable := x (4.181)

> int(r:-expression, r:-variable);

1 (4.182)
3
If Record is passed a single record as an argument, a copy of that record is returned.
> r2 := Record(eval(r,1l));
r2 = Record(expression = X , variable = x) (4.183)
> r2:-expression := sin(x"2);
expression = sin(x°) (4.184)

> int(r2:-expression, r2:-variable);

1 J2 /r FresnelS ﬁx] (4.185)
2 /=

Note that you must call eval on r before passing it into Record. This is because records use
last name evaluation rules, similar to tables.

158 < 4 Basic Data Structures

Record Equality

As with Arrays, two references to Records are considered equal if they reference the same
structure. Two different structures that have the same fields and values are not considered
equal.

>r := Record('a'=l, 'b'=2, 'c¢'=3):

> rc

r:
> r2 := Record('a'=l, 'b'=2, '¢'=3):
> evalb(r = rc);

true (4.186)

> evalb(r r2);

false (4.187)

To compare two different records, you can use the verify command with the record argument.
verify/record returns true if the two records have the same set of fields with equal values
assigned to them.

> r3 := Record('a'=l, 'b'=2, 'c¢'=3, 'd'=4):
> r4 := Record('a'=l, 'b'=2, 'c'=4):

> verify(r, r2, 'record');

true (4.188)
> verify(r, r3, 'record');

false (4.189)
> verify(r, rd4, 'record');

false (4.190)

Packed Records

The Record constructor function can also be called with the indexed name Record|[packed],
to produce a packed record.

Unlike a regular record, a packed record does not create a unique instance of each field
name for each record instance. When working with thousands of similar records each with
many fields, this can save a significant amount of memory.

Fields of packed records do not exhibit last name evaluation. That is, the expression r:-a
always produces a value, even if that value is a procedure, table, Matrix, Vector, or another
record.

4.6 Other Data Structures * 159

Similarly, it is not possible for a packed record field to not have a value. The assigned
function will always return true, and unassigning a packed record field will set its value to
NULL instead.

Stacks

A stack is an abstract data type that provides two main operations: push and pop. A push
places a new value onto the top of the stack and pushes the existing elements down. A pop
removes the element from the top of the stack, moving the elements below up. This creates
a element access order referred to as last in first out (LIFO).

Stacks are useful for many operations. A typical use of a stack is to turn a recursive algorithm
into an iterative one. Instead of recursing on elements, those elements get pushed onto a
stack. When the current element has been handled, the element on top of the stack is removed
and handled next. By using a stack, the recently discovered elements are handled before
elements that were already in the stack, which is similar to how a recursive algorithm works.

Creating a Stack

In Maple, you can create a stack by calling stack:-new. If you do not specify any arguments,
stack:-new creates an empty stack. Maple stacks are implemented on top of tables.

> s := stack:-new():

> stack:-push(1, s);

1 (4.191)
> stack:-push(2, s);

P (4.192)
> stack:-pop(s);

2 (4.193)
> stack:-pop(s);

1 (4.194)

You can also pass values into stack:-new that populate the stack. These elements are pushed
in the order specified.

> s := stack:-new(1,2,3,4,5):
> stack:-pop(s)

5 (4.195)

160 < 4 Basic Data Structures

> stack:-pop(s)

4 (4.196)

Pushing and Popping

To push and pop elements onto the stack, use the stack:-push and stack:-pop functions.
> s := stack:-new():

> stack:-push(1, s):

> stack:-push(2, s):

> stack:-pop(s)

2 (4.197)
> stack:-push(3, s):
> stack:-pop(s)

3 (4.198)
> stack:-pop(s)

1 (4.199)

More Stack Functions
To get the number of elements stored in the stack, call stack:-depth.
> s := stack:-new(a,b,c):

> while stack:-depth(s) > 0

do
print(stack:-pop(s))
end do;
C
b
a (4.200)

To test if a stack is empty, call stack:-empty.
> s := stack:-new(c,b,a):
> while not stack:-empty(s)

do

print(stack:-pop(s))’
end do;

4.6 Other Data Structures * 161

b

c (4.201)
You can examine the element on the top of a stack, without removing it, by calling stack:-
top.
> s := stack:-new(x,x*2,sin(x)):

> stack:-depth(s) ;

3 (4.202)
> stack:-top(s);
sin(x) (4.203)
> stack:-pop(s) ;
sin(x) (4.204)
> stack:-depth(s) ;
2 (4.205)
> stack:-top(s) ;
X2 (4.206)
> stack:-pop(s) ;
XZ (4.207)
> stack:-depth(s) ;
1 (4.208)
> stack:-top(s) ;
X (4.209)

Queues

The queue is an abstract data type similar to a stack; however, instead of the most recently
added element being returned first, the oldest element in the queue is returned first. Elements
in a queue are analogous to people waiting in a line. The main operations provided by a

queue are enqueue, which adds an element to the queue, and dequeue, which removes an
element from the queue. The access order used by a queue is called first in first out, or FIFO.

162 < 4 Basic Data Structures

A queue is used when you want to handle elements in the order that they are discovered. A
typical example of using a queue is a breadth-first search of a graph. You dequeue a node
and then enqueue any unvisited nodes that are neighbors of the current node. By using a
queue, the order in which the nodes are visited is breadth-first.

Create a Queue

To create a queue in Maple, use the queue:-new command.
> g := queue:-new():

> queue:-enqueue(q, 1);

1 (4.210)
> queue:-enqueue(q, 2);

2 “211)
> queue:-dequeue(q);

1 4212)
> queue:-dequeue(q);

2 4213)

You can also pass values into queue:-new to populate the new queue. The elements are en-
queued in the order they are specified.

> q := queue:-new(1,2,3):
> queue:-dequeue(q);

1 4.214)
> queue:-dequeue(q);

2 4.215)
> queue:-dequeue(q) ;

3 4.216)

Enqueue and Dequeue

You can insert a new element into a queue using queue:-enqueue and remove an element
from the queue using queue:-dequeue.

> q := queue:-new():

> queue:-enqueue(q, 1):

4.6 Other Data Structures * 163

> queue:-enqueue(q, 2):
> queue:-dequeue(q) ;

1 @217
> queue:-enqueue(q, 3):
> queue:-dequeue(q) ;

2 4218)
> queue:-dequeue(q) ;

3 4219)

More Queue Functions
You can get the number of elements stored in the queue by calling queue:-length.
> g := queue:-new(a,b,c):

> while queue:-length(g) > 0

do
print(queue:-dequeue(q));
end do;
a
b
c (4.220)

You can test if a queue is empty by calling queue:-empty.
> gq := queue:-new(c,b,a):

> while not queue:-empty(q)

do
print(queue:-dequeue(q));
end do;
C
b
a 4.221)

You can examine the front element of a queue, without removing it, by calling queue:-front.

> gq := queue:-new(x,x*2,sin(x)):

164 < 4 Basic Data Structures

> queue:-length(q) ;

3 (4.222)
> queue:-front(q) ;

X (4.223)
> queue:-dequeue(q) ;

X (4.224)
> queue:-length(q) ;

2 (4.225)
> queue:-front(q) ;

XZ (4.226)
> queue:-dequeue(q) ;

XZ (4.227)
> queue:-length(q) ;

1 (4.228)
> queue:-front(q) ;

sin(x) (4.229)

4.7 Data Coercion

Data Coercion refers to the ability to take one data type and automatically convert it into a
different data type. This is particularly useful for arguments passed into a procedure, where
the expected data type for the procedure is explicitly declared. For more information on
data coercion in Maple, see the coercion help page.

Maple provides two methods for enabling data coercion. For more information see The
coercion Modifiers (page 213).

4.8 Data Structure Performance Comparisons

Maple provides many different data structures, many of which can be used together to per-
form specific tasks. However, the different performance characteristics of the data structures
means that some are better than others in certain situations.

4.8 Data Structure Performance Comparisons ¢ 165

Indexing

The time to perform an indexed look-up into a list, set, table, and Array are all constant
time operations. This means that the time needed to find the element does not vary based
on the number of elements stored in the structure. Time to perform a look-up into a list or
set is relatively similar and is faster than Arrays, which is faster than a table.

Similarly, writing into a table or Array is also a constant time operation, with Array look-
ups being slightly faster than table look-ups.

Membership

The member function determines if a particular element is stored in a structure. For lists,
this requires a linear search of the data in the list. Therefore, the time is proportional to the
total length of the list. A set is sorted, so searches of the list can be performed more quickly.
Searching within a set takes time proportional to the log[2] of the number of elements in
the set.

You can use a table for very fast membership testing. Use the table key as objects you want
to test for, and anything you want for the value. You can then call the assigned command
to test if the element exists in the table. A table index is a constant time operation, so this
membership test is also constant time.

>N := 2*1075:

> memtest := proc(D, N)
local i;

for i from 1 to N

do
member(i, D):
end do:
end proc:
>L := [seq(i, i=1..N)]:
> time (memtest(L,N)) ;
26.625 (4.230)
>SS := {seq(i, i=1..N)}:
> time (memtest(S,N)) ;
0.352 (4.231)

> t := table([seq(i=1, i=1..N)]):

166 < 4 Basic Data Structures

> start := time():
for i from 1 to N
do

assigned(t[i]):
end do:
time () -start;

0.200 (4.232)

Note that to benchmark the list and set membership functions, the call to member is within
a function. This is because of the Maple evaluation rules. If the call to the member command
is at the top level, the list or set is fully evaluated, which requires inspecting each element
of the list or set for each call to member. The overhead required for these full evaluations
would distort the results.

For more information on the Maple evaluation rules, see Unevaluated Expressions (page 46).

Building a Collection of Data

It is often necessary to build a collection of data when you do not know how many elements
you are going to have. You should use a table, Array (using programmer indexing), stack,
or queue. All of these mutable structures support adding elements in constant time. Using
an immutable data structure is slower; the use of a list or a set is not recommended in this
situation.

>N := 5*%10%4:
> A := Array([]):
start := time():
for i from 1 to N
do
A(i) :=1:
end do:

time () -start;

0.048 (4.233)

>t := table():
start:=time () :
for i from 1 to N
do
t[i] := 1:
end do:
time () -start;

0.092 (4.234)

4.9 Avoiding Common Problems « 167

>1 := []: # using a list is quite slow
start := time():
for i from 1 to N
do
1 :=1]op(l), i]:
end do:
time () -start;

47.802 (4.235)

4.9 Avoiding Common Problems

When working with data structures, there are a few common problems that you may en-
counter. This section describes some of these problems to help you avoid making these
mistakes yourself.

Passing Sequences into Functions

When a sequence is passed into a procedure, each element of the sequence is treated as a
separate argument. This can lead to errors if the procedure is unable to handle the multiple
arguments, for example, with the op command.

>s := a,b,c;
s:=a,b,c (4.236)
>op(2, s);
Error, invalid input: op expects 1 or 2 arguments, but received 4
Instead, wrap the sequence in a list.
>op(2, [s]);
b 4.237)

Incorrect Index Values

Be careful with the values used for indexing. Specifying values outside valid ranges will
raise exceptions. In particular, in Maple, lists and sets start indexing at 1, not 0.

> L := [112/31415/61718];
L=11,2,3,4,5,6,7,8] 4.238)
> L[O0];

Error, invalid subscript selector

168 < 4 Basic Data Structures

> L[9];

Error, invalid subscript selector

Further, when specifying the endpoints of a range, make sure that the left-hand side of the
range specifies an element before the element specified by the right-hand side.

> L[6..3];
Error, invalid subscript selector
> L[6..-5];

Error, invalid subscript selector

The only exception to this is if the left-hand side of the range is n, then the right-hand side
can be n-1 and the result of this range is an empty structure (list or set).

> L[6..5];

[(4.239)

Similar exceptions happen with using [] for selection from Arrays.

> A := Array([5,6,7,8,9,10]);
A=|56 7 8 9 10 (4.240)

> A[7];
Error, Array index out of range
> A[5..3]1;

Error, inverted range in Array index

Another type of index error occurs when sum is used instead of add to obtain explicit sums
over all the elements of a list, Array, Matrix, Vector, or similar data structures.

>V := Vector(5,{(1)=1, (2)=2, (3)=3, (4)=4, (5)=5}) :

> sum(V(n) ,n=1..5);

Error, unsupported type of index, n

Array Indices Do Not Always Start at 1

In an Array, the lower bound of the indices may not be 1. If you write a procedure that accepts
an Array, you should be prepared to handle Arrays that have been defined for a range of
indices that does not start at 1. For more information on how to write procedures that can
handle such Arrays, see Getting the Bounds of an Array (page 151).

4.10 Exercises ¢ 169

Do Not Treat Lists and Sets as Mutable

You can use commands such as op and subsop with lists and sets to create new structures.
It is, therefore, possible to treat lists and sets like mutable structures. However, by doing
s0, you can add a significant amount of processing time to your computations. Make sure
that you use actual mutable structures instead.

>N :

2*10%4:
>1

[seq(i=i, i=1..N)]:

>t := table(1):
start:=time () :
for i from N to 1 by -1
do
t[i] := evaln(t[i]):
end do:
time () -start;

0.032 (4.241)
> start := time():
for i from N to 1 by -1
do
1l := subsop(i=NULL, 1);
end do:
time () -start;
20.277 (4.242)

4.10 Exercises

1. Define a set with elements that are the powers of 13 modulo 100 for exponents ranging
from 1 to 1000. Is 5 a member of the set? Why is it beneficial to use a set instead of a
list?

Hint: You can determine the set by using one statement if you use the seq command.

2. Generate the sums of 4 and the first 100 multiples of 3. Determine the sums that are
square-free composite numbers.

Hint: The NumberTheory package has a function that you need to use.

3. Find floating-point approximations for the sum of the square root and cubic root of each
of the first 15 powers of 2.

Hint: Use map, seq, and zip.

170 < 4 Basic Data Structures

4. Write a procedure that implements the sieve of Eratosthenes: Count the number of integers
(less than or equal to a given integer) that are prime.

5 Maple Statements
5.1 In This Chapter

¢ Introduction

» Expression Statements
» Assignments

* Flow Control

* The use Statement

¢ Other Statements

5.2 Introduction

A statement is a single complete piece of code that Maple can execute. There are many
types of statements in Maple, including expression statements, assignment statements, se-
lection statements (if ... then), repetition statements (loops), and program instructions (quit,
save, read).

A statement differs from an expression in that it is normally evaluated for effect, rather than
for its value. Most statements that do not consist of a single expression are formed so as to
have a side effect.

5.3 Statement Separators

Statements in Maple must be terminated with a semicolon () or a colon (3).

Statements can be run in Maple one at a time, or multiple statements can be run on one line.
If multiple statements are run on one line, the statements must be separated by a statement
separator, either a semicolon (3) or a colon (:).

At the top level, the output of a statement that ends with a colon is hidden.
> a:=2: a*2;
4 (5.1)

Note: In the standard interface, for input in 2-D math, the semicolon at the end of a
statement can be omitted.

171

172 « 5 Maple Statements

5.4 Expression Statements

The simplest kind of statement in Maple is the expression statement. It consists of an arbitrary
expression, whose evaluation constitutes the effect of the statement.

> Pi;
n (5.2)
> sin(Pi - x);
sin(x) (5.3)
>int(sin(Pi - x), x);
-cos(x) (5.4)

5.5 Assignments

Assignment statements allow you to associate a value or expression with a name. The as-
signment statement has the general form

‘ lhs := rhs

Evaluating the assignment associates the value on the right-hand side of the assignment
with the name on the left-hand side. After the assignment has taken effect, the result is the
associated value when the assigned name is evaluated.

Here, the name a has no assigned value, so it evaluates to itself.

> a;
a (5.5)

The following assignment statement associates the value 2 / 3 with the name a.

>a =2/ 3;

a= < (5.6)

Subsequent evaluation of the name a results in the assigned value 2 / 3.

> a;
£ (5.7)

>a+ 1/ 3;

1 (5.8)

5.5 Assignments * 173

Associate the symbolic expression Pi/ 2 with the name b by executing the following assign-
ment statement.

>b :=Pi / 2;

b=—n (5.9)

Subsequently, the assigned value of b is used whenever the name b appears in an expression.
> sin(b);

1 (5.10)

In this expression, the assigned value Pi/2 of the name b is substituted to yield the expression
sin(Pi/2), and then the value of the procedure sin at this expression is computed, resulting
in the overall value 1 for the expression.

Multiple Assignment

You can perform several assignments in a single statement, known as a multiple assignment.
This has the general form

(lhsl, 1hs2, ..., 1lhsN) := (rhsl, rhs2, ..., rhsN)

The parentheses on the right- and left-hand sides of the assignment are not required, but are
considered good practice.

For example, the multiple assignment statement

> (x, y, z) := (sin(t), cos(t), tan(t)),
X, Vv, z := sin(t), cos(t), tan(t) (5.11)

establishes assigned values for all three names x, y, and z.

> x;

sin(t) (5.12)
> v

cos(t) (5.13)
> z;

tan(t) (5.14)

The number of components on each side of the assignment operator := must be the same.

174 « 5 Maple Statements

> (a, b, ¢) = (2, 3);

Error, ambiguous multiple assignment

A common idiom is to use a multiple (double) assignment to swap the values of two variables
without introducing an additional temporary variable.

> (x, y) := (1, 2):
> x;

1 (5.15)
> v

2 (5.16)
> (x, y) = (y, x):
> x;

2 (5.17)
> y;

1 (5.18)

Note that using the swap idiom with unassigned names will lead to an infinite recursion.
> (u, v) = (v, u);

wve=vu (5.19)

Evaluating u or v (full evaluation) produces an error. If you evaluate one level at a time
using eval(u, 1), you can see what happens.

> u;
> v;
> seq(eval(u, i), i =1 .. 10);
v,u,v,u,Vv,uVv,uv,u (5.20)
> seq(eval(v, i), i=1 .. 10);
uv,uv,uv,uvuyv (5.21)

Assignment Expressions

In addition to writing an assignment as a statement, an assignment can also appear almost
anywhere that an expression can appear, including within another expression. This is known
as an assignment expression or inline assignment.

5.5 Assignments * 175

An assignment used as or within an expression must always be enclosed in parentheses,
even when the immediately surrounding context would already be a set of parentheses.

> [(a:=1), (b :=2)];

[1,2] (5.22)
> a, b;
1,2 (5.23)
> s := sin((t := Pi/3));
¢ %H (5.24)

> s”2 + cos(t)*2;

1 (5.25)

The result of an inline assignment is the value that was assigned, that is, the evaluated right-
hand side of the assignment. This value can then be used by the enclosing context.

An assignment within an expression takes place only when and if the part of the expression
containing it is evaluated. This can be useful to reuse an expensive-to-compute value in
computed in the middle of a complex condition.

> f := unapply(int(1/(x*4+1) ,x), x):
x = 3.5;
if x > 0 and (t := evalf(f(sgrt(x)))) > 0 and t < 1 then
print(x,sqrt(t))

end if;
x:= 3.5 (5.26)

Except in the case of logical operators, which follow left-to-right McCarthy (short-circuit)
evaluation rules, it is generally not possible to predict the order in which the parts of an

expression will be evaluated. Therefore, an assigned name should not be used elsewhere in
the same expression with the expectation that the assignment has (or has not) taken place.

Inline assignment can be used to assign the same value to several variables in a single
statement. Here is an assignment statement whose right-hand side consists of a pair of nested
assignment expressions:

>a := (b := (¢ := evalf(Pi,10)));
a:= 3.141592654 (5.27)
> L := ["one","two","three","infinity"]:

for i from 1 to (last := numelems (L)) do

176 « 5 Maple Statements

Print a separator before the last element of the list.

if i = last then print(...") end if;
print(i,L[i])
end do:
1, llonen
2, vvtwon
3, "three"
4, "infinity" (5.28)

An inline assignment can often save duplication of code. For example, instead of writing,

> line := readline("myfile.txt");
while line <> 0 do
process line
line := readline("myfile.txt")
end do;

one can write the more succinct and less error prone:

> while (line := readline("myfile.txt")) <> 0 do
process line
end do;

5.6 Flow Control

A number of Maple statements are used to direct the flow of control in a program; that is,
the sequence in which the various statements of the program are run.

Sequencing

The simplest form of a Maple program is a sequence of zero or more statements, separated
either by semicolons or colons. A sequence of statements is run in the order in which they
are entered.

For example, running these three statements

>a = 2;

a="2 (5.29)

5.6 Flow Control < 177

b:=3 (5.30)
> sin(a + b);

sin(5) (5.31)

executes the assignment to the name a, then the assignment to the name b is executed and,
finally, the value of the expression sin(a + b) is computed.

The flow of control in a Maple program consisting of a sequence of statements moves from
one statement to the next, in order.

Many Maple statements are compound statements that contain statement sequences as
constituents.

Branching

The simplest form of flow control is a branching, or if statement. Basically, an if statement
has the syntax

if condition then

statseq

end 1if

in which condition is a Boolean-valued expression (that is, one which evaluates to one of
the values true, FAIL, or false), and statseq is a (possibly empty) sequence of Maple
statements, often called the body of the if statement.

The effect of an if statement is to divert the flow of control, under the right conditions, to
the body of the statement. If the condition expression evaluates to true, the flow of control
moves into the body of the if statement. Otherwise, if the condition expression evaluates
to FAIL or false, Maple exits the if statement and the flow of control continues at the
statement (if any) following the if statement.

> if 2 < 3 then
print("HELLO")
end if;

"HELLO" (5.32)

> if 2 > 3 then
print("GOODBYE")
end if;

More generally, an if statement has the syntax

178 « 5 Maple Statements

if condition then
consequent
else
alternative

end 1if

Here, consequent and alternative are statement sequences. If the condition expression
evaluates to true, the consequent branch of the if statement is executed. Otherwise, the

alternative branch is executed.

> if 2 < 3 then
print("CONSEQUENT")
else
print("ALTERNATIVE")
end if;

"CONSEQUENT"

> if 2 > 3 then
print("CONSEQUENT")
else
print("ALTERNATIVE")
end if;

"ALTERNATIVE"

(5.33)

(5.34)

The most general form of an if statement can have several conditions, corresponding con-

sequents, and an optional alternative branch. This general form has the syntax:

if conditionl then
consequentl
elif condition2 then

consequent?2

else
alternative

end 1if

in which there can be any number of branches preceded by elif. The effect of this general
form of the if statement is to divert the flow of control into the first branch whose conditional
expression evaluates to true. This means that the order of the elif branches can affect the

behavior of the if statement.

5.6 Flow Control

« 179

The branch introduced by else is optional. If it is present, and none of the earlier condition
expressions evaluates to true, then control flows into the else branch. If it is not present,
and none of the earlier condition expressions evaluates to true, then the flow of execution

continues with the first statement following the entire if statement.

> if 2 > 3 then

print("CONSEQUENT1")
elif 3 > 4 then

print("CONSEQUENT2")
elif 1 < 5 then

print("CONSEQUENT3")
elif 2 < 5 then

print("CONSEQUENT4")
else

print("ALTERNATIVE")
end if;

"CONSEQUENT3"

> if 2 > 3 then

print("CONSEQUENT1")
elif 3 > 4 then

print ("CONSEQUENT2")
elif 1 > 5 then

print("CONSEQUENT3")
elif 2 > 5 then

print("CONSEQUENT4")
else

print("ALTERNATIVE")
end if;

"ALTERNATIVE"

The else branch, if present, must appear last.

(5.35)

(5.36)

An if statement can appear at the top level, as in the examples shown above, but is most

commonly used within a procedure or module definition.

A typical use of the if statement is to control the flow of execution inside a procedure, de-

pending on information coming from the arguments passed to it.

> p := proc(expr)
if type(expr, 'numeric') then
sin(2 * expr)
elif type(expr, { ''+°', '"**°' }) then
map (thisproc, _passed)

180 « 5 Maple Statements

else
'procname' (_passed)

end if
end proc:
>p(2);
sin(4) (5.37)
>p(x);
p(x) (5.38)
>p(x+1);
p(x) + sin(2) (5.39)

In this example, the procedure p uses the type command to examine its argument expr. If
the argument is numeric, then it computes the value as sin(2 * expr). Otherwise, if the ar-
gument is either a sum or a product, the procedure maps itself over the operands of the ex-
pression. Otherwise, the procedure returns unevaluated.

The if Command

There is an operator form of branching that can be used within an expression. In this form,
if is always called with three arguments. The if operator has the following syntax:

"if’ (condition, consequent, alternative)

The first argument condition is a Boolean-valued expression. The second argument con-
sequent is an expression to evaluate if the first argument evaluates to the value true. The
third argument is an expression to evaluate if the first argument evaluates to either false or
FAIL.

> if'(1<2, a, b);

a (5.40)
> if*'(1>2, a, b);

b (5.41)
Note that the name if must be enclosed in name (left) quotes in this form.

The if command evaluates only one of its second and third arguments, determined based
on the value of the first argument. The other argument is not evaluated.

The value of the if command (as opposed to the statement form) is that you can embed it
within a larger expression.

5.6 Flow Control « 181

>a := 2/3:
> sin("if'(a >0, Pi / 2, -Pi / 2));

1 (5.42)

However, the if command is much more limited than the if statement. The consequent and
alternative must be single expressions, and there is nothing corresponding to the elif parts
of the statement form.

Loops

To cause a statement, or sequence of statements, to be run more than once, use a loop
statement. Maple has a general and flexible loop statement.

The simplest loop has the form do end do. This loop does not perform any tasks.

A loop statement has one of the following general forms.

for var from start to finish by increment while condition do
statseq

end do

for var from start to finish by increment while condition do
statseq

until condition

for var in container while condition do
statseq

end do

for var in container while condition do

statseq

until condition

The first line in each of these forms is called the loop header or, more formally, the loop
control clause. The statseq part of the loop is a (possibly empty) sequence of statements,
referred to as the body of the loop.

Each clause that occurs before the keyword do in the loop header is optional.

Since most of the examples below are infinite loops; you must interrupt the Maple compu-
tation to terminate the loop. For more information, see Interrupting a Maple
Computation (page 11).

> do end do;

182 « 5 Maple Statements

> by -14 do end do;

> for i1 do end do;

> from 42 do end do;

> to 3 do end do;

> while true do end do;

> do until false;

If more than one of the optional clauses appears in the loop header, they may appear in any
order, except that the for clause, if present, must appear first.

While Loops

One simple kind of terminating loop is the while loop.

while condition do
statseq

end do;

The loop header of a while loop involves only a single termination condition introduced by
the keyword while. The loop repeats the statement sequence statseq as long as the Boolean-
valued expression condition holds.

In this example, a loop counts the number of primes whose square is less than 1000.

> count := 0:
p = 2:
while p*2 < 1000 do
count := 1 + count;

P := nextprime(p)
end do:
count;

11 (5.43)

This example uses the nextprime command, which returns the least prime greater than its
argument. The name count is given the initial value 0, and the name p, which is used to
store the current prime, is initially set to 2. The loop condition is the expression p”2 < 1000,
appearing after the keyword while and before the keyword do. This condition is evaluated
at the beginning of each iteration of the loop. If the condition evaluates to true, the body
of the loop is executed. If the condition evaluates to false or FAIL, the code continues to
execute at the next statement following the loop statement.

If the condition expression evaluates to a value other than true, false or FAIL, an exception
is raised.

5.6 Flow Control < 183

> while 3 do end do;
Error, invalid boolean expression: 3

> while u < v do end do;

Error, cannot determine if this expression is true or false: u < v

For more information on Boolean expressions, see Boolean and Relational
Expressions (page 86).

Until Loops

Another kind of terminating loop is the until loop.

do

statseq

until condition;

Like a while loop, an until loop has a single terminating condition, introduced by the
keyword until. The until loop differs from the while loop in several respects:

* The until clause appears in place of end do rather than in the loop header.

» The condition is tested at the end of each iteration of the loop, instead of the beginning.
As a consequence, the loop's statseq will always be executed at least once.

* The loop repeats until the condition holds.

« If the condition evaluates to FAIL, an exception is raised.

A benefit of checking the condition at the end of the loop is that the condition may depend
on values only calculated for the first time within the loop.

In this example, an until loop is used to implement the functionality of nextprime, yielding
the next prime number after a given number, even if the given number is already prime.

>N := 23;
do
N =N+ 1
until isprime (N):
N;
N:= 23
29 (5.44)

Had this been written as a while loop with condition not isprime(N), the result would have
been 23, not 29.

184 « 5 Maple Statements

Counted Loops

You can use a loop to repeatedly execute a sequence of statements a fixed number of times.
These loops use the from and to clauses.

> from 1 to 3 do print("HELLO") end do;
"HELLO"
"HELLO"
"HELLO" (5.45)

or equivalently

> to 3 do print("HELLO") end do;
"HELLO"
"HELLO"
"HELLO" (5.46)
If the from clause is omitted, the default value of 1 is used.
Inductive Loops

The most common kind of loop is an inductive loop which is similar to a counted loop, but
uses an induction variable whose value changes at each iteration of the loop. This is a par-
ticular kind of for loop with the general form

for var from start to finish by increment do

statseq

end do;

The default value for start is 1, for finish is infinity, and for increment is 1.

> for i to 3 do

print(i)
end do;
1
2
3 (5.47)

This loop performs the following tasks:

* Maple assigns i the (default) value 1 since a starting value was not specified.

5.6 Flow Control < 185

* Because 1 is less than 3, Maple executes the statement in the body of the loop, in this
case, printing the value of'i.

* Then i is incremented by 1 and tested again.

» The loop executes until i>3. In this case, when the loop terminates, the final value of'i is
4.

> 1i;
4 (5.48)

In the next example, the increment is a negative number.

> for i from 7 to 2 by -2 do

print(i)
end do;
7
5
3 (5.49)

Note: Since loops are increasing by default (increment by 1), the statement for i from 7 to
2 do print (i) end do; does not do anything unless you specify the increment as a negative
number. In this case, the loop increment is -2.

Loop control parameters (start, finish, and increment) do not need to be integers.

> for i from 0.2 to 0.7 by 0.25 do

print(i)
end do;
0.2
0.45
0.70 (5.50)

In addition to iterating over a numeric range, you can iterate over a range of characters. In
this case, you must specify both the initial value start and the final value finish for the in-
duction variable. Furthermore, the value of increment must be an integer.

186 « 5 Maple Statements

> for i from "a" to "g" by 2 do

print(i)
end do;
"
nen
nan

n._n

(5.51)

Iterating over a Data Structure

An alternative form of the loop statement allows you to iterate over the operands of an ex-
pression (often, a data structure such as a set or list).

for var in expr do

statseqg

end do;

The induction variable var takes on, successively, the operands of the expression expr.
There are a few exceptions. First, if expr is an expression sequence, it does not have operands
as such, but the induction variable var iterates over the operands of the list [expr]. If expr
is a table, the loop iterates over [entries](expr). (For more information on entries, see
Extracting Data (page 143).) The order in which these entries are visited is not specified
and may vary from one session to another. Finally, if expr is an rtable, the loop iterates
over the entries of expr, but the order of the iteration is not specified.

>for iin [1, 2, 3] do

print(i)
end do;
1
2
3 (5.52)

Note that there is a difference between the loop above and the seemingly equivalent loop

5.6 Flow Control < 187

> for i from 1 to 3 do

print(i)
end do;
1
2
3 (5.53)

The difference is the value of the induction variable i at the end of the loop. To see this,
evaluate the induction variable i immediately after running the loop to display its value.

> for i in [1, 2, 3] do end do: i;
3 (5.54)
> for i from 1 to 3 do end do: i;

4 (5.55)

Looping Commands

Maple provides commands to create some commonly used types of loops. These commands
are generally meant to build expressions without creating many intermediate expressions.

The map Command

The map command applies a function to every element of an aggregate object. The simplest
form of the map command is

map(f, x)

where fis a function and x is an expression. The map command replaces each operand elem
of the expression x with f(elem).

For tables and Arrays (or other rtables), the function is applied to each entry.

> map(£, [a,b,c]);
[f(a), f(b), f(c)] (5.56)

Given a list of integers, you can create a list of their absolute values and of their squares by
using the map command.

>L:=1[-1, 2, -3, -4, 51];

L:=1[-1,2,-3,-4,5] (5.57)

188 « 5 Maple Statements

> g:=map (abs, L);
a=11,2,3,4,5] (5.58)
> map (x->x72, L);

[1,4, 9,16, 25] (5.59)

The general syntax of the map command is

‘ map(£, x, y1, ..., yn) ‘

where f is a function, x is any expression, and y1, ..., yn are expressions. The action of map
is to replace each operand of x such that the ith operand of x is replaced by f(op(i,x), y1,

cess YID).
> map(£, atb+c, x, y)

fla,xy) +f(bxy) +flcxy) (5.60)
> map((x,y) -> x*2+y, L, 1);
[2,5,10,17,26] (5.61)

For more information and examples, see Basic Data Structures (page 127).

The select, remove, and selectremove Commands

The select, remove, and selectremove commands also operate on the operands of an expres-
sion. The select command returns the operands for which the specified Boolean-valued
function returns true. The remove command returns the operands for which the specified
Boolean-valued function returns false. The selectremove command returns two objects: the
operands for which the specified Boolean-valued function returns true and the operands
for which the specified Boolean-valued function returns false. The select, remove, and se-
lectremove commands have the same syntax as the map command.

> X 1= -3*%yt4*z - wky*z” 2 + 2%x*y*2 + 2*%y*3 + 3*wxz;
Xi= -3y z—wyZ +2x) +2y +3wz (5.62)
> select (has, X, z);
A 2 (5.63)
-3y z—wyz +3wz :

> remove (x -> degree(x)>3, X);

2xy'+2y +3wz (5.64)

For more information on these commands, see Other Data Structure Operations (page 155)
or refer to the select help page.

5.6 Flow Control < 189

The zip Command

The zip command merges two lists or Arrays and then applies a binary function. The zip
command has two forms

zip (£, u, V)

zip (£, u, v, d)

where f is a binary function, u and v are both lists or rtables, and d is any value. The zip
command takes each pair of operands u[i], v[i], and creates a new list or vector from f(uli],

vliD.
> le((er) ->x || Yy, [alblcldlelf]I [11213141516]);

[al, b2, c3, d4, e5, (6] (5.65)

If the lists or vectors are not the same length, the length of the result depends on whether
you provide the argument d.

If you do not specify d, the length of the result is the same as the length of the smaller list
or vector.

>le((er) -> xty, [2,b,c,d,e,f], [1,2,3]);
[a+1,b+2,c+3] (5.66)

If d is specified, the length of the result of the zip command is the same as the length of the
longer list or vector. Maple replaces the missing value(s) with d.

> zip((x,y) -> x+y, [a,b,c,d,e,f], [1,2,3], xi);

[a+1,b+2,c+3,d+& e+E& f+E] (5.67)

Non-Local Flow Control

There are a couple of statements that are generally used in procedures to control how exe-
cution of the procedure ends: return and error. For more information on these statements,
see Procedures (page 201).

The return Statement

The return statement causes an immediate return to the point where the current procedure
was invoked.

In Command-line Maple, the return statement causes an error if it is run at the top level:
Error, return out of context. In the Standard worksheet interface, return can be used at the
top level in conjunction with DocumentTools:-RunWorksheet.

190 < 5 Maple Statements

The error Statement and Exception Handling

The error statement raises an exception and interrupts the execution of the current statement.
If the exception is not caught (see the following section), a message is printed indicating
that an error occurred.

error string

error string, parameterl, parameter2,

In the first case, an error message is given as a string.
> error "my error";

Error, my error

In the second case, string contains several placeholders of the form %n or %-n, where n
is a positive integer, to include the provided parameters in the message.

The placeholder %n is replaced by the nth parameter given. The placeholder %-n is replaced
by the ordinal form of the nth parameter, which should evaluate to an integer. The special
placeholder %0 is replaced with the sequence of all parameters separated by commas and
spaces.

>x := a+b: n := 10;
n:=10 (5.68)
> error "my error in %1 of the %-2 kind", x, n;

Error, my error in a+b of the 10th kind

Trapping Errors

The try statement is a mechanism for executing procedure statements in a controlled envir-
onment so that if an error occurs, it does not immediately terminate the procedure. The try
statement has the following syntax

try tryStatSeqg
catch catchStrings : catchStatSeq

finally finalStatSeq

end try

This statement can include several catch clauses. The finally clause is optional.

If procedure execution enters a try...catch block, the tryStatSeq is executed. If no exceptions
occur during the execution of tryStatSeq, the finalStatSeq in the finally clause (if present)
is executed. Execution then continues with the statement after end try.

5.6 Flow Control « 191

If an exception occurs during the execution of tryStatSeq, execution of tryStatSeq termin-
ates immediately. The exception object corresponding to the exception is compared against
each catchString. Any number of catch clauses can be provided, and each can have any
number of catchStrings separated by commas. Alternatively, a catch clause does not need
to have a catch string. Any given catchString (or a catch clause without one) can appear
only once in a try...end try construct.

If a matching catch clause is found, or the catch clause contains no catchStrings, the
catchStatSeq of that catch clause is executed, and the exception is considered to have been
caught. If no matching catch clause is found, the exception is considered not caught, and
is re-raised outside of the try block.

When Maple searches for a matching catch clause, the following definition of "matching"
is used.

 Neither the exception object nor the catchStrings are evaluated (the exception object
has already been evaluated by the error statement that produced it).

* The catchStrings are considered to be prefixes of the exception object's msgString. If
a catchString has n characters, only the first n characters of the msgString need to match
the catchString. This permits the definition of classes of exceptions.

* A catch clause without a catchString matches any exception.

* The "result" of a try statement (the value that % returns if it is evaluated immediately
after execution of the try statement) is the result of the last statement executed in the try
statement.

A catchStatSeq can contain an error statement with no arguments, which also re-raises the
exception. When an exception is re-raised, a new exception object is created that records
the current procedure name, and the message and parameters from the original exception.

Normally, the finalStatSeq of the finally clause, if there is one, is always executed before
control leaves the try statement. This is true in the case that an exception occurs, independent
of whether it is caught or whether another exception occurs in the catch clause.

This is true even if a catchStatSeq re-raises the exception, raises a new one, or executes a
return, break, or next statement.

Under certain abnormal circumstances, the finalStatSeq is not executed:

» Ifan exception is caught in an interactive debugger session and you exit the debugger

192 « 5 Maple Statements

* If one of the following untrappable exceptions occurs, the exception is not caught, and
finalStatSeq is not executed:

1. A computation timed out. This exception can only be caught by the timelimit command,
which raises a "time expired" exception that can be caught. For more information on the
timelimit command, refer to the timelimit help page.

2. A computation has been interrupted. In other words, you pressed Ctrl+C, Break, or
equivalent.

3. Internal system error. This exception indicates a bug in Maple itself.

4. ASSERT or local variable type assertion failure. Assertion failures cannot be trapped
because they indicate a coding error, not an algorithmic failure.

5. Stack overflow. If a stack overflow occurs, there is generally not enough stack space to
perform tasks such as running cleanup code.

If an exception occurs during the execution of a catchStatSeq or the finalStatSeq, it is
treated in the same way as if it occurred outside the try...end try statement.

Example 1

A useful application of the try and error statements is to stop a large computation as quickly
and cleanly as possible. For example, suppose that you are trying to compute an integral by
using one of several methods, and in the middle of the first method, you determine that it
will not succeed. You want to stop that method and try another one. The following code
implements this example.

> try
result := MethodA(f, x)
catch "FAIL":
result := MethodB(f, x)
end try:

MethodA can stop its computation at any time by executing the statement error "FAIL".
The catch clause catches that exception, and proceeds to try MethodB. If any other error
occurs during the execution of MethodA, or if an error occurs during the execution of
MethodB, it is not caught.

Example 2

Another useful application of the try statement is to ensure that certain resources are made
available when you are done with them, regardless of whether anything went wrong while
you were using them.

Use the following code to access the Maple 1/0 facilities to read the lines of a file and process
them in some way.

5.7 The use Statement * 193

> £ := fopen("myfile" ,READ, TEXT) :
try
line := readline(f);
while line < 0 do
ProcessContentsOfLine (line) ;
line := readline (f)
end do
finally
fclose (£)
end try:

In this example, if any exception occurs while reading or processing the lines of the file, it
is not caught because there is no catch clause. However, fclose(f) is executed before execution
leaves the try statement, regardless of whether there was an exception.

The next example uses both catch and finally clauses to write to a file instead of reading
from one.

> f := fopen("myfile" ,WRITE, TEXT) :

try

for i to 100 do
fprintf (f,"Result %d is %q\n",i,ComputeSomething(i))

end do

catch:
fprintf (£, "Something went wrong: %gq\n",lastexception) ;
error

finally
fclose (£f)

end try:

If an exception occurs, it is caught with the catch clause that has no catchString, and the
exception object is written into the file. The exception is re-raised by executing the error
statement with no msgString. In all cases, the file is closed by executing fclose(f) in the

finally clause.

5.7 The use Statement

The use statement specifies local bindings of names, module exports, and operator overriding.
It has the following syntax:

use exprseq in

sStateseq

end use

194 « 5 Maple Statements

where stateseq is a sequence of statements and exprseq is a sequence of expressions.

The expressions can be any of the following.
* equation of the form name = expression
* module member selection m:-e, which is equivalent to the equation e = m:-e

» module expression m, which is equivalent to the equations e = m:-e for all exports e of
m.

For more information about modules and member selection, see Programming with
Modules (page 313).

Running a use statement executes the body of the statement. Each occurrence of a name
that appears on the left side of any of the binding equations is replaced by the right side of
the corresponding equation.

For example,

> use £ = sin, g = cos in
f(x)*2 + g(x)*2
end use;

sin(x)? + cos(x)* (5.69)
The following example establishes local bindings for all of the exports of the StringTools

package.

> use StringTools in
s := Random(10, 'lower');
Reverse(s)
end use;

"mzykxxmchy" (5.70)

Among these are the names Random and Reverse. Without the use statement enclosing
them, the two statements would have to be written using fully qualified names.

> s := StringTools:-Random(10, 'lower');
s := "ifmmfydhnl" (5.71)
> StringTools:-Reverse(s);

"Inhdyfmmfi" (5.72)

You can employ the use statement to establish general name bindings.

5.7 The use Statement « 195

>use a =2, b=3, ¢c =4 in
a+ b+ c
end use;

9 (5.73)

(This is useful when the names bound are used many times within the body of the use
statement.)

The use statement is unique in Maple. It is the only Maple statement that is resolved during
the automatic simplification process rather than during the evaluation process. To see this,
consider the following simple procedure.

>p = proc(x, y)
use a =x+y, b=x*yin
a/b
end use
end proc;

p = proc(x,y) (x+y)/(y*x) end proc (5.74)

Note that there is no use statement in the procedure after it has been processed, and a and
b in the body have been replaced by the values on the right-hand side of the binding equa-
tions. To see that this processing occurred during automatic simplification (of the procedure
definition), enclose the procedure definition in unevaluation quotes.

>p = 'proc(x, y)
use a=x+y, b=x*y in
a/b
end use

end proc';
p = proc(x, y) (x+)/(y*x) end proc (5.75)

use statements can be nested.

> use a =2, b=4 in
use x = 3, y =5 in
a*x+b+*y
end use
end use;

26 (5.76)

If aname is bound in use statements at two different levels of nesting, the innermost binding
visible at the level of an expression is used.

196 « 5 Maple Statements

9 (5.77)

In the following example, the inner binding of the value 3 to the name a takes precedence,
so the value of the expression a + b (and therefore the entire statement) is the number 6.
The inner binding of 3 to a has an effect only within the body of the inner use statement.
Once the execution has exited the inner use statement, the binding of 2 to a is restored.

> use a =2, b =3 in

here a is bound to 2 and b to 3

use a = 3 in
here, b is still bound to 3, but a is bound to 3
a+b

end use;

binding of a to 2 is restored

a+hb

end use;

5 (5.78)

The use statement also allows you to rebind Maple operators to override their default beha-
vior. The following is an example in which addition and multiplication are replaced by
nonstandard meanings.

>use "+ = ((x,y) -> (x+y) mod 3), *' = ((x,y) -> (x*y) mod 3) in
1+2*4
end use;
0 (5.79)

The following operators can have their default behavior overridden by a use statement.

Table 5.1: Operators That Can Be Rebound

@ ea %

+ * -

oo
o
oo
oo
o°

~
3
o
o
>

! union minus intersect subset in

5.8 Other Statements * 197

S and or not Xor implies
= <> < <= assuming <|>

<, > [] {} 2 () ?[] ~
Notes:

 The following operators cannot be rebound: concatenation operator (||), member selection
operator (:-), type operator (::), range (..), comma (,), functional operator (->), and the
assignment operator (:=). The relational operators > and >= can be rebound, but not inde-
pendently of < and <=, respectively.

» All of the element-wise operators are processed through the element-wise operator (~).

* The operators - and / are treated as unary operators (that represent negation and inversion,
respectively). Subtraction is represented internally in Maple by forming addition and
negation: a - b =a + (-b). Division is formed in a similar way. Therefore, it is not neces-
sary to override the binary infix operators - and /.

Note also that an expression such as a + b + ¢ + d is treated as though it were parenthesized
as ((a +b) + ¢) +d, so that each + operator is binary. For example,

> use '+ = F in
a+b+c+ d;
a+ ((b+c) +4d)
end use;

F(a, F(F(b, c), d)) (5.80)
5.8 Other Statements

The quit Statement

The Maple keywords quit, done, and stop perform the same task and, when entered in the
command-line interface, cause the Maple process to terminate.

> quit

> done

> stop

Note: The quit statement cannot be used in the Maple standard interface. In the standard
interface, use File > Close Document to end your Maple session.

quit, stop, and done are available as command names if quoted using name quotes. These
forms allow you to exit Maple while passing an integer in the range 0 .. 255 as an argument
to be returned to the calling process as exit status.

198 « 5 Maple Statements

The save Statement

You can save Maple expressions to a file by using the save statement. It has the general
form

save namel, name2, ..., nameN, file

The names namei are names (that have assigned values) to be saved to the file file.
Normally, the file name file is a string.

For example, make the following three assignments and run the subsequent save statement.

>a :=proc(x) sin(x / 2) end proc:
>Db := 42:
> c := "some text":

> save a, b, c, "myfile.txt";

The file myfile.txt is created in the current directory (assuming adequate file permissions)
containing the following Maple assignment statements.

a := proc (x) sin(l/2*x) end proc;
b := 42;
c := "some text";

The read Statement

The read statement takes the following form.

read filename

where filename is a string.

> read "myfile.txt";
c = "some text"
b:= 42
a = proc(x) sin(1/2*x) end proc (5.81)

The file named by filename must consist of valid Maple language statements. The statements
in the file are executed as they are read, as though they were input into the Maple session
in which the read statement was entered. Maple displays the results of executing each
statement. However, the input statements are not echoed to the interface, by default. To

change this, set the interface variable echo to a value of 2 or higher.

5.9 Exercises * 199

> interface('echo' = 2):

5.9 Exercises

1. Find the product of the square root of all prime numbers less than 100.

Hint: The function isprime determines the primality of an integer.
. Find the sum of all odd composite numbers less than 150.
. Find the sum of the first 30 powers of 2.

. Write a looping structure that finds the four substrings (of a string assigned to the name
MyString) containing only lowercase letters, uppercase letters, decimal digits, and special
characters.

Hint: You can use relational operators to compare characters.

. Write a procedure, SPLIT, that, on input of a product f and a variable x, returns a list of
two values. The first item in the list should be the product of the factors in f that are in-
dependent of x, and the second item should be the product of the factors that contain an
X.

Hint: Use the has, select, remove, and selectremove commands.

200 < 5 Maple Statements

6 Procedures

A Maple procedure is a sequence of parameter declarations, variable declarations, and
statements that encapsulates a computation. Once defined, a procedure can be used to perform
the same computation repeatedly for different argument values, from different places in a
program, or both. A procedure in Maple corresponds to a function in languages such as C
or Java, a procedure or function in Pascal, or a subroutine in FORTRAN and modern versions
of BASIC.

Chapter 1 gave a brief introduction to procedures. This chapter describes the syntax and
semantics of procedures in detail, and discusses how to best make use of procedures in your
programs.

6.1 Terminology

Several terms are used frequently when discussing procedures in Maple and other program-
ming languages. Some of these terms are sometimes used interchangeably, but the distinctions
between them are important:

Procedure - In Maple, a procedure is an object that can be invoked by a function call, be
passed arguments, perform some operations, and return a result. A procedure definition
begins with the keyword proc, and ends with end proc.

Function Call - A function call, of the form name(arguments), evaluates the arguments
and then invokes a procedure if name has a value that is a procedure. The value of the
function call is then the value returned by the procedure. If name has no value, then the
value of the function call is just name(evaluated Arguments).

Argument - An argument is one of one or more values explicitly included in a function call.
Note that a default value is not an argument.

Parameter or Formal Parameter - A parameter is a name that is declared in a procedure
definition to receive the value of an argument. The parameter name is used to refer to that
value within the body of the procedure.

Actual Parameter - An actual parameter is neither an argument nor a (formal) parameter.
The term refers to the value that a formal parameter takes during the execution of a procedure.
This value can come from an argument or a default value. The term is defined here for
completeness; it is not further used in this chapter. Instead we will refer to the value of the
parameter.

201

202 +« 6 Procedures

6.2 Defining and Executing Procedures

A Maple procedure definition has the following general syntax:

proc(parameterDeclarations) :: returnType;
description shortDescription;
option optionSequence;
local localVariableDeclarations;
global globalVariableDeclarations;

statementSequence

end proc

A procedure definition is considered to be an expression in Maple, the evaluation of which
produces the procedure itself. The resulting procedure is usually assigned to a name, but it
can also be used in other ways such as passing it as an argument to another procedure, or
invoking it immediately.

The following is a simple procedure definition. It contains two formal parameters, x and y,
and one statement in the procedure body. There is no description, there are no options, and
the procedure does not make use of any local or global variables. In order to be able to use
the procedure later, we'll assign it to a name:

> SumOfSquares := proc(x, y)
x*2 + y*2
end proc;

SumOfSquares = proc(x, y) xA2 +yA2 end proc (6.1)

This procedure computes the sum of the squares of its two arguments. The procedure can
be called with any two arguments and Maple will attempt to compute the sum of their
squares. Like any computation in Maple, the result can be symbolic. If you want to restrict
the types of arguments that are permitted, it is possible to specify the type for each argument
in the parameter declarations, as described in the next section.

You can invoke (or execute) a procedure by using it in a function call:

procedureName (argumentSequence)

The procedureName is usually the name that the procedure was assigned to, although it
can also be an actual procedure definition, or another expression that evaluates to a procedure.

The argumentSequence is a sequence of expressions that will be evaluated, and then sub-
stituted for the corresponding parameters before the execution of the statements comprising
the body of the procedure. Note that the arguments are evaluated only once before the exe-

6.3 Parameter Declarations * 203

cution of the procedure begins. They are not evaluated again during execution of the pro-
cedure.

The value returned by the procedure is the result of the last statement executed within the

procedure. In the following function call, Maple executes the statements in the body of the
procedure SumOfSquares, replacing the formal parameters x and y with the arguments a

and 3. The result of the last (and in this case, only) statement in the procedure is the returned
value:

> SumOfSquares (a,3) ;

a’+9 (6.2)

For more information about return values, see Returning Values from a Procedure (page 240).

6.3 Parameter Declarations

In the procedure definition, parameterDeclarations is a sequence of parameter declarations.
Procedure parameter declarations can range from very simple to very sophisticated. In its
simplest form, a parameter declaration is just the parameter's name. When you call the
procedure, you can pass any value as an argument for such a parameter, and if you pass no
value at all, the parameter will have no value.

You can extend a parameter declaration by adding a type specification and/or a default
value. A type specification ensures that, when the procedure is called, the value of the
parameter within the procedure will be of the indicated type, and a default value ensures
that a parameter will always have a value even if no corresponding argument was passed.

Maple procedures can also have keyword parameters. When invoking a procedure, the
corresponding arguments are of the form keyword=value, and can appear anywhere in the
argument sequence.

When you call a procedure, the arguments are evaluated and then bound to the parameters.
In the simplest case, there is a one-to-one correspondence between arguments and parameters;
the first argument is bound to the first parameter, the second argument to the second para-
meter, and so on. The presence of default values and keyword parameters can change this
correspondence, as described in this section.

Required Positional Parameters

A required positional parameter is called required because a corresponding argument must
have been passed in the function call that invoked the procedure if the parameter is used
during the execution of the procedure. It is called positional because the argument's position
within argumentSequence must correspond to the position of the parameter in parameter-
Declarations.

204 <« 6 Procedures

The syntax to declare a required positional parameter is:

parameterName :: parameterType

The parameterName must be a valid symbol, and is used to refer to the parameter within
the procedure body. The :: parameterType is optional. If it is present and the corresponding
argument does not match the specified type, an exception is raised.

In this example, the procedure Adder is defined with two parameters, a and b. The procedure
returns the sum of its two arguments. For the parameter a, Adder expects an argument of
type integer.

> Adder := proc(a::integer, b) a+b end proc:
> Adder (2,3);
5 6.3)

The next call to Adder raises an exception because the second argument is missing.
> Adder (3) ;

Error, invalid input: Adder uses a 2nd argument, b, which is missing

This call raises an exception because the supplied first argument does not match the para-
meter's specified type.

> Adder(2.5,4);

Error, invalid input: Adder expects its 1lst argument, a, to be of type

integer, but received 2.5

If a procedure has both required and ordered parameters (described below), all of the required
parameters must appear before the ordered parameters.

Optional Ordered Parameters

An optional ordered parameter is declared in the same way as a required positional parameter,
with the addition of a default value:

parameterName :: parameterType := defaultValue

The presence of defaultValue allows the parameter to be optional. If there are no remaining
arguments or the next unused argument does not match the specified parameterType, the
parameter receives the default value. The non-matching argument, if any, remains available
for binding to a later parameter.

As was the case with a required positional parameter, :: parameterType can be omitted.
The parameter will receive its default value only when there are no more available arguments,
since any available argument would have been valid for an untyped parameter.

6.3 Parameter Declarations * 205

Usually, defaultValue will be of the type specified by parameterType, but this need not
be the case. The default value can be a /iteral value of any other type, or NULL. If the default
value is not a literal value, but is an expression that evaluates to something other than itself,
then the result of that evaluation must conform to parameterType.

This class of parameters is called ordered because the arguments are bound to parameters
in the order they were passed. If the first unused argument is not bound to the current
parameter, it remains as the first available argument for the next parameter.

In this example, the procedure Adder is defined with two optional ordered parameters, a
and b, both of type integer, and returns their sum:

> Adder := proc(a::integer := 10, b::integer := 100.1)
a+hb
end proc:

> Adder (3,4);

7 (6.4)
> Adder (3) ;
103.1 (6.5
> Adder () ;
110.1 (6.6)
> Adder (3,6.6) ;
103.1 6.7

In the first call to Adder, the arguments 3 and 4 were bound to the parameters a and b, and
their sum returned. In the second call, only a single argument was passed, so b received its
default value. Notice that the default value is not an integer, but since it is a literal value,
is an acceptable default. In the third call, no arguments were passed and both parameters
received their default values.

You may have expected the result of the fourth call to Adder to be 9.6, but this is not the
case. Why? First, parameter a was given the value 3. Next, 6.6 was considered a candidate
for parameter b, but was rejected because it is not of type integer. Instead, b received its
default value.

This illustrates an important aspect of calling procedures in Maple, which is that in general,
it is acceptable to call a procedure with more arguments than it expects. You will see later
how to access these within a procedure, allowing you to write procedures that accept a
variable number of arguments, or how to disallow the passing of extra arguments.

206 < 6 Procedures

Expected Ordered Parameters

An expected ordered parameter is similar to an optional ordered parameter, except that the
corresponding argument can be omitted only if all further arguments are also omitted. If
there is an argument available, it must match parameterType or an exception is raised.

The declaration of an expected ordered parameter declaration differs from that of an optional
ordered parameter by enclosing parameterType in expects():

parameterName :: expects(parameterType) := defaultValue

The procedure below is identical to the one from the previous section, except that parameter
b has been declared as an expected parameter. When it is called with a second argument of
the wrong type, instead of saving that argument for a later parameter, Maple raises an ex-
ception:

> Adder := proc(a::integer := 10, b::expects(integer) := 100.1)
a+hb
end proc:

> Adder (3,6.6) ;

Error, invalid input: Adder expects its 2nd argument, b, to be of type

integer, but received 6.6

Keyword Parameters

Keyword parameters are not positional and not ordered. A keyword parameter is bound to
a value when an argument of the form keyword=value appears in a procedure invocation.
The left-hand side of such an argument specifies the keyword parameter name, and the
right-hand side specifies the value it will receive. If true is an acceptable value for the
parameter, then an argument of the form keyword is equivalent to keyword=true.

The declaration of a keyword parameter looks very much like that of an optional ordered
parameter, except that all keyword parameter declarations are enclosed in braces, much like
aset is:

{ ... parameterName :: parameterType := defaultValue ... }

The :: parameterType can be omitted, in which case any value can be passed as the right-
hand side of the keyword argument. If parameterType is specified, then the passed value
must be of that type.

As is the case with an ordered parameter, if defaultValue is a /iteral value, it need not match
parameterType.

A procedure can have multiple keyword parameters, which can be declared within a single
set of braces, or grouped into multiple sets of braces as desired to improve source code

6.3 Parameter Declarations ¢ 207

readability. When a procedure is compiled into Maple's internal form, the keyword parameters
are consolidated into a single set. If you then display that procedure using Maple's print
command, the keyword parameters are displayed as a single set, sorted lexicographically.

The simplest and most frequently encountered form of keyword parameter declaration has
a single Maple symbol for parameterName:

> Simple := proc({ simple::integer := 2 })
sprintf ("simple=%d", simple)
end proc:

> Simple (simple=3) ;

"simple=3" (6.8)
> Simple() ;

"simple=2" (6.9)
> Simple (simple=4.5) ;

Error, invalid input: Simple expects value for keyword parameter simple
to be of type integer, but received 4.5

It is also possible to declare keyword parameters that can be referred to by indexed names
when the procedure is called. If parameterName is of the form “symbol[symbol]" or
‘symbol[integer]’, it matches indexed names.

The indexed parameter names are still symbols because of the enclosing left single quotes,
and are referenced that way within the procedure, but the argument names can be actual
indexed names. For more information on indexed keyword arguments, see Binding of
Arguments to Parameters (page 235).

As a convenience to the user of a procedure, multiple spellings of the keyword are allowed
by specifying a list of the permitted spellings in the declaration:

{ ... [parameterNamel, parameterName2, ...] :: parameterType :=

defaultValue ... }

Within the procedure's statementSequence, you can refer to the parameter by any of the
declared spellings. If you display the procedure using print, however, only the first spelling
is used.

208 < 6 Procedures

> Spellings := proc({ [color,colour]::symbol := RED })
sprintf ("color=%a -- colour=%a", color, colour)
end proc;

Spellings = proc({][color, colour|::symbol := RED})
sprintf("color=%a -- colour=%a", color, color) (6.10)
end proc

> Spellings() ;

"color=RED -- colour=RED" (6.11)
> Spellings (color=BLUE) ;
"color=BLUE -- colour=BLUE" (6.12)
> Spellings (colour=GREEN) ;
"color=GREEN -- colour=GREEN" (6.13)
> Spellings (color=ORANGE , colour=PURPLE) ;
"color=PURPLE -- colour=PURPLE" (6.14)

> Spellings (colour=YELLOW,color=42) ;

Error, invalid input: Spellings expects value for keyword parameter

[color, colour] to be of type symbol, but received 42

If more than one keyword argument matches a keyword parameter, only the last one takes
effect.

Alternate spellings and indexed keywords can be combined by including the indexed keyword
symbols in the list of alternate spellings.

The End-of-Parameters Marker

Recall from earlier that Maple usually allows extra arguments to be passed to a procedure.
This is useful when implementing procedures that can accept a variable number or type of
arguments, but for many procedures, the presence of extra arguments indicates a program-
ming error.

A procedure can be declared to disallow extra arguments (that is, arguments that were not
bound to any declared parameter) by ending the sequence parameterDeclarations with $.
If extra arguments remain at the end of argument processing, Maple raises an exception:

> TwoSine := proc(x::float := 0.0, $) 2 * sin(x) end proc:

6.3 Parameter Declarations ¢ 209

> TwoSine (2.3);
1.491410424 (6.15)

> TwoSine () ;

0. (6.16)

> TwoSine(2.3,-4.5);

Error, invalid input: too many and/or wrong type of arguments passed

to TwoSine; first unused argument is -4.5
> TwoSine (42) ;

Error, invalid input: too many and/or wrong type of arguments passed

to TwoSine; first unused argument is 42

Default Value Dependencies

You can express the default value defaultValue of a parameter in terms of other parameters,
as long as the resulting value conforms to the specified type parameterType, if any. The
parameters on which defaultValue depends can appear earlier or later in parameterDeclar-
ations. For example, here is a list extraction function that expects a list, a starting index,
and an ending index. If the ending index is omitted, the length of the list is used:

> SubList := proc(s::1list, f::integer := 1, t::integer :=
numelems (s))
s[f..t]
end proc:

> SublList([a,b,c,d,e],2,3);
[b, c] (6.17)
> Sublist([a,b,c,d,e],2);

[b ¢ d, e] (6.18)

There can be no cyclic dependencies, such as two parameters' default values depending on
each other:

> NotGood := proc(s := sin(c), c := cos(s)) s*2 + c*2 end proc;
Error, cyclic dependency detected in parameter s := sin(c) in procedure
NotGood

Usually, Maple evaluates the arguments of a function call from left to right. The use of
parameter dependencies in default values will alter this order to ensure that the required
values are available by the time they are needed. This is only of consequence if the evaluation
of one or more arguments has side effects.

210 +« 6 Procedures

Parameter Modifiers

Parameter modifiers change the way that arguments are evaluated and/or bound to parameters.
Modifiers appear as part of the parameter's declaration, in the form of a function call enclos-
ing the parameter type parameterType.

You have already seen the expects modifier, which changes an optional ordered parameter
into an expected ordered parameter.

The seq Modifier

The seq modifier allows the parameter to match multiple arguments. When a parameter
with a specified type of the form seq(memberType) is encountered, it is bound to an expres-
sion sequence of all arguments (beginning with the next available one) that are of the type
specified by memberType.

parameterName :: seq(memberType) ‘

If no arguments match memberType, the parameter will receive its default value if one
was specified, or NULL if there is no default value.

The seq modifier cannot be used together with the expects modifier, because seq is allowed
to match zero arguments, whereas expects implies that at least one argument must match.
The seq modifier also cannot be used with a keyword parameter.

You must be careful when working with the value of a seq parameter because it might have
just one element in it. Such a value is not considered to be a sequence, thus indexing it will
not select the element. The safest approach is to enclose the parameter in a list, as in this
example:

> LargestInteger := proc(x::seq(integer), other::seq(anything))
local max, n;
max := -infinity;
for n in [x] do
if n > max then max := n end if
end do;

max, [other]
end proc:

> LargestInteger(4,7,8,2,1);

8,[] (6.19)
> LargestInteger(4,7,"not an integer",8,2,1);

7, ['not an integer", 8, 2, 1] (6.20)

6.3 Parameter Declarations * 211

The depends Modifier

Usually, a parameter's type is predetermined when the procedure is first written. When ar-
guments are matched to parameters, parameterType is not evaluated since this is not ex-
pected to yield anything other than what was written. There are cases where this is too re-
strictive. In that case, use the depends modifier to declare that a parameter's type depends
on something that could change. Such a dependency is usually on another parameter.

The syntax for a parameter declaration with the depends modifier is:

parameterName :: depends(parameterTypeExpression)

where parameterTypeExpression is a type expression that can refer to other parameter
names.

For example, you might want to write a procedure like this to find one root of a polynomial:

> OneRoot := proc(p::depends (polynom(integer,v)), v::symbol)
local sols;
sols := [solve(p=0,v) 1;
if sols = [] then
error "no solution”
else
sols[1]
end if

end proc:

> OneRoot (x*2+3*x+5,x) ;

IJ11 (6.21)

3 1
- — + —
2 2
> OneRoot (x*2+3*x+5,y) ;

Error, invalid input: OneRoot expects its 1lst argument, p, to be of

type polynom(integer,y), but received x"2+3*x+5

This procedure expects as an argument for its first parameter, p, a polynomial in the variable
specified by the second parameter, v. If the depends modifier were omitted, the procedure
would only accept polynomials in the global variable v.

The depends modifier can only be used for required parameters. It cannot be used for op-
tional or expected ordered parameters, nor keyword parameters. If the depends modifier is
used together with the seq modifier, it must appear within it. That is, parameterType must
be written in the form seq(depends(memberType)).

212 + 6 Procedures

The uneval Modifier

Unlike the other modifiers described so far, the uneval modifier takes no arguments. That
is, it does not enclose another type or modified type. Instead it is used as the parameterType.

parameterName :: uneval

A parameter with the uneval modifier prevents the corresponding argument from being
evaluated when the procedure is called. The effect is the same as if the argument had been
enclosed in unevaluation quotes ('...").

The uneval modifier can only be used for required positional parameters, and cannot be
used in conjunction with any other modifiers. It also cannot be used for any parameter de-
claration after one that uses the seq modifier.

> Square := proc(x::uneval) x*2 end proc:
> (a, b) := (3, 4.5):
> r := Square(a+b) ;
r=(a+b)° (6.22)

> eval(r);

56.25 (6.23)

The evaln Modifier

A parameter declared with the evaln modifier expects an argument that can be evaluated to
a name (that is, an assignable object). This modifier can be used in two different forms,
evaln or evaln(valueType). In the second form, the resulting name is expected to have a
value that matches the type valueType.

‘parameterName :: evaln

‘parameterName :: evaln(valueType) ‘

In effect, declaring a parameter with the evaln modifier is equivalent to enclosing the argu-
ment with evaln at procedure invocation time, and allows you to write procedures where
the user of the procedure does not have to remember to do so.

Like uneval, the evaln modifier can only be used for required positional parameters, and
cannot be used for a parameter declaration after one having a seq modifier. The only other
modifier that can be used together with evaln is the depends modifier, in the form de-
pends(evaln(valueType)).

> SquareName := proc(x::evaln(integer)) x”*2 end proc:

> (a, b) := (3, 4.5):

6.3 Parameter Declarations * 213

In the first call, the argument a is evaluated to 'a', which is a name with an integer value.
> SquareName (a) ;

a° (6.24)
In the next call, the argument b is evaluated to 'b’, which is a name, but not with an integer
value.
> SquareName (b) ;

Error, invalid input: SquareName expects its 1lst argument, x, to be
of type evaln(integer), but received b := 4.5

In the next call, the argument does not evaluate to a name.

> SquareName (a+b) ;

Error, illegal use of an object as a name

In the next example, the procedure Accumulate accumulates all the values of its second

argument in the variable passed as its first argument. Notice that the first call fails, because
Accumulate expects a name with a numeric value, but total has not been initialized yet.

> Accumulate := proc(r::evaln(numeric), n::numeric)
r := eval(r) + n
end proc:

> Accumulate (total,2) ;

Error, invalid input: Accumulate expects its 1lst argument, r, to be
of type evaln(numeric), but received total := 'total'

> total := 0;

total == 0 (6.25)

> Accumulate (total, 2) ;

2 (6.26)
> Accumulate (total,3.5);
5.5 6.27)
> total;
5.5 (6.28)

The coercion Modifiers

parameterName :: (valueType)

214 <« 6 Procedures

parameterName :: coerce (valueType,coercion procedure)

As stated previously in Procedures (page 201), coercion refers to the ability to pass one type
of data to a procedure and have it receive a different type.

Coercion can be enabled in two ways:

» Coercion Using ~Type: You can use a short form notation to invoke Maple built-in co-
ercion functions. This short form notation is a tilde (~) followed by a data type. For ex-
ample, the command ~Matrix will accept, among other things, a listlist and return a
Matrix. This type of ~ function can be used in place of the data type in a procedure de-
claration. This tells Maple to try testing if the passed parameter is of that type, and if not,
call the ~ function to coerce it into that type.

» Coercion Using coerce(): You can use long form notation to enable data coercion by
using the coerce() modifier. The coerce modifier allows you to specify a sequence of
types and coercion procedures. A coercion procedure is a procedure that accepts a single
typed parameter and converts that parameter into a new expression. When the main pro-
cedure is called, the argument is type checked against the parameter types handled by
the coercion procedure. The first coercion procedure whose parameter's type matches the
type of the argument is called. The return value of the matching coercion procedure is
then used as the parameter's value.

> p_string :=proc(s::coerce(string, (s::name)->convert(s,string)))
s;
end proc;

p_string = proc(s:(coerce(string, s:name— convert(s,

strin
9))) 629
S
end proc
> p_string("a string");
"a string" (6.30)
> p_string('a name’) ;
"a name" (6.31)

Procedures without Declared Parameters

You can define a procedure without any declared parameters. Some procedures, such as
one that generates random numbers, might not depend on any arguments. Other procedures
might operate directly on global values, although this is considered poor programming
practice.

6.4 Return Type « 215

However, just because a procedure has no declared parameters does not mean that it cannot
be passed arguments. Unless a procedure's parameterDeclarations ends with $, it is always
permissible to pass more arguments than there are declared parameters. All of the arguments
are accessible via the special sequence _passed, which has one entry corresponding to each
argument that was passed. The number of entries is given by _npassed. For example, the
following procedure produces the sum of all its arguments:

> SumOfArgs := proc()
add(_passed[i], i=l.._npassed)
end proc:

> SumOfArgs (42,3.14,sin(-2.5));
44.54152786 (6.32)

For more information on _passed and _npassed as well as other special names for working
with parameters, see Special Sequences for Referring to Parameters and
Arguments (page 229).

6.4 Return Type

The closing parenthesis following a procedure's parameter declarations can be followed by
:: and a returnType assertion. This is optional. Unlike a parameterType specification,
returnType is only an assertion. If kernelopts(assertlevel) is set to 2, the type of the value
returned by the procedure is checked against the type specified by returnType, and if it
does not match, an exception is raised:
> ReturnInteger := proc(x) :: integer;
x*2

end proc:

> kernelopts (assertlevel=2):

> ReturnInteger(3) ;
9 (6.33)

> ReturnInteger (Pi) ;

Assertions are useful for identifying programming errors. For more information, see Using
Assertions (page 584).

6.5 The Procedure Body

The body of the procedure is where most of the computation is carried out (although some
computation may already have occurred while resolving the defaultValue for optional
parameters). The procedure body consists of an optional description, option declarations,
local and global variable declarations, and executable statements.

216 + 6 Procedures

The description, option, local variable, and global variable declaration parts are each intro-
duced by their own keyword, and can appear in any order. There can be only one description
clause and one option clause. There can be any number of variable declaration clauses.

Description

Use the description clause to give a procedure a short description that is displayed when
the procedure is displayed. The description has no effect on the execution of the procedure.
It is only used for documentation purposes.

description string, string, ... ;

The description keyword is followed by one or more string literals, separated by commas.
> Average := proc(x::integer, y::integer)
description "Compute the average of two integers.",
"Returns a rational.";
(x +y) / 2;
end proc;
Average = proc(x:integer, y::iinteger)
description
"Compute the average of two integers.",
"Returns a rational.”;
1/2*x+1/2%y
end proc

(6.34)

Options

A procedure can be tagged with one or more options which alter the behavior or display of
the procedure. Options are specified by the keyword option or options, followed by one or
more option names or equations, separated by commas:

option optionNameOrEquation, ... ;

options optionNameOrEquation, ... ;

Each optionNameOrEquation is a symbol or an equation of the form optionName=value.
Any symbol is allowed as an option name that you can use to tag procedures for your own
purposes, but there are several options that are known to Maple.

6.5 The Procedure Body < 217

The arrow and operator Options

The arrow option and the operator option have meaning when specified together. These
options cause Maple to print the procedure using arrow notation:

> SumOfSquares := proc(x, y)
option operator, arrow;
x*2 + y*2;
end proc;

SumOfSquares == (X, y) X+ y2 (6.35)

For information on defining a procedure using arrow notation, see Functional Operators:
Mapping Notation (page 258)

The builtin Option

Maple has two classes of procedures: kernel built-in procedures implemented in the C pro-
gramming language, and library procedures written in the Maple programming language.
Because the kernel built-in functions are compiled, you cannot view their procedure defin-
itions. The builtin option identifies a kernel procedure.

This option is shown when you display a purely built-in procedure. Instead of displaying
the procedure statements, only the builtin option is displayed.

For example, the add procedure is built into the kernel:
> print(add) ;

proc() option builtin = add; end proc (6.36)
A procedure can have both the builtin option and a statement sequence. In that case, invoking
the procedure will first invoke the kernel built-in version. If that indicated that it did not
compute a result, the statement sequence is executed instead. This mechanism allows the

kernel to process common cases very quickly, and defer to library code to handle other
cases.

You can use the type function to test if an expression is a built-in procedure. An expression
is of type builtin if it is a procedure with option builtin:

> type (add, 'builtin');
true (6.37)
> type(int, 'builtin');

false (6.38)

218 ¢ 6 Procedures

You cannot create built-in procedures, although there is a mechanism for creating procedures
based on externally compiled code. Such procedures have the call_external option.

The call_external Option

The call_external option appears in procedures generated by the define_external procedure.
This option indicates that the implementation of the procedure resides in a pre-compiled
external library. For more information, see External Calling: Using Compiled Code in
Maple (page 489).

The hfloat Option

The hfloat option forces all floating-point operations within a procedure to be performed
using hardware floating-point values. Depending on the operations performed, this can
significantly speed up execution of the procedure at the cost of floating-point accuracy.
Procedures that perform many floating-point operations or manipulate the contents of Arrays,
Matrices, or Vectors of hardware floating-point values will benefit the most from this option.

The hfloat option causes the following differences in the procedure's definition and execu-
tion:

Any floating-point constants appearing in the procedure body are converted into hardware
floating-point values when the procedure is first created.

Numeric arguments passed to the procedure are converted into hardware floating-point
values when the procedure is invoked.

Extracting values from hardware floating-point Arrays, Matrices, and Vectors does not incur
a conversion to arbitrary precision floating-point form. Instead, the hardware floating-point
values are used directly.

Calls to evalhf made from within the procedure return a hardware floating-point value, and
thus do not incur a conversion to arbitrary precision floating-point form.

These differences, together with the rules for contagion of hardware floating-point values
in expressions, will usually cause arithmetic operations in the procedure to be performed
using hardware floating-point arithmetic.

The use of the hfloat option differs from using evalhf in a few ways:

When a procedure is executed within the evalhf environment, everything is computed using
hardware floats, and the operations available are restricted to those that can be done using
hardware floats. No other basic data types, such as integers or strings, are available.

The only data structures available within the evalhf environment are Arrays.

6.5 The Procedure Body < 219

Performance of a procedure having option hfloat is generally better than one operating with
arbitrary precision floats, but usually not as good as a procedure operating within evalhf.
But, a procedure with option hfloat has the full power of Maple available to it. All Maple
operations, data types (except arbitrary precision software floating point), and data structures
can be used in such a procedure.

The hfloat option cannot be used in conjunction with the builtin, call_external, or inline
options.

Hardware floating-point numbers and computations are discussed in detail in Numerical
Programming in Maple (page 273). For more information on hardware floating-point conta-
gion, see Floating-Point Contagion (page 285).

The inline Option

Use the inline option to create a procedure that can be expanded inline wherever it is called
from. An inline procedure avoids the overhead of a procedure invocation by executing the
procedure's statements directly as if it were written in-line instead of in a separate procedure.
This can result in improved execution speed and reduced memory usage.

Not all Maple procedures can take advantage of the inline option. Only procedures whose
body consists of a single expression or an expression sequence can be expanded in-line.
The body cannot consist of a statement or statement sequence. For details on further restric-
tions that may apply, refer to the inline help page.

The overload Option

The presence of option overload in a procedure indicates that the procedure will operate
only on arguments matching the declared parameters (as is normally the case), and that if
the arguments do not match the parameters, the next in a sequence of such procedures is
tried.

A sequence of procedures with option overload can be combined into a single procedure
using the overload command. This will produce a new procedure that will, when called, try
each overload procedure in turn until one is encountered that will accept the arguments, or
no procedures remain. In the latter case, an exception will be raised.

The following example uses the overload command and procedures with the overload option
to append an entry to either a list (by creating a new list) or a 1-dimensional Array (in-place):

> Append := overload (
[
proc(L::1list, x::anything) option overload;
[op(L), x]
end proc,
proc(A::Array(..), x::anything) option overload;

220 + 6 Procedures

A (ArrayNumElems (A)+1) := x
end proc

):
> Append([1,2],3);

[1,2,3] (6.39)

Option overload can also be used to specify that a procedure exported by a package is only
applied to arguments of specific type. If non-matching arguments are passed, the default
behavior occurs instead.

For example, you can define a new implementation of *+* that works only on set arguments.
The system default *+" operator is used for all other cases.

> SetOperations := module() option package;
export "+ := proc(a::set, b::set) option overload;
a union b
end proc;
end module:

> with (SetOperations) ;

["+] (6.40)
> {1,2,3} + {4,5};
{1,2,3,4,5} (6.41)
> 123 + 45;
168 (6.42)

For more information on packages, see Writing Packages (page 389).

The procname Option

As you will read later, the special name procname used within a procedure refers to the
name by which the procedure was called. Among other things, this name is used to describe
the location that an exception occurred when displaying an error message. It can also be
used to return unevaluated calls to the procedure, and to make recursive calls.

If a procedure has the procname option, then the value of the procname special name
within the procedure is inherited from the procedure that called it. If an error then occurs
within the called procedure, the error is reported as having occurred in the calling procedure.
This allows you, for example, to break up your procedure into sub-procedures, yet still have
any errors reported as if they occurred in your main procedure.

6.5 The Procedure Body « 221

For more information on the uses of procname, see Returning Unevaluated (page 244) and
Recursion (page 262).

The remember, cache, and system Options

The remember option activates a procedure's remember table. For a procedure with an
active remember table, at the end of each invocation of the procedure, an entry that records
the computed result for the specified arguments is made in the procedure's remember table.
Subsequent calls to the procedure with the same arguments simply retrieve the result from
the remember table instead of invoking the procedure.

The remember option allows writing an inherently recursive algorithm in a natural manner
without loss of efficiency. For example, the Fibonacci numbers can be computed by the
procedure:

> Fibonacci := proc(n::nonnegint)
option remember;
if n < 2 then
n
else
Fibonacci (n-1) + Fibonacci (n-2)
end if

end proc:

Without the remember option, the time required to compute Fibonacci(n) is exponential
in n. With option remember, the behavior becomes linear. For a comparison of the efficiency
of this procedure with and without option remember, see Profiling a Procedure (page 593).

Entries can be explicitly inserted into a procedure's remember table by writing a function
call on the left-hand side of an assignment. For example, the Fibonacci procedure can be
written:

> Fibonacci := proc(n::nonnegint)
option remember;
Fibonacci (n-1) + Fibonacci (n-2)

end proc:
> Fibonacci(0) := O0:
> Fibonacci(l) := 1:

A procedure's remember table can grow without bound, and for some procedures, may

eventually contain many entries that will never be needed again. Adding the system option
to a procedure allows Maple's garbage collector to clear out the remember table whenever
garbage collection occurs. If a discarded result is needed again later, it will be recomputed.

222 + 6 Procedures

As an alternative to remember tables, Maple also provides the cache option. Unlike a re-
member table, which can grow without bound, a cache has a maximum number of entries.
When the cache becomes full, old entries are removed as new ones are inserted.

The cache option can be specified as just the symbol cache, or with an optional argument,
in the form cache(N) where N is an integer specifying the size of the cache. If (N) is not
specified, the cache is sized to hold 512 entries.

You can explicitly insert permanent entries into a procedure's cache using the Cache:-Ad-
dPermanent function.

When the interface variable verboseproc is 3, displaying a procedure also displays the
contents of its remember table or cache as comments following the procedure definition:

> Fibonacci (7) ;

13 (6.43)
> interface (verboseproc=3) :
> print (Fibonacci) ;
proc(n:nonnegint)
option remember, (6.44)

Fibonacci(n — 1) + Fibonacci(n — 2)
end proc

The remember and cache options are mutually exclusive, and the system option can only
be used in conjunction with the remember option.

The trace Option

If a procedure is given the trace option, Maple will log each entry to and exit from the
procedure, and the result of any assignment made during the execution of the procedure:

> Fibonacci := proc(n::nonnegint)
option remember, trace;
Fibonacci (n-1) + Fibonacci (n-2)

end proc:
> Fibonacci(0) := 0:
> Fibonacci(l) := 1:

6.5 The Procedure Body + 223

> Fibonacci (3) ;

{--> enter Fibonacci, args = 3
{--> enter Fibonacci, args = 2
value remembered (in Fibonacci): Fibonacci(l) -> 1
value remembered (in Fibonacci): Fibonacci (0) -> 0
1
<-- exit Fibonacci (now in Fibonacci) = 1}
value remembered (in Fibonacci): Fibonacci(l) -> 1
2
<-- exit Fibonacci (now in ‘mpldoc/process example’) = 2}

2 (6.45)

Variables in Procedures

A variable is a name representing an item of data, such as a numerical value, character
string, or list of polynomials. The value of the variable, that is, which data item it represents,
can change during the execution of a procedure (or sequence of Maple commands at the
top-level, outside of any procedure). There are three different classes of variables that can
be used within a procedure: global, local, and lexically scoped.

Global Variables

A global variable has meaning within an entire Maple session. Many procedures may access
a global variable, and all those procedures will refer to the same instance of that variable.
A value assigned to a global variable during one function call will still be there the next
time the procedure is called (if it was not changed by another procedure in the meantime).

224 « 6 Procedures

Global variables are introduced by the global keyword, followed by one or more declarations:

global variableName := value, ... ;

The optional := value part is an assignment that is executed at the beginning of procedure
execution. Semantically, it is equivalent to writing a separate assignment statement imme-
diately after all the variable declaration clauses.

A global variable continues to exist and retain its value after the procedure exits, and con-
ceptually, existed (and possibly had a value) before the procedure was executed. Its /ifetime
is thus the duration of the entire Maple session.

Local Variables

A local variable has meaning only within a particular procedure. If the same variable name
is referenced outside of the procedure or within a different procedure, it refers to a different
instance of that name, and is therefore a different variable.

The lifetime of a local variable is the time that the procedure is executing. The variable is
created when the procedure is first invoked, and is usually discarded when the procedure
has finished executing. If the same procedure is later executed again, a new instance of the
variable is created. The variable does not retain its value from its previous lifetime.

Local variables are declared using the following syntax:

local variableName :: typeAssertion := initialValue, ... ;

The only required part of the declaration is variableName.

The optional :: typeAssertion assertion specifies that the variable is expected to always
refer to values of the specified type. Since this is an assertion, if kernelopts(assertlevel) is
set to 2, the type is checked every time a new value is assigned to the variable. If the value
is not of the specified type, an exception is raised.

The optional := initialValue ensures that the variable is assigned the specified value before
its first use. The initialValue can be any Maple expression. If the value is a literal expression
sequence, it must be enclosed in parentheses, since otherwise the comma separating the
elements of the sequence is interpreted as the comma separating individual variable declar-
ations.

Lexically Scoped Variables

When one procedure is defined within another procedure (or within a module), variables
in the outer procedure (or module) are visible to the nested procedure. This is called lexical
scoping. Consider the following procedure, which given a list, produces a new list in which

6.5 The Procedure Body + 225

every element has been divided by the element with the largest magnitude, and then raised
to a specified integer power:

> PowerList := proc(L::list, power::integer)
local largest := max(abs~(L));

A

map (proc(x) (x / largest) power end proc, L)

end proc:

> PowerList([1,1/2,-3.14]1,2);

[0.1014239929, 0.02535599822, 1.000000000] (6.46)

This example uses an anonymous nested procedure, declared directly within the expression
that uses it. Notice that this inner procedure refers to both of the symbols power and largest.
Because there are no variable or parameter declarations in the inner procedure that declare
these symbols, lexical scoping ensures that they are automatically bound to the corresponding
symbol in the outer procedure. In other words, power in the inner procedure refers to the
parameter power of the outer procedure, and largest in the inner procedure refers to the
local variable largest of the outer procedure.

Scoping Rules

If you want a variable to be local to a procedure or global, you should declare that variable
using a local or global declaration. Declaring the scope of variables makes it easier to debug
your code, and also makes it easier for someone else to understand your procedure.

On the other hand, if a variable is intended to refer to a parameter or local variable declared
in an enclosing procedure, you must not declare it in the enclosed procedure. Doing so
would defeat lexical scoping by making the variable local to the enclosed procedure, and
thus a different variable with no connection to the one in the enclosing procedure.

If an undeclared variable does not correspond to a parameter or declared variable in a sur-
rounding procedure, Maple determines its scope, and either automatically declare the variable
as local or assume that it is global. When the variable is automatically declared local, such
an implicit declaration generates a warning:
> ImplicitLocal := proc(x, y)

z :=x +y;

if z < 0 then z*2 else z”3 end if

end proc:

Warning, "z is implicitly declared local to procedure "ImplicitLocal’

Whether a variable is implicitly declared local or assumed to be global depends on how it
is used:

If the variable appears on the /eft-hand side of an assignment statement or as the controlling
variable of a for loop, Maple adds the variable to the procedure's local declarations. This

226 + 6 Procedures

means that if an enclosed procedure also refers to the variable (without declaration), lexical
scoping binds it to the implicitly declared variable of the enclosing procedure. If a procedure
in which such an implicit local declaration is displayed using the print function, the variable
appears within the procedure's local declaration clause.

Otherwise, Maple assumes the variable is global. However, the variable is not added to the
procedure's global declaration clause, which means that it is not subject to lexical scoping
if the same name is used within an enclosed procedure.

Here is a summary of how the scope of a variable is determined:

If the variable is declared as a parameter, local, or global variable in the procedure in which
the variable is encountered, the scope is specified by the declaration.

If the variable is not declared and there is a surrounding procedure (or module), the parameter,
local (including implicit local), and global declarations of the surrounding procedure are
examined. If the variable is found there, that binding is used. If it is not found, the search
continues outward through the layers of surrounding procedures.

If the top level (outside of any procedure or module) is reached, the usage of the variable
in the original procedure is examined. If it appears on the left-hand side of an assignment
or as the controlling variable of a for loop, it is added to the procedure's local declarations.
Otherwise it is assumed to be a global variable.

Non-Variable Name Bindings

In addition to the binding of names to parameters, local variables, and global variables, you
can also explicitly bind other names to objects outside of the procedure with the uses clause:

uses bindingSpecification,

The uses keyword is followed by one or more bindings, in a form identical to those of the
use statement, introduced in The use Statement (page 193). These bindings are in effect over
the entire body of the procedure, in the same way they would be if the procedure body had
been enclosed in a use statement.

The uses clause must appear at the top of the procedure body, together with the option, de-
scription, and initial local and global declarations. If you want to bind names in a subset of
the procedure body, use a use statement instead.

The Statement Sequence

The statementSequence section of the procedure can contain any number of Maple state-
ments, nested arbitrarily deeply. Other than one level evaluation and references to parameters,
the semantics of statements within a procedure are the same as if those statements were
executed outside of any procedure.

6.5 The Procedure Body < 227

Referring to Parameters within the Procedure Body

When referring to parameters in the body of a procedure, there are some things to keep in
mind.

Parameters Are Not Variables

Although a parameter declaration has a similar form to a local variable declaration, and
parameters are referred to by name the same way that variables are, parameters are not
variables. In Maple, a parameter always represents the argument that was bound to it.

Consider this example, which tries to use a parameter on the left-hand side of an assignment
statement:

> Add2 := proc(x, y)
X :=x +y
end proc:

> Add2(3,4);

Error, (in Add2) illegal use of a formal parameter

This call to Add2 results in an error because the statement x := x + vy is interpreted as 3 :=
3 + 4. This is in contrast to languages such as C or C++, where a parameter is effectively a
local variable that has been initialized to the argument value.

A parameter can be used on the left-hand side of an assignment if the value of the parameter
is a name. The evaln parameter modifier can ensure that this is the case. Here is an example
you saw earlier:

> Accumulate := proc(r::evaln(numeric), n::numeric)
r := eval(r) + n
end proc:
> total := 0;
total := 0 (6.47)

> Accumulate (total, 2) ;

2 (6.48)
> Accumulate (total,3.5);

5.5 (6.49)
> total;

5.5 (6.50)

228 ¢ 6 Procedures

Here, the parameter r evaluates to the name “total’, an assignable object. Although it appears
that an assignment to the parameter r is being made within the procedure, it is really the
value of r, which in this case is the global variable total, that is being assigned to.

Required Parameters

Recall that a required parameter is one for which a corresponding argument must have
been passed if the parameter is used during the execution of the procedure. Failure to pass
an argument for a required parameter only raises an exception if an attempt is made to use
that parameter during the particular invocation of the procedure.

For example, a procedure may determine, based on the value of its first required parameter,
that it does not have to refer to the second required parameter.

> Require := proc(x::integer, y::integer)
if x < 0 then x*2 else x * y end if
end proc:
> Require(-3) ;
9 (6.51)
> Require(3,4);
12 (6.52)
> Require(3);

Error, invalid input: Require uses a 2nd argument, y (of type integer),

which is missing
Parameters with the seq Modifier

If a required (or optional) parameter was declared with the seq modifier, then the parameter
will always have a value. That value will be a sequence of the specified type, a single item
of that type, or NULL (or the default value for an optional parameter).

To do anything with a seq parameter other than pass it on to another procedure, you should
convert the parameter value to a list and then work with the list:

> AddAndMax := proc(x::seq(numeric))
local a := 0, i;
for i in [x] do
a:=a+i
end do;
a, max(x)
end proc:

6.5 The Procedure Body < 229

Without the [] brackets around x, this procedure would produce unexpected results if called
with a single floating-point number. A for var in expr loop iterates over the operands of
expr. If expr is a sequence of two or more numbers, it works as expected, but if expr were
a single float, the loop would iterate over the floats operands (the significand and exponent).
By enclosing x in a list, the loop will always iterate over the arguments bound to x.

Parameters with the uneval or evaln Modifiers

Parameters declared with the uneval or evaln modifiers are used like any other. Because
Maple uses one level evaluation rules inside procedures, these parameters do not evaluate
any further than they did when the arguments were initially evaluated. The eval function
can be used to evaluate such parameters further.

Optional and Expected Ordered Parameters

Both optional and expected ordered parameters are always declared with default values, so
using such a parameter within a procedure always yields a value. If an argument was bound
to the parameter during procedure invocation, the parameter's value is that argument. Oth-
erwise, the value of the parameter is the declared default value.

Keyword Parameters

Keyword parameters also have declared default values, so using the parameter always yields
avalue. Unlike ordered parameters, keyword parameters receive their values from arguments
of the form keyword=value. The value of a keyword parameter is the value portion of such
an argument, not the entire argument.

Special Sequences for Referring to Parameters and Arguments

Maple provides a number of special named expression sequences to make it easy to work
with parameters and arguments. These are useful in cases when it would be awkward if they
could only be referred to by name.

The special names _params and _nparams can be used within a procedure to refer to the
current values of the positional and ordered parameters. The _params symbol represents
an expression sequence with _nparams members, one corresponding to each declared
parameter (excluding keyword parameters). For a given procedure, _nparams is constant.

The _params symbol can only be used when immediately followed by an index enclosed
in square brackets, params[indexExpr]. It cannot be used in any other context. indexExpr
can evaluate to one of the following:

An integer, N, in the range 1 to _nparams, or - nparams to -1. This is just the selection
operation on the sequence _params. It yields the value of the Nth parameter when N > 0,
or the (_nparams+1+N)th parameter when N < 0 (negative integers index _params from

230 ¢ 6 Procedures

the end instead of the beginning). If no argument was passed for the requested parameter
and no default was declared, the result is NULL.

A range of such integers. This yields an expression sequence of values, with any NULL
values omitted. A sequence of all the non-NULL positional and ordered parameter values
can be obtained using params]..]. Note that due to elision of NULLSs, this could produce
fewer than _nparams values.

An unevaluated parameter name. The notation params|'parameterName'] is equivalent to
just writing parameterName, except when referring to a required positional parameter that
was not bound to an argument. In that case _params['parameterName'] yields NULL
whereas referring directly to parameterName would raise an exception.

The following example multiplies or divides the last three positional parameters by the first,
depending on the value of the keyword parameter multiply:

> MulDiv := proc(a, b, ¢, d, { multiply := true })
if multiply then
_params[-3..] * a
else
_params[-3..] / a
end if
end proc:
MulDiv(100,1,2,3);
MulDiv(100,1,2,3,multiply=£false) ;

100, 200, 300
L1 3 (6.53)
100’ 50’ 100

Justas _params and _nparams can be used to work with positional and ordered parameters
in a flexible manner, _options and _noptions provide similar facilities for working with
keyword parameters (often called keyword options).

The _options symbol represents an expression sequence containing _noptions members,
one for each declared keyword parameter. Each member of _options is an equation of the
form keyword=value.

If a keyword parameter was declared with multiple spellings, the corresponding member
of _options uses the first spelling.

Unlike _params, _options can be used directly, not only through the selection of members
of the sequence. Because _options returns a sequence of equations, even a member corres-
ponding to an argument with a NULL value is non-NULL. It is an equation of the form
keyword=NULL.

6.5 The Procedure Body « 231

When _options is used with an index, the index must evaluate to an integer (or a range of
integers) in the range 1 to _noptions or -(_noptions) to -1, or the unevaluated name of a
keyword parameter.

The order of the equations in _options does not necessarily correspond to the order in which
the keyword parameters were declared. Instead, the equations are in lexicographic order by
keyword (the first spelling for keyword parameters with multiple spellings). This is the
same order in which the keyword parameters are printed when the procedure is displayed
by the print command. As a consequence of this, if a new keyword parameter is added to
the procedure definition, the numeric index of the _options entry corresponding to a partic-
ular keyword parameter could change. Thus, when indexing _options, it is safest to use the
_options['parameterName'] form.

The following example uses _options to pass all the keyword arguments on to another
procedure:

> MyRanMat := proc(a::integer, {density::float := 1.0, generator
:=0..0.5})
LinearAlgebra:-RandomMatrix(a, _options)
end proc:

> MyRanMat (2, density=0.75, generator=1..9);

8 0
(6.54)
4 0
> MyRanMat (3, density=0.88) ;
[[0.479746213196451499, 0.400140234444400056, 0.
1,
[0.,0.,0.478753417717148799],
(6.55)

[0.210880641313137496,
0.485296390880307849, 0.139249109433524199

1]

The next example selects specific keyword arguments to pass to another procedure:

> MulRanMat := proc(a::integer, {density::float := 1.0, generator
:= 0..0.5, mult := 1.0})
mult * LinearAlgebra:-RandomMatrix(a, _options['density'],
_options['generator'])
end proc:

232 + 6 Procedures

> MulRanMat (4, density=0.75, generator=1l..9, mult=x/2);

4x 0 X %x
3 3
2x 0 2x 0
(6.56)

0 lxgxzx

2 2 2
7 3
2x 4x 2x 2x

When there are more arguments in a function call than needed to match the called procedure's
parameters, you can access the remaining arguments inside the procedure by using the
special sequence _rest. The number of members in this sequence is given by _nrest.

Because these extra arguments do not correspond to any declared parameters, it is not possible
for such an argument to have a NULL value. Recall that the only way for a parameter to be
NULL is for no argument to have matched a parameter with no declared default value (or
a default value of NULL). Since there is no declared parameter corresponding to any value
in _rest, these conditions cannot hold.

This example uses _rest and _nrest to return the number of entries in a sequence of numbers,
together with the maximum, and optionally the mean:

> MaxMean := proc({mean := false})
if mean then
_nrest, max(_rest), Statistics:-Mean([_rest])

else
_nrest, max(_rest)
end if
end proc:
> ¢ := MaxMean (6,200,400, mean=true) ;

c = 3,400, 202. (6.57)

All of the arguments that were passed to a procedure can be accessed using the special se-
quence _passed, having _npassed elements.

Prior to Maple version 10, passed and _npassed were known as args and nargs. These
older names are still accepted as synonyms for the newer names for backwards compatibility.
Of historical interest, the earliest versions of Maple did not support declared parameters at
all; args and nargs were the only mechanism for processing arguments.

6.6 How Procedures Are Executed « 233

The _passed sequence can be used to do explicit argument processing within the body of
the procedure, although this is discouraged for two reasons:

Most argument processing requirements can be handled using the mechanisms described
so far in this chapter. Doing so is usually significantly faster (in terms of both execution
time and development time) than performing the same operations using your own custom
argument processing algorithms within the procedure.

When special argument processing requirements do arise, it is often easier to work with
_params, _options, and _rest. In many cases, the provided mechanisms can handle most
of the processing, and it is only necessary to look at _rest to handle additional arguments.

The clearest and most efficient way to write a procedure to find the maximum of an arbitrary
sequence of numbers is to use a single parameter with a seq modifier, and pass that parameter
directly to Maple's built-in max function. However, the following example uses _passed,

_npassed, and a for loop instead for demonstration purposes:

> Maximum := proc()
local max := _passed[l], i;
for i from 2 to _npassed do
if passed[i] > max then

max := _passed[i]
end if
end do;
max
end proc:

Care must be taken when the _options, _rest, or _passed sequences contain only a single
entry and that sequence is assigned to a variable (for example, myOpts := _options). The
variable will receive the value of that single element rather than an expression sequence.
The safest way to use these expression sequences is to transform them into lists (for example,
myOpts :=[_options]).

6.6 How Procedures Are Executed

When a procedure definition is entered in Maple or read from a file, Maple does not execute
the procedure. It does however translate the procedure into an internal representation, process
all the parameter and variable declarations, perform lexical scoping and implicit local de-

claration, and simplify the procedure's statementSequence.

Automatic simplification of statementSequence is similar to simplification of expressions
when Maple is used interactively, with a few exceptions. Consider the following procedure:

> £ := proc(x)
local t :=x + 3 + 0/2;
if true then

234 « 6 Procedures

sgrt(x * 2.0 / 3.0)
else
tr2
end if
end proc;

f= proc(x)
local ¢ t:= x+ 3; sqrt(x*2.0/3.0) (6.58)
end proc

During automatic simplification, the division 0/2 has been removed (because it does not
contribute to the sum). More significantly, the entire if...then...else...end if statement has
been replaced by just the body of the first branch, since the if-condition is true.

Notice that the expression sqrt(x * 2.0/ 3.0) has not been simplified to .8164965809%x(1/2)
as it would have been if entered at the top level, outside of a procedure. If this simplification
had been performed, then the result produced by the procedure would depend on the setting
of Digits (and other aspects of the floating-point environment) both when the procedure
was simplified, and a possibly different setting of Digits when the procedure is later executed.
By not performing any floating-point arithmetic during procedure simplification, the pro-
cedure will depend only on the state of the floating-point environment at execution time.

A procedure is executed after it has been invoked by a function call. Generally, the process
is:

1. A function call, of the form functionName(functionArguments) is encountered during
evaluation of an expression, either at the interactive level or while executing another
procedure.

. The functionName is examined to see if has been assigned a procedure.
. The functionArguments are evaluated, usually from left to right.

. The evaluated arguments are bound to the parameters of the procedure.

[B SN VS I 8]

. All of the procedure's local variables are instantiated. That is, for each local variable, a
unique instance of the variable's name is created, with no prior value.

6. Interpretation of the procedure's statementSequence begins.
Interpretation continues until the last statement has been executed, an exception is raised

(either as the result of an operation, or by an explicit error statement), or a return statement
is encountered.

6.6 How Procedures Are Executed « 235

Binding of Arguments to Parameters

Argument processing occurs when a function call results in the invocation of a procedure.
First, all the arguments are evaluated (except those corresponding to parameters with the
uneval or evaln modifiers), and then they are matched to the parameters of the procedure.

Binding of Keyword Arguments

Keyword arguments are always matched first unless the procedure has parameters declared
with the uneval or evaln modifiers. Maple makes a pass through the entire sequence of ar-
guments looking for keyword=value equations where the keyword matches a declared
keyword parameter of the procedure.

Whenever a matching keyword parameter is encountered, the right-hand side of the equation
becomes the value for that parameter, and the equation is removed from further consideration
as an argument. If more than one keyword argument matches a keyword parameter, only
the last one takes effect.

Keyword parameter names (the keyword part) are Maple symbols like any other. If that
symbol is in use as a variable, then using it in a keyword argument may not work as expected
since the variable may evaluate to its value. To ensure that this does not happen, it is best
to always use unevaluation quotes around the keyword part of a keyword argument:

> f := proc(x::integer, { y::integer := 1}, $§) x * y end proc:
>y := sin(z):
> £(3,y=2);

Error, invalid input: too many and/or wrong type of arguments passed
to f; first unused argument is sin(z) = 2

> £(3,'y'=2);
6 (6.59)

This is a good practice when calling any function, whether it is a procedure you defined or
a Maple command. See Protecting Names and Options (page 47).

When calling a procedure that accepts a keyword argument from within another procedure
that has a parameter with the same name as the keyword argument, you must use both une-
valuation quotes and the scope resolution operator, :-, to ensure that (the global instance
of) the name itself is used instead of the value of the parameter:

> f := proc(x::integer, { y::integer := 1}, $) x * y end proc:
> g := proc(y::rational) f(numer(y), ':-y'=denom(y)) end proc:
>g(3/2);

6 (6.60)

236 + 6 Procedures

If a keyword parameter has a declared parameterType for which true is a valid value (for
example, the types truefalse or boolean), the keyword name alone is interpreted as a syn-
onym for keyword=true.

> f := proc(x::integer, { square::truefalse := false })
if square then x*2 else x end if
end proc:

> [£(2), £(3,square=true), £f(4,square)];
[2,9,16] (6.61)

If a keyword parameter's keyword is a symbol of the form “symbeol[symbeol]" or “symbol[in-
teger]’, the parameter is treated specially at during argument processing. Although such a
keyword is still a symbol (because of the enclosing left single quotes), it matches indexed
name keyword arguments. Specifically, if an equation whose left-hand side is an indexed
name of the form symbol[symbol] or symbol[integer] is encountered, it matches the
keyword parameter whose keyword symbol /ooks like the indexed name. For example, the
keyword argument,

axis_label[1] = "time"
matches the keyword parameter:
‘axis_label[1]" :: string :="x"

Keyword arguments with multiple indices are also recognized by attempting to match them
using one index at a time. For example, the keyword argument,

axis_label[1,2]=""
matches both of the keyword parameters,
‘axis_label[1]" :: string := "x", "axis_label[2]" :: string :="y"

and sets them both to the empty string.

The following example illustrates these behaviors:

> Indexed := proc({ "name[l] ::string := "hello",
"name[2] " ::string := "goodbye" })
sprintf ("name[1]=\"%s\" -- name[2]=\"%s\"", ‘'name[l] ', ‘name[2] ")
end proc:

> Indexed (name[l]="hi") ;

"name[1]="hi" -- name[2]="goodbye"" (6.62)

6.6 How Procedures Are Executed « 237

> Indexed(name[l]="bonjour" ,name[2]="aurevoir") ;
"name[1]="bonjour" -- name[2]="aurevoir"" (6.63)
> Indexed(name[l,2]="good day") ;
"name[l]="good day" -- name[2]="good day"" (6.64)

> Indexed (name[2]=42) ;

Error, invalid input: Indexed expects value for keyword parameter

name[2] to be of type string, but received 42

The Special Case of evaln and uneval Modifiers

There is one case in which the first stage of argument processing is not keyword matching.
If the procedure was declared with any parameter(s) having an uneval or evaln modifier,
arguments are first assigned to positional parameters from left to right until the rightmost
uneval or evaln parameter has been bound to an argument or until all the arguments have
been exhausted, whichever happens first. For each argument/parameter pair:

If the parameter has no parameterType, the argument matches trivially, and becomes the
value for that parameter.

If the parameter has a parameterType specification, the argument may or may not match.
If it matches, the argument becomes the value for that parameter. If it does not match, an
exception is raised.

> Accumulate := proc(r::evaln(numeric), n::numeric,
{ operation::symbol := "+ })
r := operation(eval(r) ,n)
end proc:
> total := O0:

> Accumulate (total, 2.3);

2.3 (6.65)
> Accumulate (total, operation="*", 10);
23.0 (6.66)

> Accumulate (operation="*", total, 100);

Error, illegal use of an object as a name

In the last call, an exception is raised because the first argument does not evaluate to a name.

238 ¢ 6 Procedures

Binding of Arguments to Positional and Ordered Parameters

After all arguments matching keyword parameters have been processed, matching of required
positional and optional or expected ordered parameters is carried out. If any parameter had
an uneval or evaln modifier, all parameters up to the rightmost of these will already have
received arguments, so further matching begins with the next positional or ordered parameter
after that.

Matching is done by traversing the parameter declarations from left to right. As each para-
meter is examined, an attempt is made to match it to the next unused argument as follows:

If the parameter has no parameterType, the argument matches trivially, and becomes the
value for that parameter.

If the parameter has parameterType, but no defaultValue, the argument may or may not
match. If it matches, the argument becomes the value for that parameter. If it does not match,
an exception is raised.

If the parameter has both parameterType and defaultValue, the argument may or may not
match. If it matches, the argument becomes the value for that parameter. If it does not match,
the parameter receives its default value, and the argument remains available for matching
a subsequent parameter.

In last two cases above, if the parameter's type uses the seq modifier, Maple continues to
match additional arguments against the parameter until one is encountered that is not of the
correct type. A seq parameter never results in an exception, because even if no arguments
match, a valid sequence has been produced (the empty sequence).

At the end of this process, if there are any arguments left over, they are either put into the
_rest sequence, or, if the procedure was declared with the end-of-parameters marker, $, an
exception is raised.

Conversely, if all the arguments were bound to parameters, but there are parameters remain-
ing to be assigned values, these receive their default values if they have one. Otherwise,
they have no value, and attempting to use them (by name) within the procedure raises an
exception.

Statement Sequence Interpretation

After all the arguments in a function call have been successfully bound to the procedure's
parameters, Maple begins interpreting the procedure's statement sequence. Each statement
is examined in turn and the necessary actions carried out.

For example, an assignment statement is interpreted by evaluating the right-hand side (the
expression to be assigned), and resolving the left-hand side (the target of the assignment).
The latter involves evaluating any indices if the left-hand side contains indexed names. Fi-

6.6 How Procedures Are Executed « 239

nally, the value of the right hand side is assigned to the resolved variable on the left-hand
side.

When an if-statement is encountered, Maple evaluates the condition. If it is true, statement
sequence interpretation continues with the first statement within the first branch of the if-
statement. When the statements within that branch have all been executed, interpretation
continues with the first statement after the end if. If if-condition was false, Maple looks for
an elif or else branch and continues in a similar manner.

When there are no further statements remaining, Maple behaves as if a return statement had
been encountered.

Variable Evaluation Rules within Procedures

Maple fully evaluates global variables whenever they are referenced, even within procedures,
but local variables are evaluated in a special way. When a local variable is encountered
during procedure execution, it is evaluated only one level. Consider the following Maple
statements, outside of any procedure:

>f :=x+ y;
f==x+y (6.67)
>x :=2z"2 / y;
2
x:= 2 (6.68)
y
>z = y*"3 + 3;
z=) +3 (6.69)

Since these statements undergo normal full recursive evaluation, the following result is re-
turned:

> £;

2
()?;3) +y (6.70)

The same sequence of steps within a procedure would yield a different result:

> OneLevelEval := proc()
local £, x, y, z;
f :=x +y;

z*"2 [/ y;

vy*3 + 3;

X

z

240 < 6 Procedures

£
end proc:

> OneLevelEval () ;
X+y (6.71)

The concept of one-level evaluation is unique to symbolic languages like Maple, where the
value of a variable can be, or include, the name of another variable. One-level evaluation
avoids arbitrarily deep computation at every step of a procedure and is thus important for
efficiency. It has very little effect on the behavior of procedures, because most procedures
have a sequential structure. When full evaluation of a local variable is required within a
procedure, use the eval function:

> FullEval := proc()
local £, x, y, z;
f :=x +vy;
x = z"2 [/ y;
z = y*"3 + 3;
eval (f)
end proc:

> FullEval() ;

(* +3)°

Sty
y

(6.72)

In addition to illustrating one level evaluation, this example also introduces the idea of an
escaped local. The expression returned by OneLevelEval is x +y and contains the symbols
x and y. However, these are not the global variables of the same names; they are the local
x and y declared in OneLevelEval. Because these variables have escaped, they continue
to exist beyond their normal lifetime even though the procedure has finished executing.
Usually, an escaped local indicates a programming error such as forgetting to assign a value
to a local variable before using it. There are situations where letting a local escape can be
useful, such as generating unique instances of a name that will be guaranteed never to
evaluate further.

Returning Values from a Procedure

When a procedure has finished executing, a value is returned. If the procedure was invoked
by a function call, possibly within a larger expression, the returned value is used as the value
of that function. At the interactive level, the returned value is displayed (unless the input
was terminated by a colon instead of a semicolon).

6.6 How Procedures Are Executed « 241

Except when a procedure raises an exception, a value is a/ways returned. In the absence of
an explicit return statement, the returned value is the value of the last statement executed
in the procedure. The value of a statement means:

The value computed by the right-hand side of an assignment statement.
The value of the expression when the statement is an expression.

The value of the last statement executed within the branches of an if statement or within
the body of a loop.

Note that NULL is a valid expression (and thus a valid statement). A procedure that returns
NULL is still returning a value, although at the interactive level, nothing is displayed.

You can use an explicit return statement to end the execution of the procedure and return
a value immediately:

return expression;

Upon encountering a return statement during execution, Maple evaluates the expression,
and then immediately terminates the execution of the procedure, with the result of the
evaluation as the returned value.

This example uses an explicit return statement to immediately return the position i of a
value x in a list when the value is found. If the value is not found, the procedure returns 0:
> Position := proc(x::anything, L::1list)
local i;
for i to numelems (L) do
if x = L[i] then
return i
end if
end do;
0
end proc:

> Position(3, [2,3,5,7,1,3,7,9,3,91);
2 (6.73)
> Position(4, [2,3,5,7,1,3,7,9,3,91):;

0 (6.74)

242 + 6 Procedures

The following procedure computes the greatest common divisor, g, of two integers a and
b. It returns the expression sequence g, a/g, b/g. The case a =b = 0 is treated separately
because in that case, g is zero:

> GCD := proc(a::integer, b::integer, $)

local g;

if a = 0 and b = 0 then

return 0, 0, O

end if;

g := igecd(a,b);

g, iquo(a,g), iquo(b,qg)

end proc:

> GCD(0,0) ;

0,0,0 (6.75)
> div, quol, quo2 := GCD(1l2,8);
div, quol, quo2 := 4, 3, 2 (6.76)

This example illustrates that you can return a sequence of values from a procedure, and that
those values can then be assigned to a sequence of names by the caller. Whenever a procedure
returns a sequence of values, the result can be assigned to a sequence of the same number
of names (a multiple assignment). If you assigned the result to a single name, then the value
of that name would be the entire sequence.

Sometimes, it is convenient to write a procedure which will return a different number of
values depending on the context in which it was called. A procedure can use the special
variable _nresults to determine how many results are expected by the caller. Here is a version
of the previous procedure that returns only a single result when called from within an
arithmetic expression (the tests for the case a =b = 0 has been omitted for brevity):

> GCD := proc(a::integer, b::integer, §$)
local g := igcd(a,b);
if nresults = 1 or _nresults = undefined then

g
else

g, iquo(a,g), iquo(b,q)
end if

end proc:
> div := GCD(12,8);
div:= 4 (6.77)

6.6 How Procedures Are Executed « 243

> GCD(12,8) ~ 2;

16 (6.78)
> { GCD(12,8) };
{4} (6.79)
> div, quol, quo2 := GCD(12,8);
div, quol, quo2 := 4, 3, 2 (6.80)

The _nresults variable has the value undefined if the procedure was called from within an
expression or within the arguments of another function call. It has an integer value if the
call was from the top level of an expression appearing on the right-hand side of an assign-
ment. The value of _nresults is the number of variables on the left-hand side of the assign-
ment statement.

Do not use _nresults in a procedure with the remember or cache options. Only the first
computed result is stored in the remember table or cache. Subsequent calls with the same
input but a different number of expected results will not return the expected number of
results. (The Cache package can be used to manually implement a simulated remember
table that works correctly in conjunction with _nresults.)

Another alternative for returning more than one value from a procedure is to assign values
to variables whose names were passed in as values. The following procedure determines
whether a list L contains an expression of type T. If found, the procedure returns the index
of the (first matching) expression. If the procedure is called with a third argument, then it
also assigns the expression to that name.

> FindType := proc(T::type, L::list, V::evaln, $)
local i;
for i to numelems (L) do
if L[i] :: T then
if npassed = 3 then
V := L[i]
end if;
return i
end if
end do
end proc:

> FindType (string, [2,3/4,"Hello", x+y]);
3 (6.81)

244 « 6 Procedures

> FindType (string, [2,3/4,"Hello",x+y], s);

3 (6.82)

"Hello" (6.83)

When FindType was called with two arguments, the procedure just returned the index of
the found list element.

When called with three arguments, parameter V received the name, not the value of global
variable s. The evaln declaration of V ensures that V will always refer to a name. Just before
returning, the procedure assigned the found expression to s, as referenced by V.

If, during the execution of the procedure, you need to refer to the value that has been assigned
to a name via an evaln parameter, enclose such references to the parameter within a call to
eval:

> Accumulate := proc(r::evaln(numeric), n::numeric)
r := eval(r) + n
end proc:

Returning Unevaluated

If a procedure cannot perform a requested computation, it can return the unevaluated form
of the function call that invoked it. For example, the procedure below computes the larger
of two values if it can, or returns unevaluated if it cannot:

> Larger := proc(x, y)
if x :: numeric and y :: numeric then
if x > y then
X
else
y
end if
else
'Larger’' (x,y)
end if

end proc:
> Larger (3.2, 2);
3.2 (6.84)
> r := Larger(a, 2*b);

v := Larger(a, 2 b) (6.85)

6.6 How Procedures Are Executed « 245

The unevaluation quotes around Larger within the procedure specify that the function call
expression will be constructed, but no procedure invocation will take place (therefore this
is not a recursive call).

The returned unevaluated function call can later be re-evaluated. If a and b have numeric
values at that time, Larger will return a number, otherwise it will return unevaluated once
again.

>a, b :=3, 2;

ab:=3,2 (6.86)

4 (6.87)

Because of one level evaluation, the last line in the example above would have to be written
as r ;= eval(r) if r were a local variable in a procedure.

Rather than using the procedure's name to construct an unevaluated function call to return,
you can also use the special name procname. The statement, 'Larger'(x,y) could have been
written 'procname'(x,y). The advantage to using procname is that such unevaluated returns
are immediately apparent to anyone reading the source code of your procedure.

Note that if your procedure was called from within another procedure and has the procname
option, then an unevaluated call of the form 'procname'(x,y) refers to the procedure that in-
voked your procedure.

246 <+ 6 Procedures

By writing procedures to return unevaluated when it is not possible to carry out the compu-
tation, you make it easier for the user of the procedure to use it in contexts where otherwise
it would produce an error:

> plot(Larger(x, 1/x), x =1/2 .. 2);
2.0
1.91
1.8+
1.7
1.6+
1.57
1.4+
1.31
1.2+

1.1+

0.5 1 1.5 2

> int(Larger(x, 1/x), x = 0.25 .. 2.0);
2.886294361 (6.88)

If Larger had been implemented without the unevaluated return, both of the above commands
would have failed because the first argument to plot and int could not have been evaluated:

> LargerNoUneval := proc(x, y)
if x > y then
X
else
y
end if

end proc:
> plot(LargerNoUneval(x, 1/x), x =1/4 .. 2);

Error, (in LargerNoUneval) cannot determine if this expression is true

or false: 1/x < x

6.7 Using Data Structures with Procedures < 247

> int(LargerNoUneval(x, 1/x), x = 0.25 .. 2.0);

Error, (in LargerNoUneval) cannot determine if this expression is true

or false: 1/x < x

Many Maple functions use the technique of returning unevaluated. For example, the sin
and int functions return a result when they can, or return unevaluated when it is not yet
possible to compute a result.

6.7 Using Data Structures with Procedures

The choice of appropriate data structures to solve a particular problem has already been
discussed in Basic Data Structures (page 127), but it is worth keeping in mind how your
procedure might be used by you or others in the future. If the problem you are solving in-
volves a small amount of data, you may have been tempted to choose a data structure without
regard to efficiency or scalability when writing your procedure. If the procedure is used
later to solve a larger problem, it may not be able to handle the problem in a reasonable
amount of time or memory if you chose a data structure only suitable for small problems.

Passing Data Structures to Procedures

Traditional procedural programming languages such as Pascal or C usually pass arguments
to procedures by value. This means that the procedure receives a copy of the data passed to
it. Such languages also allow values to be passed by reference. Pascal does this by prefixing
the parameter declaration with the var keyword. C requires that the parameter be declared
as a pointer, using the * prefix, and that the caller explicitly pass the address of the argument
using the & prefix (except when passing pointers to arrays).

Passing arguments by value ensures that the procedure cannot modify the passed data as a
side-effect, but requires making a copy of the data. Passing by reference is more efficient
for large data objects, but allows the procedure to (possibly unintentionally) modify the
caller's copy of the data.

In Maple, data is always passed by reference, but the immutability of most data types ensures
that the procedure cannot modify the caller's copy of the data. The exceptions are Maple's
mutable data structures: tables, Arrays, Matrices, Vectors, records, and objects. Modifying
these within a procedure will modify the caller's copy. Fortunately, these larger data structures
are the ones that you would most often want to pass by reference, since copying such data
consumes time and space.

A third argument passing convention seen in some programming languages is passing by
name. In this case, instead of passing the value of a variable, the variable itself is passed.
The called procedure can then assign a new value to the variable, which will remain in effect
when the procedure returns to the caller. Maple allows passing by name via the evaln
parameter declaration modifier, or by explicitly quoting the name when calling the procedure.

248 + 6 Procedures

This does not contradict the earlier statement that Maple always passes by reference, because
it is now the variable name that is being passed by reference.

Returning Data Structures from Procedures

Just as values are always passed by reference, they are returned from procedures by reference,
too. Thus, the cost in time and space of returning a large structure such as a list is not any
more than that of a small piece of data like an integer.

When returning a table or procedure from a procedure, care must be taken to ensure that it
is the data structure itself and not the name referring to it that is returned. This is because
tables and procedures use last name evaluation.

> IncorrectListToTable := proc(L :: list)
local T := table(), i;
for i to numelems (L) do
T[i] := L[i]
end do;
T
end proc:

> IncorrectListToTable(["String",123,Pi]);

T (6.89)

The example above returns the local variable T instead of the actual table. Although the
returned value can be used as if it were the actual table, every access to it involves an extra
level of addressing behind the scenes, thus consuming more time.

> ListToTable := proc(L :: list)
local T := table(), i;
for i to numelems (L) do
T[i] := L[i]
end do;
eval (T)
end proc:

> ListToTable(["String",123,Pi]);

table([1 = "String", 2 =123, 3 =n]) (6.90)

6.7 Using Data Structures with Procedures < 249

Example: Computing an Average

A common problem is to write a procedure that computes the average of n data values X,

Xy, X according to the following equation:

Before writing the procedure, think about which data structure and Maple functions to use.
You can represent the data for this problem as a list. The numelems function returns the
total number of entries in a list X, while the ith entry of the list is obtained by using X[i]:

>X := [1.3, 5.3, 11.2, 2.1, 2.1];

X:==11.3,5.3,11.2,2.1, 2.1] (6.91)
> numelems (X) ;
5 (6.92)
> X[2];
5.3 (6.93)
> add(i, i=X);
22.0 (6.94)

Using these ideas, write the procedure Average which computes the average of the entries
in a list. It handles empty lists as a special case:

> Average := proc(L::1list, $)
local n := numelems (L), i, total;
if n = 0 then
error "empty list"
end if;
total := add(i,i=L);
total / n
end proc:

Using this procedure you can find the average of list X defined above:

> Average (X) ;

4.400000000 (6.95)

250 < 6 Procedures

The procedure also works if the list contains symbolic entries:

> Average([a, b, c]);

1 1 1
= = = 6.96
3a+3b+3c (6.96)

Calling Average with an empty list raises an exception:
> Average ([]) ;

Error, (in Average) empty list

A list is a good choice for the data in this example because the data is stored and used in a
calculation, but the list itself does not need to be modified.

Example: Binary Search

One of the most basic and well-studied computing problems is that of searching. A typical
problem involves searching a list of words (a dictionary, for example) for a specific word
w. There are many possible methods. One approach is to search the list by comparing each
word in the dictionary with w until either w is found, or the end of the list is reached. Study
the code for procedure LinearSearch (the first attempt at solving this problem):

> LinearSearch := proc(D::list(string), w::string)
local x;
for x in D do
if x = w then
return true
end if
end do;
false
end proc:

Unfortunately, if the dictionary is large, this approach can take a long time. You can reduce
the execution time required by sorting the dictionary before you search it. If you sort the
dictionary into ascending order, then you can stop searching as soon as you encounter a
word greater than w. On average, it is still necessary to search half the dictionary.

Binary searching provides an even better approach. Check the word in the middle of the
sorted dictionary. Since the dictionary is already sorted, you can determine whether w is in
the first or the second half. Repeat the process with the appropriate half of the dictionary
until w is found, or it is determined not to be in the dictionary.

> BinarySearch := proc(D::list(string), w::string)
local low := 1, high := numelems (D), mid;
while low <= high do
mid := trunc((low + high) / 2);

6.7 Using Data Structures with Procedures + 251

if w < D[mid] then
high = mid - 1
elif w > D[mid] then
low := mid + 1
else
return true

end if
end do;
false
end proc:
> Dictionary := ["induna", "ion", "logarithm", "meld"];
Dictionary = ["induna", "ion", "logarithm", "meld"] (6.97)

> BinarySearch(Dictionary, "hedgehogs") ;

false (6.98)
> BinarySearch(Dictionary, "logarithm");
true (6.99)

> BinarySearch(Dictionary, "melody")

false (6.100)

Example: Plotting the Roots of a Polynomial

You can construct lists of any type of object, including other lists. A list that contains two
numbers can represent a point in the plane, and a list of such list can represent several such
points. The Maple plot command uses this structure to generate plots of points and lines.

252 + 6 Procedures

> plot([[0, O], [1, 2], [-1, 2]],
style=point, symbol=point, color=black)

2_

1.5+

0.5 1

-1 -0.5 0 0.5 1

You can make use of this to write a procedure that plots the complex roots of a polynomial.

For example, consider the polynomial X —1.

>y = x"3-1;
yi=x —1 (6.101)

First, find the roots of this polynomial. You can find the numeric roots of this polynomial
by using fsolve. By enclosing the call to fsolve in square brackets, you create a list of the
roots.

>R := [fsolve(y=0, x, complex)];

R := [-0.500000000000000 — 0.866025403784439]1,

6.102
-0.500000000000000 + 0.8660254037844391, 1.] @10

Next, change this list of complex numbers into a list of points in the plane. The Re and Im
functions return the real and imaginary parts of a complex number respectively. You can
use the map function and an anonymous procedure to convert the entire list at once.

6.7 Using Data Structures with Procedures <« 253

> points := map(z -> [Re(z), Im(z)], R);
points == [[-0.500000000000000,
-0.866025403784439], [-0.500000000000000, (6.103)

0.866025403784439], [1., 0.]]

Finally, plot the resulting list.
> plot(points, style=point, symbol=point, color=black) ;

0.8 1
0.6 1
0.4 4

0.2 1

-0.5 0 0.5 1
-0.2 4

-0.4 1

-0.6 1

-0.8 1

You can automate the process by writing a procedure that follows the same sequence of
steps. The input must be a polynomial in x with constant coefficients.

> RootPlot := proc(p::polynom(constant,x))
description "Plots the roots of a polynomial in x";
local R := [fsolve(p, x, complex)];
local points := map(z -> [Re(z), Im(z)], R);

plot (points, style=point, symbol=point, color=black)
end proc:

Test the RootPlot procedure by plotting the roots of the polynomial XG +3 X +5x+10.

254 « 6 Procedures

> RootPlot(x"6+3*x75+5*x+10) ;

0.5

-0.5

Generate a random polynomial using the randpoly function, and then test the RootPlot
procedure again.

>y := randpoly(x, degree=100) ;

yi=-56X°—62x°+97X5 —73x —4 X (6.104)

6.8 Writing Usable and Maintainable Procedures < 255

> RootPlot(y);

0.5

-1 -0.5 0 0.5 1

-0.5

oA e

6.8 Writing Usable and Maintainable Procedures

As with any programming language, it is easy to write a Maple procedure that others cannot
easily comprehend (or that you, as the author, have trouble understanding when you look
at it, or try to modify it, in the future). Maple's syntax provides you with several facilities
to alleviate such problems and produce maintainable code.

Formatting Procedures for Readability

Although it is possible to enter an entire procedure on a single very long line, this makes it
difficult to understand and edit. For example, the binary search procedure shown earlier
could have been written this way:

> BinarySearch := proc(D::list(string), w::string) local low :=
1, high := numelems (D), mid; while low <= high do mid := trunc((low
+ high) / 2); if w < D[mid] then high := mid - 1 elif w > D[mid]
then low := mid + 1 else return true end if end do; false end
proc:

256 + 6 Procedures

Procedures are more easily readable if written with one statement per line, and with the
statements enclosed within the bodies of loops and if-statements indented:

> BinarySearch := proc(D::list(string), w::string)
local low := 1, high := numelems (D), mid;
while low <= high do
mid := trunc((low + high) / 2);
if w < D[mid] then
high :=mid - 1
elif w > D[mid] then
low :=mid + 1
else
return true
end if
end do;
false
end proc:

Sometimes, a single statement is too long to fit on a single line. Maple's syntax allows you
to insert line breaks and white space between any two syntactic fokens such as reserved
words, variable names, numbers, and punctuation. Indentation can be used within a statement
to clarify the grouping of expressions. For example, the polynomial root plotting procedure
could have been written like this:

> RootPlot := proc(p::polynom(constant,x))
description "Plots the roots of a polynomial in x";
plot (map(z -> [Re(z), Im(z)],
[fsolve(p, x, complex)]),
style=point, symbol=point, color=black)
end proc:

In this version of RootPlot, the procedure body consists of a description and a single
statement. The indentation makes it clear that z -> [Re(z), Im(z)] and [fsolve(p, x, complex)]
are arguments of the call to map, and that the result of this call together with the style,
symbol, and color options are the arguments of plot.

Commenting Your Code

Comments are one of the most important tools in writing maintainable code. There are two
ways of writing comments in Maple procedures:

Comment text until the end of the line.

(* Delimited comment text. *)

6.8 Writing Usable and Maintainable Procedures < 257

A # character anywhere within a procedure except inside a "string" or "quoted name" intro-
duces a comment. Everything following # until the end of the line is considered to be a
comment and is ignored by Maple. This form is useful for short comments of one or two
lines, or to annotate a line.

> Average := proc()
Compute total.
local total := add(_passed[i],i=l.._npassed);
Divide total by number of values.
total / _npassed;
end proc;

Average = proc()

local total,

total := add(args|i], i =1 ..nargs); total| nargs
end proc

(6.105)

Comments enclosed in (* and *) can begin and end anywhere except within a "string" or
‘quoted name’. Everything between the delimiters is ignored by Maple. This form can be
used within a line or to write a multiline comment.
> BetterAverage := proc()
(* This procedure computes the average of its
arguments. It is an error if no arguments were
passed. *)
if npassed = 0 then
error "too few values"
else
add (_passed[i] ,i=1.._npassed) (*TOTAL¥) / _npassed
end if
end proc;

BetterAverage = proc()
if nargs =0 then
error "too few values"
else (6.106)
add(argsl[i], i = 1..nargs) | nargs
end if
end proc

Notice that comments are discarded by Maple when the procedure is simplified. Comments
are purely for the benefit of the programmer(s) who write, read, and maintain the procedure.

258 ¢ 6 Procedures

As described earlier, a procedure in Maple can also have a description section. One or more
strings can follow the description keyword. Like comments, these have no effect on the
execution of the procedure, but they are retained when the procedure is simplified.

> AnotherAverage := proc()
description "Compute the average of one or more values.",
"At least one value must be passed.";
if npassed = 0 then
error "too few values"
else
add(_passed[i] ,i=1.._npassed) / _npassed
end if
end proc:

You can use Maple's Describe command to print a procedure's declared parameters, return
type, and description.

> Describe (AnotherAverage) ;

Compute the average of one or more values.
At least one value must be passed.

AnotherAverage ()

> Describe (RootPlot) ;

Plots the roots of a polynomial in x
RootPlot (p::polynom(constant,x))

6.9 Other Methods for Creating Procedures

Enclosing a sequence of statements in proc...end proc is not the only way to create a proced-
ure in Maple. You can also use functional operator notation or the unapply function.

Functional Operators: Mapping Notation

Functional operator notation (or arrow notation) is a method by which you can create a
special form of procedure which represents a mathematical function or mapping. The syntax
is:

(parameterSequence) -> expression

The parameterSequence can be empty, and the expression must be a single expression or
an if statement.

6.9 Other Methods for Creating Procedures ¢ 259

>F = (x,y) -> x*2 + y*2;
Fi= (xy) =X +) (6.107)

If the procedure requires only a single parameter, you can omit the parentheses around
parameterSequence:

>G :=n -> if n < 0 then 0 else 1 end if;

G := n—if n<0 then O else 1 end if (6.108)

Internally, a procedure created using operator notation is the same as any other procedure,
except that it will have options operator, arrow. You can invoke such a procedure in the

usual way:
> F(1,2);
5 (6.109)

> G(-1);
0 (6.110)

You can use declared parameter types when defining a functional operator:

>H := (n::even) -> n! * (n/2)!';
H := n::even—n! [; n]! (6.111)
> H(6);
4320 (6.112)
> H(5);

Error, invalid input: H expects its 1lst argument, n, to be of type

even, but received 5

The arrow notation is designed for simple one-line function definitions. It does not provide
a mechanism for specifying local or global variables, options, a description, or more than
a single statement. If these are required, use the more general proc...end proc notation.

The unapply Function

Another way to create a procedure is with the unapply function:

unapply (expression, parameterSequence)

The expression must be a single expression, and parameterSequence a sequence of symbols.

260 < 6 Procedures

>B = x*"2 + y*2;
Bim X 4 (6.113)
> F := unapply (B, x, y);
Fi= (%) =X +) @119
> F(3,4);
o5 (6.115)

The functional operator notation (or arrow notation) is a syntax for writing an operator. The
unapply function is a function mapping expressions to procedures. Use the unapply function
to create a procedure from an expression that was computed instead of one that was entered.
This works because unapply first evaluates the expression and then encloses the result in a
procedure. The arrow notation always produces a procedure containing the expression that
was entered.

> IntExpr := int(1/(x*3+1), x);

IntExpr = —% ln(x2 —x+ 1) + % ﬁarctan[(2x

1
3 (6.116)

—1)ﬁj+;1n(x+1)
> IntFunc := unapply(evalf (IntExpr), x);

IntFunc = x—-0.1666666667 In(x¥* — 1. x+ 1.)
+0.5773502693 arctan(1.154700539 x (6.117)
—0.5773502693) + 0.3333333333 In(x+ 1.)

> IntFunc(3.5);

0.8664586908 (6.118)

If you had tried to use operator notation to create the IntFune procedure, you would not
get what you expected:

> BadIntFunc := x -> evalf (IntExpr);

BadIntFunc := x—evalf (IntExpr) (6.119)

6.9 Other Methods for Creating Procedures * 261

> BadIntFunc(3.5);

-0.1666666667 In(x¥* — 1. x+ 1.)
+ 0.5773502693 arctan(1.154700539 x (6.120)
—0.5773502693) + 0.3333333333 In(x + 1.)

Notice that the result still contains the symbol x. This is because the x appearing in IntExpr
is the global variable x, not the parameter x of BadIntFunc.

Anonymous Procedures

Recall from the beginning of this chapter that a procedure is a valid Maple expression, in-
dependent from any name that it may have been assigned to. You can in fact create, manip-
ulate, and invoke a procedure without ever assigning it to name. Such procedures are called
anonymous.

Consider the following mapping (a procedure in functional operator notation):
> x -> x°2;
X X 6.121)
You can invoke this anonymous procedure in the following manner:
> (x -> x"2) (t);
t2 (6.122)
Syntactically, this is a Maple function call. Instead of specifying the procedure to call by

giving its name, the procedure is given directly. The same method can be used to directly
call a procedure defined using the proc...end proc notation:

> proc(x, y) x*2 + y*2 end proc (u, v);
w4+ VA (6.123)

Anonymous procedures are often used with the map function:
>map(x -> XAZI [1/2/3/4])/
[1,4,9,16] (6.124)

They are also used to initialize Arrays in Arrays (page 146). You can find numerous other
examples of anonymous procedures in this guide.

262 + 6 Procedures

Procedures, whether anonymous or not, can be combined in expressions, or processed by
operators such as D, the differential operator:

>D(x -> x*"2);

xX—2 X (6.125)
>F :=D(exp + 2 * 1n);
F:=exp+?2 [z—>i) (6.126)
> F(x);
2 (6.127)
X

6.10 Recursion

A procedure is termed recursive if it contains a call to itself, either directly, or indirectly
through another procedure that it calls. In order for a recursive procedure to produce a result,
it must test for some condition under which the recursion terminates. Otherwise, it would
go on calling itself forever (until Maple runs out of stack space).

You have already seen one example of recursion used to compute Fibonacci numbers in
The remember, cache, and system Options (page 221). Another well-known example of re-

cursion is the computation of the factorial of an integer. For any integer 0 < n, the
factorial (denoted by n!)is definedby n! =n(n—1)!.For n=0, n! is defined to be
equal to 1. This definition naturally lends itself to a recursive implementation:
> Fact := proc(n::nonnegint, $)
if n > 0 then
n * Fact(n-1)
else
1

end if

end proc;

Fact := proc(m::nonnegint, $)
if 0 <n then n*Fact(n — 1) else 1 end if (6.128)
end proc

> Fact(0) ;

1 (6.129)

6.10 Recursion ¢ 263

> Fact(4);
24 (6.130)

> Fact(-4) ;

Error, invalid input: Fact expects its lst argument, n, to be of type

nonnegint, but received -4

The if-statement ensures that Fact only calls itself when 0 < n.

Rather than using the name to which the procedure has been assigned to make the recursive
call, you can also use procname or thisproc. This ensures that the recursion continues to
work even if the procedure body is later assigned to a different name. The special symbol
procname refers to the name that the procedure was called with. In the Fact example,
procname would be equivalent to Fact. The symbol thisproc on the other hand refers to
the procedure itself. Calling the procedure recursively using thisproc is slightly more effi-
cient, and works within anonymous procedures.

This example uses an anonymous version of the Fact procedure above to compute the
factorials of a list of numbers:

>map(n -> if n > 0 then n * thisproc(n-1) else 1 end if,
[0, 1, 2, 3, 41);

[1,1, 2,6, 24] (6.131)

The BinarySearch procedure you saw earlier also lends itself to a recursive implementation.

> BinarySearch := proc(D::list(string), w::string,
low::integer := 1, high ::integer :=
numelems (D))
local mid;
if low > high then
Nothing left to search. Word is not in list.
false
else
mid := trunc((low + high) / 2);
if w < D[mid] then
Search within the left part of the range.
thisproc(D,w,low,mid-1)
elif w > D[mid] then
Search within the right part of the range.
thisproc(D,w,mid+1,high)
else
Word was found in middle of current range.

264 + 6 Procedures

true
end if
end if
end proc:
> Dictionary := ["induna", "ion", "logarithm", "meld"];
Dictionary = ["induna", "ion", "logarithm", "meld"] (6.132)

> BinarySearch(Dictionary, "hedgehogs");

false (6.133)

> BinarySearch(Dictionary, "logarithm");

true (6.134)

> BinarySearch(Dictionary, "melody");
false (6.135)

You use this procedure by passing it a sorted list of strings and a word to search for. The
two optional parameters, low and high, specify which range of list elements to search and
have default values specifying the entire list. After determining that the word is lexicograph-
ically less than or greater than the middle value, this procedure calls itself recursively,
passing the list and word, as well as appropriate values for the low and high parameters to
restrict the search. The recursion (and thus the search) ends when the procedure is asked to
search a zero-length section of the list (in which case the word was not found), or when the
middle element of the specified range contains the word.

If your procedure has the procname option, any attempt to make a recursive call via proc-
name instead of thisproc calls the procedure that invoked your procedure.

6.11 Procedures That Return Procedures

Some of the built-in Maple commands return procedures. For example, rand returns a pro-
cedure which in turn produces randomly chosen integers from a specified range. The dsolve
function with the type=numeric option returns a procedure which supplies a numeric estimate
of the solution to a differential equation.

You can write procedures that return procedures too. This section discusses how values are
passed from the outer procedure to the inner procedure.

Example: Creating a Newton lteration

The following example demonstrates how locating the roots of a function by using Newton's
method can be implemented in a procedure.

6.11 Procedures That Return Procedures ¢ 265

To use Newton's method to find the roots of a function graphically:

Choose a point on the X-axis that you think might be close to a root.

Draw the tangent to the curve at that point and observe where the tangent intersects the

Xx-axis. For most functions, this second point is closer to the real root than the initial guess.
Use the new point as a new guess and repeat this process.

1_
0.5 1
0 T XO T . T
1) 3 4 5 6
X
-0.5 1
_1—

The same process can be expressed numerically as an iteration:

where X, is the initial guess, and Xy is the result of the kth iteration.

The following procedure takes a function and creates a new procedure which expects an

initial guess and, for that particular function, generates the next guess. The new procedure
is specific to the function that it was generated for, and does not work for other functions.
To find the roots of a new function, use Makelteration to generate a new iterating procedure.

> MakeIteration := proc(expr::algebraic, x::name)
local iteration := x - expr / diff (expr, x);

266 < 6 Procedures

unapply (iteration, x);
end proc:

The procedure returned by the Makelteration procedure maps the name x to the expression
assigned to the iteration.

Test the procedure on the expression X — 2y X :

> expr := x - 2 * sqgrt(x);
expr:=x—2x (6.136)
> iter := Makelteration (expr, x);
iter = x—x— X=2VX
1 (6.137)

11— —

/X

The generated procedure, which is assigned to iter, returns the solution, x = 4 after a few
iterations.

>x0 := 2.0:

> to 4 do x0 := iter(x0); print(x0) end do:
4.828427124
4.032533198
4.000065353
4.000000000 (6.138)

Observe that the Makelteration procedure above requires its first argument to be an algeb-
raic expression. You can also write a version of Makelteration that works on other proced-
ures (such as functional operators).

> MakeIteration := proc(f::procedure)
(x->x) - eval(f) / D(eval(f));
end proc:

This example uses Maple's ability to treat expressions containing procedures as procedures.
The result of calling this version of Makelteration is an expression with procedures as
operands (x->X is just a procedure that maps any value to itself).

Because of last name evaluation, Makelteration will accept either a procedure or a name
whose value is a procedure. The calls to eval within Makelteration ensure that the result
refers to the actual procedure that was passed in, instead of to the name of that procedure.

6.11 Procedures That Return Procedures * 267

> g = x -> X - cos(x);
g = X—X— cos(x) (6.139)
> jiter := MakeIteration(g)

X—X — COS(X)

6.140
x—1 + sin(x) (6.140)

iter .= (x—x) —

Note that the procedure generated by the call to Makelteration is independent of the name
g (because of the aforementioned calls to eval). Thus, you can later change g without

breaking iter. You can find a good approximate solution to X — cos(x) = 0 in a few iter-
ations.

> x0 :=1.0;
x0:= 1.0 (6.141)
> to 4 do x0 := iter(x0); print(x0) end do:
0.7503638679
0.7391128909
0.7390851334
0.7390851332 (6.142)

Example: A Shift Operator

Consider the problem of writing a procedure that takes a function, f, as input and returns

a function, g, such that g(x) = f(x+ 1). You can write such a procedure like this:
> ShiftLeft := (f::procedure) -> (x -> f£(x+1)):

Try performing a shift on sin(x).

> ShiftLeft(sin);

x—sin(x+ 1) (6.143)

Maple lexical scoping rules declare the f within the inner procedure to be the same f as the
parameter of the outer procedure. Therefore, the ShiftLeft procedure works as written.

The previous example of ShiftLeft works with univariate functions but it does not work
with functions of two or more variables.
>h = (x,y) -> x*y;

h:=(x,y)—Xxy (6.144)

268 ¢ 6 Procedures

> hh := ShiftLeft(h);
hh:= x— h(X + 1) (6.145)

> hh(x,y);

Error, (in hh) invalid input: h uses a 2nd argument, y, which is

missing

To modify ShiftLeft to work with multivariate functions, rewrite it to generate procedures
that accept the additional parameters and pass them on to f.

> shiftlLeft := (f£::procedure) -> (x->f(x+l, _rest)):
> hh := ShiftLeft(h);
hh:= x—h(x+ 1, _rest) (6.146)
> hh(x,y);
(x+1)y (6.147)

Because the ShiftLeft procedure does not call eval on parameter f, the function hh depends
on h. Changing the value assigned to h implicitly changes hh:

>h := (XIYIZ) -> Y*Z"z/x;

hi= (xy,2)— 2L (6.148)
> hh(x,y,z);

2
Yz (6.149)
x+1

6.12 The Procedure Object

Recall that a Maple procedure is itself an expression in Maple which can be (and usually
is) assigned to a name. Like any Maple expression, a procedure has a fype, and has operands
(not to be confused with its parameters).

The procedure Type

Maple recognizes all procedures (and names to which a procedure has been assigned) as
being of type procedure. To verify whether a name or an expression is a procedure, use
the type function or :: operator:

> F := proc(x) x*2 end proc:

6.12 The Procedure Object * 269

> type (F, name) ;

true (6.150)
> type (F, procedure) ;

true (6.151)
> type (F, name (procedure)) ;

true (6.152)
> type (eval (F) , name) ;

false (6.153)
> type (eval (F) , procedure) ;

true (6.154)

The procedure type is a structured type (see Structured Types (page 120)). Using a structured
type allows you to verify that a name refers to a procedure, and additionally verify the spe-
cified types of the procedure's parameters.

> G := proc(n::integer, s::string)
print(s);
2 * n * length(s)
end proc:

> type (G, procedure (integer,string));

true (6.155)

Procedure Operands

Every Maple procedure has eight operands, corresponding to sub-parts of the procedure
definition. The following table lists each operand and the corresponding op call that can be
used to access it. In the table, the name P represents the name of the procedure, and the
eval call is necessary so that op will be passed the procedure, not the name (because proced-
ures have last name evaluation).

Table 6.1: Procedure Operands

Operand op Command
Parameters op(1,eval(P))
All local variables op(2,eval(P))
Options op(3,eval(P))
Remember table op(4,eval(P))

270 < 6 Procedures

Operand op Command
Description op(5,eval(P))
Declared global variables op(6,eval(P))
Lexical scoping table op(7,eval(P))
Return type op(8,eval(P))

The value of any operand can be a single item, an expression sequence if there are two or
more items (such as local variables), or NULL if there were no items (for example, no op-
tions).

The lexical scoping table is an internal structure that records the correspondence between

undeclared variables within the procedure and locals (or exports), globals, and parameters
of surrounding procedures (or modules). It does not correspond to any part of the procedure
as written.

The procedure's statement sequence is not one of the operands of the procedure, and thus
cannot be extracted by op. This is because statements and statement sequences are not ex-
pressions, and thus cannot be assigned to names or otherwise manipulated.

The following nested procedure illustrates how the parts of the procedure map to the oper-
ands. Note that this example refers to the procedure that appears within, and is returned by
procedure MakeProc (in order to illustrate lexical scoping). This procedure is not intended
to illustrate good programming style, but merely provide an example showing all the possible
operands.

> MakeProc := proc(offset::integer)
description "Create and return a procedure";
proc(n::integer, s::string) :: integer;
description "An example to illustrate procedure operands";

option remember;

global codes := convert(s,bytes);
local i;
total := 0;
for i to nops(codes) do
total := total + codes[i]
end do;
total * n + offset
end proc:
end proc:

Warning, “total’ is implicitly declared local to procedure

> P := MakeProc(3):

6.12 The Procedure Object « 271

> P; # The name of the procedure

P
> eval (P); # The procedure
proc(n:integer, s:string):integer;
option remember,
local i, total
global codes;
description
"An example to illustrate procedure operands";
codes := convert(s, bytes);
total := 0;
for i to nops(codes) do
total := total + codes] i]
end do;
total*n + 3
end proc

> op(l,eval(P)); # Parameters
n::integer, s:string
> op(2,eval(P)); # All local variables
i, total
> op(3,eval(P)); # Options
remember
> P(3,"nonsense"); # Place an entry in the remember table
2622
> op(4,eval(P)); # Show the remember table
table([(3, 'nonsense") = 2622])
> op(5,eval(P)); # Description
"An example to illustrate procedure operands”
> op(6,eval(P)); # Declared global variables

codes

(6.156)

(6.157)

(6.158)

(6.159)

(6.160)

(6.161)

(6.162)

(6.163)

(6.164)

272 + 6 Procedures

> op(7,eval(P)); # Lexical table

offset, 3 (6.165)

> op(8,eval(P)); # Return type

integer (6.166)

6.13 Exercises

3
1. Implement the function f(X) = (\/ V|) — 1, first as a procedure, and then by
using the mapping notation. Compute f(1/2) and f(0.5), and comment on the different
results.

ab . .
2. You can use 7 to compute the least common multiple of two integers, a and b, where

g is the greatest common divisor of a and b. For example, the least common multiple of
4 and 6 is 12. Write a Maple procedure, LCM, which takes as input n>0 integers ai,
a,, .., a, and and computes their least common multiple. By convention, the least

common multiple of zero and any other number is zero.

3. Write a Maple procedure called Sigma which, given n>1 data values, X Xy X,

computes their standard deviation. The following equation gives the standard deviation
of n>1 numbers, where mu is the average of the data values.

sigma =

4. Write a Maple procedure which, given a list of lists of numerical data, computes the
mean of each column of the data.

5. Write a Maple procedure called Position which returns the position i of an element x in
a list L. That is, Position(x,L) should return an integer i>0 such that L[i]=x. If x is not
in list L, 0 is returned.

7 Numerical Programming in Maple

An important part of efficient scientific and mathematical programming is numerical com-
putation. Maple provides many tools for computing with floating-point numbers, some for
improving efficiency and some for improving accuracy.

7.1 In This Chapter

* An Overview of Numeric Types in Maple
* An Explanation of Floating-Point Numbers in Maple
* Maple Commands for Numerical Computing

+ Efficient Numerical Programs

7.2 Numeric Types in Maple

Before discussing numerical computing in Maple, we will first introduce the various numeric
data types used in Maple and briefly describe how they are represented. All of the real
numbers discussed in this section will pass checks of type,numeric or type,extended numeric.

Integers

The most basic numeric type in Maple is the integer. Small integers are represented directly
as hardware integers (similar to the int type in C or integer type in Fortran), which allows
for maximum efficiency of both CPU time used for arithmetic and memory used for storage.
That is, the number can be stored in one machine word and arithmetic operations can be

performed with one CPU operation. On 32-bit architectures, integers in the range - 204
to 2° — 1 are stored in this way, while on 64-bit architectures, integers in the range

S22 10 2921, Integers stored in this way are referred to as immediate integers.
Larger integers are stored in DAGs of type INTPOS or INTNEG, which contain pointers
. . , 28 _218 L
to arrays of digits that can store integers up to magnitude 1 0° on 32-bit architectures
35 4 232 _
and 10° T2 18 on 64-bit architectures.

> dismantle (27°80-1) ;

INTPOS (6) : 1208925819614629174706175

273

274 « 7 Numerical Programming in Maple

> dismantle (-27101+6) ;

INTNEG (6) : -2535301200456458802993406410746

The arithmetic for these large integers is computed using the GNU Multiple Precision
Arithmetic (GMP) library. This library is quite efficient, but still several orders of magnitude
slower than arithmetic on immediate integers since each arithmetic operation will require
more than one CPU operation and the larger the integer, the more operations and memory
will be needed for arithmetic.

> CodeTools:-Usage (add (i, i=-2715..2716)) ;

memory used=160.88KiB, alloc change=0 bytes, cpu time=8.00ms, real
time=8.00ms, gc time=0ns

1610629120 (7.1)
> CodeTools:-Usage (add(i,i=288-2715..288+2"16)) ;

memory used=11.92MiB, alloc change=2.00MiB, cpu time=86.00ms, real
time=86.00ms, gc time=24.00ms

30423923890487326980991212339200 (7.2)
> CodeTools:-Usage (add(i,i=274097-2715..274097+2716)) ;

memory used=109.34MiB, alloc change=0 bytes, cpu time=338.00ms, real
time=340.00ms, gc time=177.00ms

2053372979746399143406655004539955198590467\
71005206125061344145148458177846287911591
0478394945398699]...1039 digits...]
63953935556197493890860675117841721612210
94396003584450254897514753869702834443706
806664146972590080

(7.3)

Any transitions between GMP integers and immediate integers will be completely transparent
and it is not possible to tell them apart in general without use low-level tools such as address-
of. However, you can check if an integer is small enough to fit into a single machine word
with types integer[4] and integer[8] for 4-byte and 8-byte words respectively.

Integers of all types pass a type,integer type check.

The Integer constructor is guaranteed to return an integer, an extended numeric symbol such
as infinity or undefined, a complex number with integer parts, or return unevaluated.

7.2 Numeric Types in Maple + 275

> Integer (-27160) ;

-146150163733090291820368483271628301965593\

(7.4)
2542976
> Integer (infinity) ;
o (7.5)
> Integer(1l/2);
1
Integer[3 j (7.6)

The system dependent value for the largest immediate integer can be found with kernel-
opts(maximmediate), the maximum number of decimal digits in an integer can be found
with kernelopts(maxdigits), and the version of the GMP library being used can be found
with kernelopts(gmpversion).

Rationals

Exact rational numbers are stored in DAGs of type RATIONAL, which consist of a pair of
integers. The first integer is the numerator and can be a POSINT or NEGINT. The second
integer is the denominator and is a POSINT. Most low-level programming languages such
as C or Fortran do not have an equivalent rational number type.

> dismantle(1/2) ;

RATIONAL (3): 1/2
INTPOS (2) : 1
INTPOS (2) : 2

> dismantle(-10/3);

RATIONAL (3): -10/3
INTNEG (2) : -10
INTPOS (2): 3

Rational numbers can be constructed by using the division operator or the Fraction construct-
or. In either case, automatic simplification will occur to ensure that the denominator is
positive and that the fraction is in lowest terms (the numerator and denominator do not have
factors in common). This means that the Fraction constructor may return integers in some
cases.

276 « 7 Numerical Programming in Maple

> dismantle (Fraction(21,7));

INTPOS (2): 3

> dismantle (Fraction (40,-14));

RATIONAL (3): -20/7
INTNEG (2) : -20
INTPOS (2) : 7

Rational number arithmetic is performed in the natural way using integer arithmetic and
the iged and ilcm operations to reduce to lowest terms.

> Fraction (2420+2712,2727-2713) + Fraction(2712-1,2713);

68141057 a7
134209536
> Fraction (242042%12,2427-2~13) * Fraction(23,187);
5911
o 7.8
6127242 79

Rational numbers of all types will pass a type,rational type check. Only rational numbers
that are not also integers will pass a type,fraction type check. Additionally, type,extended ra-
tional includes all rationals as well as the extended numeric symbols infinity, -infinity, and
undefined.

> type(l, fraction);
false (7.9)

Like the Integer constructor, the Fraction constructor will return unevaluated if it cannot
return a value of type extended rational.

> Fraction(x,1);
Fraction(x, 1) (7.10)
> Fraction(infinity) ;
0 (7.11)
Floating-Point Numbers

Floating-point numbers are stored in DAGs of type FLOAT.

7.2 Numeric Types in Maple « 277

In Maple, as in nearly every programming language, floating-point numbers can be construc-
ted using and visually distinguished from integers with a decimal point symbol, '.". The

floating-point number 1. is often treated as equal to the exact integer 1.
> evalb(l. = 1);

true (7.12)

Maple floating-point numbers can also be constructed with the SFloat constructor (or the
equivalent Float constructor) and can be checked with the nearly equivalent type,sfloat and
type,float types. We will generally refer to these numbers as sfloats to when we need to
distinguish them from hardware floating-point numbers (/floats), introduced below.

> Float (1) ;
1. (7.13)
> dismantle (SFloat (0.3333));
FLOAT (3) : .3333
INTPOS (2) : 3333
INTNEG (2) : -4
> type (.1, float);
true (7.14)
> type (.1, sfloat);
true (7.15)
> type(l, float);
false (7.16)

A floating-point number represents a rational number with a fixed precision. That rational
number can be recovered with convert/rational.

> convert (.3333333333, rational, exact);

3333333333

—_— 1
10000000000 17

However, not every rational number can be represented exactly by a floating-point number.

For example, the closest floating-point number to % is 0.3333333333.

> convert(1/3, float);

0.3333333333 (7.18)

278 « 7 Numerical Programming in Maple

Also, unlike numeric types integer and rational, integer and float do not have compatible
arithmetic. Floating-point arithmetic has a fixed finite precision, and does round off if the
result of arithmetic does not fit into that precision.

> 9123456789 + 8123456789 <> convert(9123456789. + 8123456789.,
rational, exact);

17246913578 + 17246913580 (7.19)
> 123456 * 1234567 <> convert(123456.%*1234567., rational, exact);
152414703552 + 152414703600 (7.20)

Unlike many other programming languages the precision of sfloat arithmetic can be changed.
For this reason, sfloats are known as arbitrary precision floating-point numbers.

More information on sfloats and how they differ from the floating-point types in languages
such as C and Fortran will be discussed in greater detail in More about Floating-Point
Numbers in Maple (page 281).

Hardware Floating-Point Numbers

Floating-point numbers of the type used in languages such as C and Fortran can also be
constructed in Maple; they are known as hardware floating-point numbers or Afloats. These
types are stored as 8-byte double precision IEEE floating-point numbers contained in DAGs
of type HFLOAT. Since the . notation is used to construct Maple sfloats, hfloats must be
constructed with the HFloat constructor. Maple will display sfloats and hfloats the same
way, using decimal notation.

> HFloat (1) ;
1. (7.21)

> dismantle (HFloat (0.3333));

HFLOAT (2) : .3333

The advantage of hfloats over sfloats is that their arithmetic is computed directly using a
single CPU operation for each arithmetic operation. Maple sfloats, however, offer much
more flexibility and precision. In many ways the difference is analogous to the difference
between immediate integers and GMP integers.

Hardware floats can be distinguished from sfloats with the type,hfloat type.

> type (HFloat (1) , float);

true (7.22)

7.2 Numeric Types in Maple « 279

> type (HFloat (1) , sfloat);

false (7.23)
> type (HFloat (1) , hfloat);

true (7.24)
> type (SFloat(l) , hfloat);

false (7.25)

For more information on hardware floats and how they differ from sfloats, see More about
Floating-Point Numbers in Maple (page 281).

Extended Numeric Types

The special built-in symbols infinity (o), and undefined can be used in numeric arithmetic

in Maple. In general, operations involving o simplify automatically to a signed infinity or
a complex infinity. For details, refer to the type,infinity help page.

> -1*infinity;

-0 (7.26)
> 1/2*infinity;

00 (7.27)
> 1/infinity;

0 (7.28)

The undefined symbol is usually produced as the result of attempting to carry out an oper-
ation that cannot result in a number for the given operands. Almost every arithmetic operation
involving undefined returns undefined. For details, refer to the type,undefined help page.

> infinity-infinity;

undefined (7.29)
> undefined-undefined;

undefined (7.30)

> undefined+1;

undefined (7.31)

280 « 7 Numerical Programming in Maple

Integer and rational numbers share exact undefined and infinite symbols while sfloat and
hfloat numbers have their own versions of these, which are displayed differently but treated
similarly.

> Float (infinity) ;

Float() (7.32)

> HFloat (undefined) ;

HFloat(undefined) (7.33)

Complex Numbers

A complex number in Maple is a DAG of type COMPLEX, which consists of a pair of any

of the two numeric types. They can be constructed in the natural way using the symbol I
for the imaginary unit, or using the Complex constructor.

> dismantle (1+4I) ;

COMPLEX (3)
INTPOS (2) : 1
INTPOS (2): 1

> dismantle (Complex(1/2,1/3));

COMPLEX (3)

RATIONAL (3): 1/2
INTPOS (2) : 1
INTPOS (2): 2

RATIONAL(3): 1/3
INTPOS (2): 1
INTPOS (2): 3

Automatic simplification will ensure that if one of the parts of a complex number is a float
(or hfloat), then other will be made into a float (hfloat).

> dismantle (Complex (1., 1/1001));

COMPLEX (3)
FLOAT (3): 1.
INTPOS (2): 1
INTPOS (2): O
FLOAT (3) : .9990009990e-3
INTPOS (2) : 9990009990
INTNEG (2): -13

7.3 More about Floating-Point Numbers in Maple + 281

> dismantle (Complex (HFloat(1.), 1/1001));

COMPLEX (3)
HFLOAT (2) : 1.
HFLOAT (2) : .000999000999

> dismantle (Complex (HFloat(1l.), 1.));

COMPLEX (3)
HFLOAT (2) : 1.
HFLOAT (2) : 1.

Complex numbers are not of type type,numeric but can be checked with type type,complex
which can also be structured to check for the numeric subtypes of its two components.

> type (1+I,numeric) ;
false (7.34)
> type (14I,complex (integer)) ;

true (7.35)

Non-numeric Constants

Many Maple expressions represent constants, but are not considered to be of type numeric.
This means that arithmetic performed on these constants will be more generic symbolic
operations on DAGs of type SUM, PROD, NAME, or FUNCTION. Some examples of non-

numeric constants are Pi(m), Catalan, sin(1),+/ 5 ,and © + % — J1+5 Catalan .

> type (Pi, numeric);
false (7.36)
> type (sqrt(5)-1, constant);

true (7.37)

7.3 More about Floating-Point Numbers in Maple

To take full advantage of floating-point numbers and to avoid many common pitfalls in
numerical computing, it is important to understand exactly what floating-point numbers are
and how they are represented.

282 « 7 Numerical Programming in Maple

Representation of Floating-Point Numbers in Maple

The dismantle command shows that the two numbers 1 and 1. have different internal

representations. 1 is simply stored as an integer while 1. is stored as a pair of integers.

> dismantle (1) ;

INTPOS (2) : 1

> dismantle(1l.);

FLOAT (3): 1.
INTPOS(2): 1
INTPOS (2): O

Similarly, the numbers 1 and 0.5 are also different even though they are both stored as

2

pairs of integers.

> dismantle(1/2) ;

RATIONAL(3): 1/2
INTPOS (2): 1
INTPOS (2): 2

> dismantle (0.5) ;

FLOAT (3): .5
INTPOS (2) : 5
INTNEG (2) : -1

In Maple, the FLOAT DAG-type represents a floating-point number in the form S * 10"E
where both S and E are integers. For 1., the significand (or mantissa) is S = 1 and the

exponent is E= 0. In addition to being specified in decimal notation, floats of this form
can be constructed by using scientific notation, or the Float constructor.

> Float(2,0);
2. (7.38)
> 2*1e0;

2. (7.39)

The advantage of using this significand-exponent representation is that fixed precision ap-
proximations of large and small numbers can be stored compactly and their arithmetic can

7.3 More about Floating-Point Numbers in Maple + 283

be done efficiently. Storing the integer 10750 needs at least 167 bits or 3 words on a 64-bit
machine. The floating-point number 1e50 can be stored in less than 8 bits but in in practice
uses 2 words (one for each integer).

> dismantle (107150) ;

INTPOS (8) : 100

> dismantle (1e50) ;

FLOAT (3) : .leb51
INTPOS (2): 1
INTPOS (2) : 50

Using two immediate integers, a float can store a much larger range of numbers than a ra-
tional number with two immediate integers. The range a rational can represent is about

1.1072..1. 10° while a float can represent a range of about

1.1071073741823 g 101073741823 ‘Thicis 2 much larger range for the same storage

cost. Of course, that larger range means that floats of a fixed size can represent fewer
numbers in that range. And since floating-point numbers are always of a fixed size, this
means that arithmetic will always be of limited precision. That is, each operation will have
to round the result to a number that can be represented as another floating-point number.

In Maple, the significand is limited to 10 decimal digits of precision by default but can be
changed while the exponent is restricted to being a word-sized integer.

More information on the restrictions on the size of software floats in Maple can be found
by using the Maple floats command.

By contrast, hfloats, are represented in base 2, rather than base 10. So they represent numbers
using the form S * 2"°E, where the significand, S, is a 52-bit integer and the exponent, E, is
a 10-bit integer. Thus, the range of numbers representable as hardware floats is

2.225073859 10798 .1.797693135 1038, Because the largest possible significand
of a hardware float has about floor(loglo(252)) = 15 base-10 digits of precision,

hardware floats can be converted to software floats without meaningful loss of precision
when Digits is 15. Conversely, so long as their exponent is smaller than 307 and their signi-
ficand had fewer than 15 digits sfloats can be converted to hfloats without loss of precision.

Precision and Accuracy

By default, 10-digit precision is used for floating-point arithmetic, which means that the
arithmetic will be rounded to 10 digits. This means any single floating-point operation will
be accurate to 10 digits.

284 « 7 Numerical Programming in Maple

For example, storing 10750+1 requires 50 decimal digits so it will be rounded in floating-
point arithmetic. By contrast, 10°50+10"41 can be stored with 10 digits so it will still be
computed accurately.

> .1le51 + 1.;

1.10°° (7.40)
> .lebl + .led2;

1.000000001 10°° (7.41)

The Digits environment variable can be used to change the working precision used by Maple.

Larger values of Digits will allow more accurate computation, but at the cost of slower
arithmetic.

> Digits := 100:
> .1le51 + 1.;

1.00\

0 (7.42)
00000001 10

The maximum value for Digits is system dependent and can be found with the Maple floats
command.

> Maple floats (MAX DIGITS);
38654705646 (7.43)

For the default value of Digits, the significand is an immediate integer and so arithmetic
will be fast in general. It also means that some numerical function evaluations (such as sin
in the following example) will be able to use the CPU's native hardware floating-point
arithmetic to achieve the needed precision. However, raising Digits about the default value
will lead to slower arithmetic and slower function evaluation.

> Digits:=10:

> CodeTools:-CPUTime (add(sin(le-6*i) ,i=1..100000)) ;
2.825,4995.884639 (7.44)

> Digits:=22:

> CodeTools:-CPUTime (add(sin(le-6*i) ,i=1..100000)) ;

14.435, 4995.884638682140998954 (7.45)

Reducing Digits below its default value does not usually lead to large improvements in
performance.

7.3 More about Floating-Point Numbers in Maple + 285

> Digits:=5:
> CodeTools:-CPUTime (add(sin(le-6*i) ,i=1..100000)) ;

2.699, 4996.0 (7.46)

It is also important to note that changing Digits does not necessarily change the accuracy
of sequences of multiple floating-point computations; it changes only the precision of the
individual operations performed. The following example computes two additions using 10
digits of precision, but catastrophic cancellation leads to a mere one digit of accuracy in
the final answer.

> Digits := 10:
> x := 1234567890. ;

x = 1.234567890 10° (7.47)
>y = -x+1;
y = -1.234567889 10° (7.48)
>z := 3.141592654;
7= 3.141592654 (7.49)
> x+z+y<>z+l;
4. + 4.141592654 (7.50)

Ensuring accuracy requires careful study of the problem at hand. In this example, you need
19 digits of precision to get 10 digits of accuracy.

> Digits := 19:
> x+z+y=z+1;

4.141592654 = 4.141592654 (7.51)

Floating-Point Contagion

An important property of floating-point numbers in Maple, and nearly every other computing
environment, is contagion. When numerical expressions are created involving both floating-
point numbers and exact numbers, the floating property is contagious and causes the answer
to become a floating-point number.

> 1. * 10;

10. (7.52)

286 + 7 Numerical Programming in Maple

> 0. + 10;

10. (7.53)

As you can see, this contagion property can be used as a quick method to convert exact
values to floating-point numbers. However, while floating-point contagion extends to all
Maple structures of type numeric (except, in some cases, hfloats), it does not apply to non-
numeric constants.

> type(3/4, numeric);
true (7.54)
>4/3 +0.;
1.333333333 (7.55)

> 1.*sqrt(3);

1.3 (7.56)

The hfloat type is also contagious, but the precise behavior of the contagion is determined
by the UseHardwareFloats environment variable. By default, hfloats are contagious for
small values of Digits:

> type (4/3 + HFloat(0.), hfloat);
true (7.57)
> type(l. + HFloat(0.), hfloat);

true (7.58)

> HFloat(l.1l) * sin(4*Pi/7) -1;

1.10000000000000 Sin[% n) -1 (7.59)

For large values of Digits, hfloats in computations will be converted to sfloats so that the
results are sfloats.

> Digits := 20;
Digits = 20 (7.60)
> type(l + HFloat(0.), hfloat);
false (7.61)
> type(l + HFloat(0.), sfloat);

true (7.62)

7.3 More about Floating-Point Numbers in Maple <« 287

If UseHardwareFloats=true then hfloats are completely contagious.

> UseHardwareFloats := true;
UseHardwareFloats := true
> Digits := 20;
Digits := 20
>a := 10.719+1;

a == 1.0000000000000000001 10"°

>Db := a + HFloat(0.1);

b= 1.00000000000000 10"
> type (b, hfloat);

true

(7.63)

(7.64)

(7.65)

(7.66)

(7.67)

If UseHardwareFloats=false then hfloats will always be converted to sfloats in computations,
regardless of the setting of Digits. The HFloat constructor will still create hfloats, however.

> UseHardwareFloats := false;

UseHardwareFloats := false

> Digits := 10;

Digits := 10

> ¢ := 1 + HFloat(0.1);

¢ = 1.100000000
> type(c, hfloat);

false
> type (HFloat (0.1) , hfloat);

true
Table 7.1 summarizes the floating-point contagion rules.

Table 7.1: Floating-Point Contagion Rules

UseHardwareFloats true false deduced

deduced

Digits any any 1...15

16...

(7.68)

(7.69)

(7.70)

(7.71)

(7.72)

288 « 7 Numerical Programming in Maple

hfloat + hfloat hfloat sfloat hfloat sfloat
hfloat + sfloat hfloat sfloat hfloat sfloat
sfloat + sfloat sfloat sfloat sfloat sfloat

More on the Floating-Point Model

The software floating-point system is designed as a natural extension of the industry
standard for hardware floating-point computation, known as IEEE 754. Thus, there are
representations for infinity and undefined (what IEEE 754 calls a NaN, meaning Not a
Number) as discussed in Extended Numeric Types (page 279).

The IEEE 754 standard defines five rounding algorithms. Two methods called nearest and
simple round to nearest values, and the other three are directed roundings that round up or

down (as needed) towards - o, o, or 0. Maple implements all of these rounding modes
and the desired mode can be selected by setting the Rounding environment variable.

> Rounding;

nearest (7.73)
> 1.4%10;
28.92546550 (7.74)
> Rounding := 0;
Rounding := 0 (7.75)
> 1.4%10;
28.92546549 (7.76)

Another important feature of this system is that the floating-point representation of zero,
0., retains its arithmetic sign in computations. That is, Maple distinguishes between +0. and
-0. when necessary. In most situations, this difference is irrelevant, but when dealing with

functions that have a discontinuity across the negative real axis, such as In(x), preserving
the sign of the imaginary part of a number on the negative real axis is important.

For more intricate applications, Maple implements extensions of the IEEE 754 notion of a
numeric event, and provides facilities for monitoring events and their associated status
flags. For more information about this system, refer to the numerics help page.

7.4 Maple Commands for Numerical Computing « 289

7.4 Maple Commands for Numerical Computing

In this section we will discuss some of the commands available in Maple for floating-point
computation.

The evalf Command

The evalf command is the primary tool in Maple for performing floating-point calculations
in software floating-point mode. You can use evalf to compute approximations of non-nu-
meric constants.

> evalf (Pi) ;
3.141592654 (7.77)

You can alter the number of digits of the approximation by changing the value of the envir-
onment variable Digits, or by specifying the number as an index to evalf (which leaves the
value of Digits unchanged).

> Digits := 20:

> evalf (Pi) ;

3.1415926535897932385 (7.78)

> evalf[200] (Pi) ;

3.141592653589793238462643383279502884197169\
39937510582097494459230781640628620899862\
80348253421170679821480865132823066470938\ (7.79)
44609550582231725359408128481117450284102\
7019385211055596446229489549303820

> evalf (sqrt(2)) ;

1.4142135623730950488 (7.80)
> Digits := 10:

Remember that the Digits command specifies the precision in decimal digits, unlike hardware
floating-point numbers which specify precision in binary digits.

All floating-point computations are performed in finite precision, with intermediate results
generally being rounded to Digits precision. As such, it is possible for round-off errors to

accumulate in long computations. Maple ensures that the result of any single floating-point
arithmetic operation (+, -, *,/, or sqrt) is fully accurate. Further, many of the basic functions
in Maple, such as the trigonometric functions and their inverses, the exponential and logar-
ithmic functions, and some of the other standard special functions for mathematics, are ac-

290 e« 7 Numerical Programming in Maple

curate to within .6 units in the last place (ulps), meaning that if the Digits + 1st digit of the
true result is a 4, Maple may round it up, or if it is a 6, Maple may round it down. Most
mathematical functions in Maple, including numerical integration, achieve this accuracy
on nearly all inputs.

It is possible to create software floats with different precisions. Changing the value of Digits
will not change these numbers; it affects only the precision of subsequent operations on
those numbers.

> Digits := 50;
Digits := 50 (7.81)
> a := evalf(Pi);
a=
3.141592653589793238462643383279502884197\ (7.82)
1693993751
> Digits := 10;
Digits := 10 (7.83)
> a;
3.141592653589793238462643383279502884197169\ (7.84)
3993751
> atl;
4.141592654 (7.85)
> evalf (a);
3.141592654 (7.86)

From this example, you can see that evalf can be used to create a lower precision float from
one of higher precision. This can be used to round a result to a desired number of digits.
However, evalf will not increase the precision of a low precision float.

> evalf[100] (1.0);
1.0 (7.87)
> evalf[10000] (a) ;

3.141592653589793238462643383279502884197169\

(7.88)
3993751

7.4 Maple Commands for Numerical Computing < 291

The evalf command also provides an interface to purely numerical computations of integrals,
limits, and sums.

Some definite integrals have no closed-form solution in terms of standard mathematical
functions. You can use evalf to obtain a numerical answer directly using numerical tech-
niques.

> r := Int(exp(x*3), x=0..1);
1
-3
V= ’ e¥ dx (7.89)
0
> value(r) ;
13
X
Je dx (7.90)
0
> evalf(r);
1.341904418 (7.91)

In other cases, Maple can find an exact solution, but the form of the exact solution is almost

incomprehensible. The function Beta in the following example is a special function that
appears in mathematical literature.

>q := Int(x*99 * (1-x)7199 / Beta (100, 200), x=0..1/5);
1

5
[XPa-n" (7.92)

a: B(100, 200)

292 « 7 Numerical Programming in Maple

> value (q) ;

2785229054578052117925524865043430599840384\
98009096903421704176220527155238977619068
28166964420518416902474524718187972029459
61766386779717574634134906442572750186110
1435750157352018112989492972548449/

(
21774128091037151646887384971552115934384

96176725167103101324312241148610308262514"
47555252405132308313238717840332750249360
60378263034137682537367383346083183346165
22866113357176260162148352832620593365691
18501246614718189600663973041983050027165
65259568426426994847133755683898925781250
0000 B(100, 200))

> evalf (q) ;

(7.93)

3.546007367 1078 (7.94)

The two previous examples use the Int command rather than int for the integration. If you
use int, Maple first tries to integrate the expression symbolically. Thus, when evaluating
the following commands, Maple determines a symbolic answer and then converts it to a
floating-point approximation, rather than performing direct numerical integration. In general,
the symbolic computation is more difficult, and thus slower than the numerical computation.

> evalf(int(x*99 * (1-x)7199 / Beta (100, 200), x=0..1/5));
3.546007367 1078 (7.95)

Similarly, evalf can be used on the inert forms Limit and Sum to compute using numerical
algorithms for computing numeric limits and sums.

> evalf (Limit (sin(erf (1) *x)/ (erf (1) *2*x) ,x=0)) ;
1.186660803 (7.96)
> evalf(Sum(exp(x), x=RootOf (_Z"5+ Z+1l)));

4.791792042 + 0.1 (7.97)

7.4 Maple Commands for Numerical Computing « 293

When Not to Use evalf

In general the symbolic commands in Maple are able to handle floating-point numbers in
their input, but, by their nature floats are not as precise as rationals or symbolic constants.
So, even if you want a numerical answer from a command, you should avoid calling evalf
on the input.

The following command does not compute the expected answer of 0.1111111111.
> limit(n* (evalf(1/3) - 1/(3+1/n)), n=infinity);

- Float(«) (7.98)

It would have been computed correctly with non-float values in the input.

> evalf(limit(n*(1/3 - 1/(3+1/n)), n=infinity));

0.1111111111 (7.99)

Numeric Solvers

There are also a number of numerical algorithms available in Maple in commands other
than evalf. One of the most important is fsolve which is short for floating-point solve. This
command computes numerical solutions to equations or systems of equations. In general,
it is much more efficient than calling evalf on the result of solve, especially if you are inter-
ested in only a single solution.

> fsolve(exp(x) + 2*sin(x), x);
-0.3573274113 (7.100)

The fsolve command is a sophisticated heuristic that chooses among many different al-
gorithms depending on the input. There are several more special purpose solving tools
available in the RootFinding package.

Several symbolic solvers in Maple also have numeric modes. The dsolve and pdsolve
commands both accept a numeric option, which indicates that a numerical answer should
be computed using purely numeric methods. For extensive information on these numeric
commands, refer to the dsolve/numeric and pdsolve/numeric help pages.

The evalhf Command

Like evalf, evalhf computes an numerical approximation of its input. However, evalhf uses
hardware floats in all intermediate calculations before returning an sfloat.

294 « 7 Numerical Programming in Maple

> dismantle(evalhf(1/3));

FLOAT (3) : .333333333333333315
INTPOS (2) : 333333333333333315
INTNEG (2) : -18

The evalhf command is affected by the value of Digits, but since intermediate calculations
are done with hfloats, at most 18 digits will be returned.

> Digits := 100;
Digits := 100 (7.101)
> evalhf (1/3) ;

0.333333333333333315 (7.102)

Notice that in this example the result is only correct to 16 digits. In general, the results from
evalhf are guaranteed to 15 digits of accuracy.

To find the number of guaranteed digits for your version of Maple, use evalhf(Digits):
> evalhf (Digits) ;

15. (7.103)

In fact, evalhf is, despite superficial similarities, very different from evalf. The evalhf
command uses a completely separate evaluation environment which uses only simple types
rather that the Maple DAG types. This means that it can be very fast, but at the cost of being
limited in the types of computations it can perform.

> Digits := 15;
Digits == 15 (7.104)

>c := 10.714;

¢ == 1.00000000000000 10'* (7.105)

> CodeTools:-Usage(evalhf(add((i+c), i=1..10%6)));

memory used=1.24KiB, alloc change=0 bytes, cpu time=48.00ms, real
time=47.00ms, gc time=0ns

1.00000000499999867 10°° (7.106)

7.4 Maple Commands for Numerical Computing « 295

> CodeTools:-Usage((add((i+c), i=1..1076)));

memory used=110.06MiB, alloc change=8.00MiB, cpu time=963.00ms, real
time=965.00ms, gc time=112.00ms

1.00000000500000 10°° (7.107)

> ¢ := HFloat(c);

¢ == 1.00000000000000 104 (7.108)

> CodeTools:-Usage((add((i+c), i=1..10%6)));

memory used=35.02MiB, alloc change=0 bytes, cpu time=784.00ms, real
time=784.00ms, gc time=112.00ms

1.00000000500001 10°° (7.109)

In particular evalhf only handles a specific list of functions. For the list of functions that
evalhf recognizes, refer to the evalhf/fenlist help page.

> evalhf (sin (exp (gamma+2) +1n (cos (Catalan)))) ;
0.0980197901238379354 (7.110)
> evalhf(b /3);

Error, cannot handle unevaluated name "b" in evalhf

evalhf works with Arrays of hardware floats. It cannot handle symbols, lists, sets, and most
other Maple data structures.

> evalhf (map (t->t+1, [1, 2, 3, 4]));

Error, unable to evaluate expression to hardware floats: [1, 2, 3, 4]

To create an Array of hardware floats, you can use the option datatype=float[8], which
specifies that the elements in the Array are 8-byte hardware floats.

> A := Array([1, 2, 3, 4], datatype=float[8]);
A=1. 2 3. 4] (7.111)
> evalhf (map (t->t+1, A));

[2. 3. 4. 5.] (7.112)

You can also create an Array that can be used by evalhf by using the constructor hfarray.
Both constructors create an Array of hardware floats. The only difference is that hfarray
defaults to C_order instead of Fortran_order.

296 <« 7 Numerical Programming in Maple

> A := hfarray(l..4, 1..4, (i,]j)->ithprime(i)*isqrt(3*(i+j))):

4. 6. 6. 8.
9. 9. 12. 12.
A= (7.113)

15. 20. 20. 25.

28. 28. 35. 35.
> lprint (3) ;
Array(l .. 4,1 .. 4,{(1, 1) = HFloat(4.), (1, 2) = HFloat(6.), (1, 3)
= HFloat(6.), (1, 4) = HFloat(8.), (2, 1) = HFloat(9.), (2, 2) =
HFloat (9.), (2, 3) = HFloat(l2.), (2, 4) = HFloat(12.), (3, 1) =
HFloat (15.), (3, 2) = HFloat(20.), (3, 3) = HFloat(20.), (3, 4) =
HFloat (25.), (4, 1) = HFloat(28.), (4, 2) = HFloat(28.), (4, 3) =

HFloat (35.), (4, 4) = HFloat(35.)},datatype = float[8],order = C order)

User-defined Maple procedures can be evaluated in the evalhf environment as long as they
comply with the restrictions outlined in the evalhf/procedure help page.

> SlowPower := proc(a,n) local i, s; s:=1; for i to n do s := a*s;
end do; end proc;

SlowPower := proc(a, n)

local i s
(7.114)
s:=1;for ito ndo s:= a*s end do
end proc
> SlowPower (2,10) ;
1024 (7.115)
> evalhf(SlowPower (2,10));
1024. (7.116)

Numerical Linear Algebra

Maple has access to many libraries for fast numeric computation such as BLAS, CLAPACK,
and the NAG® C Library. To take full advantage of the speed provided by these commands,
you need to provide them with Matrices and Vectors with the appropriate datatype.

7.4 Maple Commands for Numerical Computing « 297

For example, floating-point Matrix times Matrix products can been computed very quickly
in the BLAS libraries and quickest dispatch to the BLAS commands will happen if the
Matrices are created with datatype=float[8].

> A := Matrix (573,573, (i,3)->(i-j+1)/ (i+3));

125 x 125 Matrix
Data Type: thi
A ata Type: anything a7
Storage: rectangular

Order: Fortran_order

> CodeTools:-Usage (A*2) ;

memory used=0.60GiB, alloc change=88.01MiB, cpu time=3.40s, real
time=3.27s, gc time=427.00ms

125 x 125 Matrix
Data Type: thi

ata Type: anything @118
Storage: rectangular

Order: Fortran_order
> Ahf := Matrix (573,573, (i,]J)->(i-j+1)/(i+j), datatype=float[8]);

125 x 125 Matrix

Data Type: ﬂoat8
Ahf = (7.119)
Storage: rectangular

Order: Fortran_order

> CodeTools:-Usage (Ahf*2) ;

memory used=351.70KiB, alloc change=0 bytes, cpu time=29.00ms, real
time=30.00ms, gc time=0ns

125 x 125 Matrix

Data Type: floa &
(7.120)
Storage: rectangular

Order: Fortran_order

Of course, many of the linear algebra commands will try to determine if you have a Matrix
of low precision floats and will convert to the appropriate datatype automatically. In the

298 « 7 Numerical Programming in Maple

next example, Af has datatype=anything, but the result of Af*2 has datatype=float[8] and
requires only a small, but noticeable, copy and conversion overhead.

> Af := Matrix (573,573, (i,3j)->(i-j+1.)/(i+3));

125 x 125 Matrix
Data Type: thi
Afm ata Type: anything 121)
Storage: rectangular

Order: Fortran_order
> CodeTools:-Usage (Af*2) ;
memory used=373.95KiB, alloc change=0 bytes, cpu time=28.00ms, real
time=6.00ms, gc time=0ns

125 x 125 Matrix

Data Type: floa (A

(7.122)
Storage: rectangular

Order: Fortran_order

We recommend that you specify datatype=float[8] in your constructors explicitly if you
intend to perform numeric computations. This makes the numeric nature of the Matrix ex-
plicit, and it makes it impossible to accidentally add non-float entries to a Matrix and thus

make subsequent computations slower. An exception will be raised if non-numeric entries
are assigned into the Matrix.

> Ahf[1,1] := sqrt(3);

Error, unable to store '37(1/2)' when datatype=float[8]

Other numeric types will be automatically converted to float[8].

> Ahf[1,1] := 45/111;
— 15
AhfL1 =3 (7.123)
> Ahf[1,1];
0.405405405405405 (7.124)

If a Matrix contains only floats, but does not have a datatype=float[8] restriction, then addi-
tion of symbolic elements results in the more expensive symbolic commands to be used.

7.4 Maple Commands for Numerical Computing < 299

> Af[1,1] := sqgrt(3);

Afy 4= J3 (7.125)

> CodeTools:-Usage (Af*2) ;
memory used=310.66MiB, alloc change=64.00MiB, cpu time=4.95s, real
time=3.86s, gc time=772.00ms
125 x 125 Matrix
Data Type: anythin
g (7.126)
Storage: rectangular

Order: Fortran_order

Another advantage of float[8] is that these Matrices are stored in the same way as an hfarray
which is analogous to an array of floats in the C or Fortran programming languages and
different from a Matrix of datatype=anything or datatype=sfloat which are arrays of Maple
DAGs each of which will take more memory than a single 8-byte float. Note the difference
in memory used in the following two examples.

> restart;

> CodeTools:-Usage (Matrix (1043,3*1073, (i,j)->10.%4*3+73,
datatype=sfloat)) ;

memory used=114.55MiB, alloc change=22.89MiB, cpu time=6.97s, real
time=6.97s, gc time=5.95s

1000 x 3000 Matrix
Data Type: t
ata Type: sfloa 7127
Storage: rectangular

Order: Fortran_order

> restart;

300 + 7 Numerical Programming in Maple

> Bl:=CodeTools:-Usage (Matrix(1073,3*103, (i,]3)->10%4*j+i,
datatype=float[8]));

memory used=22.96MiB, alloc change=22.89MiB, cpu time=580.00ms, real
time=579.00ms, gc time=0ns

1000 x 3000 Matrix

Data Type: ﬂoat8
Bl = (7.128)
Storage: rectangular

Order: Fortran_order
It is also important to note that elements extracted from a float[8] rtable will be of type
hfloat and so hfloat contagion will apply subject to the current setting of UseHardwareFloats.

> type(B1[1,1], hfloat);
true (7.129)

There are also many optimized commands for Matrices of complex hfloats. These Matrices
can be created using the option datatype=complex[8], and work similarly to those of data-
type=float[8].

If you are constructing very large Matrices in your programs, use the ArrayTools package
to construct and copy Matrices as efficiently as possible.

7.5 Writing Efficient Numerical Programs

Two main points to keep in mind when trying to write efficient numerical programs are:
Try to use hardware floating-point arithmetic when Digits allows

Try to minimize memory usage where possible

Writing Flexible Numerical Procedures

You can use the evalhf(Digits) construct to determine whether hardware floating-point
arithmetic provides sufficient precision in a particular application. If Digits is less than
evalhf(Digits), then you can take advantage of the faster hardware floating-point calculations.
Otherwise, you should use software floating-point arithmetic, with sufficient digits, to per-
form the calculation.

In the following example, the procedure myevalf takes an unevaluated parameter, expr.
Without the uneval declaration, Maple would evaluate expr symbolically before invoking
myevalf.

7.5 Writing Efficient Numerical Programs + 301

> myevalf := proc(expr::uneval)
if Digits < evalhf(Digits) then
evalf (evalhf (expr)) ;
else
evalf (expr) ;
end if;
end proc:

The evalhf command evaluates many Maple functions, but not all. For example, you cannot
evaluate an integral using hardware floating-point arithmetic.

> myevalf(Int(exp(x*3), x=0..1));

Error, (in myevalf) unable to evaluate function "Int’ in evalhf

You can improve the procedure myevalf so that it traps such errors and tries to evaluate the
expression using software floating-point numbers instead.

> myevalf := proc(expr::uneval)

if Digits < evalhf(Digits) then

try
return evalf (evalhf (expr)) ;

catch:
end try;

end if;

return evalf (expr) ;

end proc:

> myevalf(Int(exp(x*3), x=0..1));
1.341904418 (7.130)

This procedure provides a model of how to write procedures that use hardware floating-
point arithmetic whenever possible.

The myevalf procedure returns sfloats. A version that returns hfloats is easiest to write using
the hfloat procedure option. This option will cause the procedure to use hfloat arithmetic
as much as possible so long as digits less than 15. In particular it convert all floats in the
procedure definition into hfloats, and causes evalhf to not convert its output to an sfloat.

> myevalf := proc(expr: :uneval)
option hfloat;
if Digits < evalhf (Digits) then
try
return evalhf (expr) ;
catch:
end try;

302 + 7 Numerical Programming in Maple

end if;
return evalf(l. * expr);
end proc:

The multiplication by 1. was added to the evalf return line to induce hfloat contagion
causing the output to be an hfloat when possible.

> type(myevalf(Int(exp(x”*3), x=0..1)), hfloat);
true (7.131)

For more information on the hfloat option, see The hfloat Option (page 218) or refer to the
option_hfloat help page.

Example: Newton Iteration

This section illustrates how to take advantage of hardware floating-point arithmetic to cal-
culate successive approximations using Newton's method. You can use Newton's method
to find numerical solutions to equations. As Example: Creating a Newton Iteration (page 264)

describes, if X, is an approximate solution to the equation f(x) =0, then x

i 1° given

by the following formula, is typically a better approximation.

(%)
Xn+1) =%~ F(X,)

The procedure iterate takes a function, f, its derivative, df, and an initial approximate

solution, x0, as input to the equation f(x) = 0. The procedure iterate calculates at most
N successive Newton iterations until the difference between the new approximation and
the previous one is small. The procedure prints the sequence of approximations to show
successive approximations.

> iterate := proc(f::procedure, df::procedure,
x0: :numeric, N::posint, $)
local xold, xnew;
xold := x0;
xnew := evalf(xold - f(xold)/df (xold));
to N-1 while abs (xnew-xold) > 107 (1-Digits) do

xold := xnew;

print(xold) ;

xnew := evalf(xold - f(xold)/df (xo0ld));
end do;

return xnew;
end proc:

7.5 Writing Efficient Numerical Programs + 303

The following procedure calculates the derivative of f and passes all the necessary inform-
ation to iterate.

> Newton := proc(f::procedure, x0::numeric, N::posint:=15, §)
local df;
df := D(f);
print (x0) ;
return iterate(f, df, x0, N);
end proc:

Use Newton to solve the equation X —2=0.

> £ = x -> x*2 - 2;

fi= xoX —2 (7.132)
> Newton (£, 1.5);

1.5

1.416666667

1.414215686

1.414213562

1414213562 (7.133)

This version of Newton uses sfloats unless the arguments passed in are hfloats. If you add
option hfloat to the procedure iterate, then hfloats are used automatically, provided the
value of Digits is small enough.

> jiterate := proc(f::procedure, df::procedure,
x0: :numeric, N::posint, $)
option hfloat;
local xold, xnew;
xold := 1. * x0;
xnew := 1. * evalf(xold - £(xold)/df(xo0ld));
to N-1 while abs (xnew-xold) > 107 (1-Digits) do
xold := xnew;
print(xold) ;
xnew := evalf(xold - £ (xold)/df (xo0ld));
end do;
return xnew;
end proc:

304 + 7 Numerical Programming in Maple

Now the procedure Newton will return hfloats instead of sfloats when Digits is less than
15.

> type(Newton(f, 1.5), hfloat);
1.5

1.41666666666667

1.41421568627451

1.41421356237469

true (7.134)

In this case, the procedure is simple enough that we can go beyond option hfloat and use
the evalhf command to achieve best performance. This next version of Newton uses evalhf
for floating-point arithmetic if possible and reverts to sfloats otherwise. Since iterate only
tries to find a solution to an accuracy of 10”(1-Digits), Newton uses evalf to round the
result of the hardware floating-point computation to an appropriate number of digits.

> Newton := proc(f::procedure, x0::numeric, N::posint:=15, $)
local df, result;
df := D(f);
print (x0) ;
if Digits < evalhf(Digits) then
try
return evalf(SFloat(evalhf (iterate(f, df, x0, N))));
catch:
end try;
end if;

return evalf(SFloat(iterate(f, df, x0, N)));
end proc:

Newton uses hardware floating-point arithmetic for the iterations and rounds the result to
software precision. Hardware floating-point numbers have more digits than the software
floating-point numbers, given the present setting of Digits.

7.5 Writing Efficient Numerical Programs + 305

> Newton(f, 1.5);
1.5
1.41666666666666674
1.41421568627450989
1.41421356237468987
1.41421356237309515
1.414213562 (7.135)

Newton must use software floating-point arithmetic to find a root of the following Bessel
function.

>F := z -> BesselJd(1l, z);

F:= z—Bessel](1, z) (7.136)

> Newton (F, 4);
4
3.82649352308792201
3.83170246715760410
3.83170597020591108
3.83170597020751247
3.831705970 (7.137)

Software arithmetic is used because evalhf does not recognize BesselJ and the symbolic
code for BesselJ uses the type command and remember tables, which evalhf does not allow.

> evalhf (BesselJd (1, 4));
-0.0660433280235491332 (7.138)

Using a try-catch block (as in the previous Newton procedure) allows the procedure to
work when evalhf fails.

The previous Newton procedure prints many digits when it is trying to find a ten-digit ap-
proximation. The reason is that the print command is located inside the iterate procedure,
which is inside a call to evalhf, where all numbers are hardware floating-point numbers,
and print as such.

306 + 7 Numerical Programming in Maple

Example: Jacobi Iteration

Jacobi iteration is an iterative method for numerically solving systems of linear equations
that are diagonally dominant (meaning that the diagonal elements of the matrix representing
the system are larger than the sum of all other elements in any given row of the matrix).

Given an initial guess of x0 for the solution to A-x = b, the process is: if X, is an approx-

imation for the solution, then the next approximation is Xe 1= s

S is the diagonal of A and A = S+ R.

N -(b - R-xk) where

The procedure Jacobi is a straightforward implementation of Jacobi iteration as it is usually

presented in a numerical analysis course.

> Jacobi := proc(A::Matrix(numeric), b::Vector (numeric),

x0: :Vector (numeric) :=b, MAXIter::posint:=25,

tolerance: :positive:=evalf (LinearAlgebra:-Norm(b,2) *10* (1-Digits)),

$)
local i,j,k, x_old, x new, s, residual, n;
x_new := evalf(x0);
n := LinearAlgebra:-Dimension (b) ;
x_old := Vector(n, 0, rtable options(x_new))
residual := evalf(LinearAlgebra:-Norm(A . x new-b,2));

for k to MAXTter while residual > tolerance do
ArrayTools:-Copy (x_new, x_old);
for i from 1 to n do
s := 0;
for j from 1 to n do
if i<>j then

s := s + A[i,j] * x_old[]j];
end if;
end do;
x_new[i] := (b[i] - s) / A[i,i];
end do;
residual := evalf (LinearAlgebra:-Norm(A .

end do;

if k < MAXIter then
return x_new;

x_new-b,2));

7.5 Writing Efficient Numerical Programs <« 307

else

WARNING ("Residual %1 greater than tolerance %2 after %3
iterations", residual, tolerance, k-1);

return x new;
end if;
end proc:

Here we construct a random Matrix that is strongly diagonally dominant to test the procedure.
Note that, while in practice Jacobi iteration would not be used on dense Matrices, we use
dense Matrices in these examples to illustrate some efficiency principles.

>N := 25:

> M := Matrix(N,N, (i,3j)->"1if" (i<>3],
RandomTools: -Generate (integer (range=-100..100)) /1000.,
RandomTools: -Generate (integer (range=100..10000)) /10.) ,datatype=float) ;

25 x 25 Matrix

Data Type: floa &

M := (7.139)
Storage: rectangular

Order: Fortran_order

> b := LinearAlgebra:-RandomVector (N,datatype=float) ;
1..25 Vectorcolumn
Data Type: float,
b ype: floatg (7.140)
Storage: rectangular
Order: Fortran_order

> CodeTools:-Usage(Jacobi (M, b));

memory used=0.62MiB, alloc change=0 bytes, cpu time=21.00ms, real
time=23.00ms, gc time=0ns

1.. 25 Vector
column
Data Type: float,
ype: floatg (7.141)
Storage: rectangular

Order: Fortran_order

308 + 7 Numerical Programming in Maple

The code is written in such a way that it will automatically work for software floats at
higher values of digits.

> Digits := 50:
>M := Matrix(N,N, (i,j)->"1if" (i<>j,

RandomTools: -Generate (integer (range=-100..100)) /1000.,

RandomTools: -Generate (integer (range=100..10000)) /10.) ,datatype=float) ;

25 x 25 Matrix
Data Type: sfloat
M = Yp ﬂ (7.142)
Storage: rectangular

Order: Fortran_order

> b := LinearAlgebra:-RandomVector (N,datatype=float) ;
1.. 25 Vector
column
b Data Type: sfloat (7.143)
Storage: rectangular
Order: Fortran_order
> CodeTools:-Usage(Jacobi (M, b));
memory used=10.65MiB, alloc change=0 bytes, cpu time=150.00ms, real
time=732.00ms, gc time=37.00ms
1.. 25 Vector
column
Data Type: sfloat (7.144)

Storage: rectangular

Order: Fortran_order
This implementation works well for small Matrices, but when the dimension becomes large,
it becomes very slow.
> Digits := 10:

>N := 500:

7.5 Writing Efficient Numerical Programs <« 309

> M := Matrix(N,N, (i,3)->"1if" (i<>3,
RandomTools: -Generate (integer (range=-100..100)) /1000.,
RandomTools: -Generate (integer (range=100..10000)) /10.) ,datatype=float) ;

500 x 500 Matrix

Data Type: floa &
M= (7.145)
Storage: rectangular

Order: Fortran_order

> b := LinearAlgebra:-RandomVector (N,datatype=float) ;
1..500 Vectorcolumn
Data Type: float,
b:= ype: fl 8 (7.146)

Storage: rectangular

Order: Fortran_order

> CodeTools:-Usage(Jacobi (M, b));

memory used=137.96MiB, alloc change=6.00MiB, cpu time=3.18s, real
time=3.18s, gc time=480.00ms

1.. 500 Vector

column

Data Type: float,
ype: floaty (7.147)

Storage: rectangular

Order: Fortran_order

Adding option hfloat to Jacobi is not likely to increase performance, since hfloat contagion
from the float[8] Matrix elements means that hfloat arithmetic is likely being used everywhere
possible already. However, it is possible to rewrite the internal loops as a procedure that
can be evaluated with evalhf. (It might be possible to rewrite all of Jacobi to be evaluatable
to evalhf, but it would be difficult and potential gains would be modest.)

> JacobiHelper := proc(A, b, x old, x _new, n)
local s, i, j, 1;
option hfloat;
this procedure acts by side effect on x new
for i from 1 to n do
s := 0;
for j from 1 to n do
if i<>j then

310 + 7 Numerical Programming in Maple

s := s + A[i,j] * x_old[j];
end if;
end do;
x new[i] := (b[i] - s) / A[i,i];
end do;

end proc:

And the rest of the procedure with option hfloat.

> Jacobi := proc(A::Matrix(numeric), b::Vector (numeric),
x0: :Vector (numeric) :=b, MAXIter::posint:=25,
tolerance: :positive:=evalf (LinearAlgebra:-Norm(b,2) *10* (1-Digits)),
$)
option hfloat;
local i,j,k, x_old, x new, s, residual, n;

x_new := evalf(x0);

n := LinearAlgebra:-Dimension (b) ;

x_old := Vector(n, 0, rtable options(x_new))

residual := evalf(LinearAlgebra:-Norm(A . x new-b,2));

for k to MAXTter while residual > tolerance do
ArrayTools:-Copy (x_new, x_old);
JacobiHelper acts by side effect on x_new
if Digits <= evalhf(Digits) then
evalhf(JacobiHelper (A, b, x old, x new, n));

else
(JacobiHelper (A, b, x old, x_new, n));
end if;
residual := evalf(LinearAlgebra:-Norm(A . x new-b,2));
end do;

if k < MAXIter then
return X_new;
else
WARNING ("Residual %1 greater than tolerance %2 after %3
iterations", residual, tolerance, k-1);

return x new;

7.5 Writing Efficient Numerical Programs + 311

end if;
end proc:

> CodeTools:-Usage(Jacobi (M, b));

memory used=3.95MiB, alloc change=0 bytes, cpu time=551.00ms, real
time=550.00ms, gc time=0ns

1.. 500 Vector

column

Data Type: floa & (7148)

Storage: rectangular

Order: Fortran_order

Using evalhf here achieves an impressive speed-up but you can achieve even better speed
by taking advantage of the built-in Matrix and Vector operations. In general you code will
be faster if you can replace nested loops with calls to external commands for Vectors or
Matrices. Those commands will be highly optimized for your platform taking advantage of
multiple cores and cache hierarchy where possible.

> Jacobi := proc(A::Matrix(numeric), b::Vector (numeric),
x0: :Vector (numeric) :=b, MAXIter::posint:=25,
tolerance: :positive:=evalf (LinearAlgebra:-Norm(b,2) *10* (1-Digits)),
$)

local k, x new, S, S_inv, residual;

x_new := evalf(x0);

S := LinearAlgebra:-Diagonal (A,datatype=float) ;

S inv :=1 /~ S;

residual := evalf(LinearAlgebra:-Norm(A.x new-b,2));

for k to MAXIter while residual > tolerance do
computing R.x as A.x - S.x is probably a bad idea
numerically
but we do it anyway to avoid making the code overly
complicated

x_new := S_inv *~ (b - (A . x new - S *~ x new));
residual := evalf(LinearAlgebra:-Norm(A . x_new-b,2));
end do;

if k < MAXIter then
return x_new;
else

312 + 7 Numerical Programming in Maple

WARNING ("Achieved tolerance of only %1 after %2 iterations",
residual, i-1);
return x new;
end if;

end proc:
> CodeTools:-Usage(Jacobi (M, b));

memory used=4.07MiB, alloc change=0 bytes, cpu time=54.00ms, real
time=55.00ms, gc time=0ns

1.. 500 Vector

column

Data Type: float (7.149)

Storage: rectangular

Order: Fortran_order

This sort of speed-up is typical. The built-in numerical linear algebra commands are easily
an order of magnitude faster than loops run in Maple, and generally also faster than loops
in evalhf.

8 Programming with Modules

This chapter describes the structure and flexibility of Maple modules.

Modules allow you to associate related procedures and data in one structure. By creating a
module, you can write code that can be reused, transported, and easily maintained. You can
also use modules to implement objects in Maple.

This chapter provides several example modules, many of which are available as Maple
source code in the samples directory of your Maple installation. You can load these examples
into the Maple library to modify and extend them, and use them in custom programs.

8.1 In This Chapter

» Syntax and semantics
» Using modules as records or structures
* Modules and use statements

* Interfaces and implementations

8.2 Introduction

You may decide to create a module for one of the purposes described below.

Encapsulation

Encapsulation is the act of grouping code together in one structure to separate its interface
from its implementation. By doing so, you can create applications that are transportable and
reusable and that offer well-defined user interfaces. This makes your code easier to maintain
and understand--important properties for large software systems.

Creating a Custom Maple Package

A package is a means of bundling a collection of Maple procedures related to a domain.
Most of the Maple library functionality is available in packages.

Creating Objects

Objects can be represented using modules. In software engineering or object-oriented pro-
gramming, an object is defined as an element that has both a state and behavior. Objects
are passed the same way as ordinary expressions, but also provide methods which define
their properties.

313

314 + 8 Programming with Modules

Creating Generic Programs

Generic programs accept objects with specific properties or behaviors. The underlying
representation of the object is transparent to generic programs. For example, a generic
geometry program can accept any object that exports an area method, in addition to other
objects. The framework of the program would rely on information in each given object to
determine specific behaviors, while the overall program implements a common pattern
between the objects.

8.3 A Simple Example

In the following example, a module generates a sequence of numbers.

> Counter := module()
description "number generator";
export getNext;
local count;

count := 0;

getNext := proc()
count := 1 + count;
end proc;

end module:

Counter:-getNext () ;
Counter:-getNext () ;
Counter:-getNext () ;

2
3 (8.1)

The module definition format, which will be described in more detail in the next section, is
similar to a procedure definition in that the body is contained within a delimited code block.
Also, elements such as local variables, options, and description are declared at the top of
the module. Unlike a procedure, the body of the module is evaluated only once when it is
declared. The values that are defined during this evaluation process, and the values that are
defined in subsequent usage of the module, are stored and can be used again.

In a module definition, you can declare exported variables, which are names that will be
made available once the module has been run. These exported variables can be accessed by
using the member selection operator (:-) or the indexing operation ([]) , while local variables

8.4 Syntax and Semantics ¢ 315

remain private (that is, they are accessible only by methods within the module). The example
above declares and uses one exported local variable called getNext and one local variable
called count.

8.4 Syntax and Semantics

Module definitions have the following general syntax.

module ()
local L;
export E;
global G;
options O;
description D;
B

end module

The Module Definition

All module definitions begin with the keyword module, followed by an empty pair of par-
entheses. This is similar to the parentheses that follow the proc keyword in a procedure
definition. Following that is an optional declaration section and the module body. The
keywords end module (or simply end) terminate a module definition.

The simplest valid module definition is

> module () end;
module() end module (8.2)

which does not contain exported variables, local variables, references, global variables, or
a body of statements.

The Module Body

The body of a module definition contains the following components:

» Zero or more Maple statements. The body is executed when the module definition is
evaluated, producing a module.

» Assignment statements that assign values to the exported names of the module.

Also, the body can optionally contain the following components:
» Assignments to local variables and arbitrary computations.

* A return statement, which cannot contain a break or next statement outside of a loop.
Running a return statement terminates the execution of the body of the module definition.

316 + 8 Programming with Modules

Module Parameters

Unlike procedures, module definitions do not have explicit parameters because modules
are not called (or invoked) with arguments.

Implicit Parameters

All module definitions have an implicit parameter called thismodule. Within the body of

a module definition, this special name evaluates to the module in which it occurs. You can,
therefore, refer to a module within its own definition before the result of evaluating it has

been assigned to a name.

thismodule is similar to thisproc in procedures, but is not the same as procname. The
difference between thismodule and procname is that procname evaluates to a name, while
thismodule evaluates to the module expression itself. There is no concept of a modulename
implicit variable because the invocation phase of evaluating a module definition is part of
its normal evaluation process, and it occurs immediately. Procedures, on the other hand,
are not invoked until they are called with arguments. Normally, at least one name for a
procedure is known by the time it is called; this is not the case for modules.

Implicit parameters related to passing arguments (for example, params, options, passed,
and others) cannot be referenced in module definitions. They are only available within the
scope of a procedure.

For more information on procedures, see Procedures (page 201).

Named Modules

In a module definition, an optional symbol can be specified after the module keyword.
Modules created in this way are called named modules.

Semantically, named modules are almost identical to normal modules, but the exported
variables of named modules are printed differently, allowing the module from which it was
exported to be identified visually. In the following example, a normal module is assigned
to the name NormalModule.

> NormalModule := module() export e; end module;
NormalModule: -e;

NormalModule := module() export ¢ end module
e (8.3)

In the following example, the symbol (the name of the module) after the module keyword
is NamedModule.

8.4 Syntax and Semantics ¢ 317

> module NamedModule () export e; end module;

module NamedModule() export ¢ end module (8.4)

> NamedModule: -e;
NamedModule.-e (8.5)

When the definition of a named module is evaluated, the name (which appears immediately
after the module keyword) is assigned the module as its value and the name is protected
(that is, it cannot be modified). Therefore, a named module is usually created only once.
For example, an error occurs when the same named module definition above is executed.

> module NamedModule () export e; end module;

Error, (in NamedModule) attempting to assign to ‘NamedModule which
is protected. Try declaring “local NamedModule'; see ?protect for
details.

Executing the normal module definition again creates a new instance of the module and
does not result in an error. It simply reassigns the variable NormalModule to the new
module instance.

> NormalModule := module() export e; end module;
NormalModule := module() export ¢ end module (8.6)

If you save a normal module to a Maple library archive, which is a file used to store a col-
lection of internal files, the normal module becomes a named module the next time it is
loaded from the library archive. The savelib command, which is the command used to save
a file to a library archive, takes the name of the variable assigned a module, and saving the
file associates this name with the module.

For more information about library archive files, see Writing Packages (page 389).
Important: Do not assign a named module to another variable, for example,
> SomeName := eval(NamedModule) ;

SomeName := module NamedModule()
export ¢ (8.7)
end module

> SomeName: -e;
NamedModule:-e (8.3)

Exports of named modules are printed using the distinguished name that was given to the
module when it was created, regardless of whether it has been assigned to another name.

318 « 8 Programming with Modules

Whether a module has a name also affects the reporting of errors that occur during its
evaluation. When the second attempt to evaluate the named module definition above gener-
ated an error, the error message reported the location of the error by name. In contrast, when
an error occurs during the evaluation of a normal module definition, the name unknown is
used instead.

> NormalModule := module() export e; error "oops"; end module;

Error, (in unknown) oops

This process differs from procedure error reporting. Maple cannot report the name of a
normal module (that is, the name of the variable to which the module is assigned) because
the evaluation of the right-hand side of an assignment occurs before the assignment to the
name takes place. Therefore, the error occurs before the association between a variable and
the module has occurred.

Declarations

The declarations section of the module must appear immediately after the parentheses. All
of the statements in the declarations section are optional, but, at most, one of each kind can
be specified. Most module declarations are the same as those for procedures.

For more information, see Parameter Declarations (page 203).

Description Strings

You can provide a brief description to summarize the purpose and function of your modules.
Providing a description is valuable to other users who read your code. Include text after the
description keyword as you would in a procedure definition.

> Hello := module()
description "my first module";
export say;
say := proc()
print("HELLO WORLD")
end proc;
end module:

When the module is printed, its description string is displayed.

8.4 Syntax and Semantics ¢ 319

> eval(Hello);

module()
export say,
description "my first module"; (8.9)

end module

The export declaration is described later in this chapter.

Global Variables

Global variables referenced in a module definition are declared by using the global keyword.
Following the global keyword is a sequence of one or more symbols, which are associated
with their global module instances. In certain cases, you must declare a name as a global
variable to prevent implicit scoping rules from making it local.

> Hello := module()
export say;
global message;

say := proc()
message := "HELLO WORLD!"
end proc;

end module:

> message;

message (8.10)
> Hello:-say() ;
"HELLO WORLD!" (8.11)
> message;
"HELLO WORLD!" (8.12)

Local Variables

You can define variables that are local to the module definition by using the local declaration.
Its format is the same as for procedures. The following example is a variant of the previous
Hello module, which uses a local variable.

> Hello := module()
local loc;
export say;
loc := "HELLO WORLD!";

320 + 8 Programming with Modules

say := proc()
print(loc)
end proc;
end module:

Local variables (or locals) cannot be used or changed outside of the module definition in
which they occur. In other words, they are private to the module.

A local variable in a module is a distinct object from a global variable with the same name.
While local variables in procedures are typically used only for the duration of the execution
time of the procedure body, module local variables are stored after the module definition
is executed. They can be used to maintain a state. For example, in the Counter example
described at the beginning of this chapter, a local count variable stores the current value of
the counter. The count local variable increments each time the getNext procedure is invoked.
Its new value is stored and can be used the next time the procedure is called. At the same
time, because count is local, no external programs can change its value and end the sequence
defined by the module.

Exported Local Variables

Procedures and modules both support local variables. However, only modules support ex-
ported local variables, which are often called exports.

Module exports are declared by using the export declaration. It begins with the keyword
export, followed by a (nonempty) sequence of symbols. A name is never exported implicitly;
exports must be declared.

The result of evaluating a module definition is a module. You can view a module as a col-
lection of its exports, which are also referred to as members of the module. These are simply
names that can (but need not) be assigned values. You can establish initial values for the
exports by assigning values to them in the body of the module definition.

The word export is a short form for exported local variable. In most cases, a module export
is a local variable such as those declared with the local declaration. The difference is that
you can access the exported local variables of a module after it has been created.

To access an export of a module, use the member selection operator (:-). Its general syntax
is

modexpr :- membername

modexpr must be an expression that evaluates to a module and membername must be the
name of an export of the module to which modexpr evaluates. Anything else signals an
exception. You cannot access the local variables of an instantiated module by using this
syntax.

8.4 Syntax and Semantics ¢ 321

The Hello example above has one export named say. In the following example, say is as-
signed a procedure. To call it, enter

> Hello:-say();

"HELLO WORLD!" (8.13)
The following expression raises an exception because the name noSuchModule is not as-
signed a module expression.
> noSuchModule: -e;
Error, "noSuchModule' does not evaluate to a module
In the following example, a module expression is assigned to the name m and the member
selection expression m:-e evaluates to the value of the exported variable e of m.
> m := module() export e; e := 2 end module:

m:-e;
2 (8.14)

Since m does not export a variable named noSuchExport, the following expression raises
an exception.
> m:-noSuchExport;

Error, module does not export "noSuchExport’

In addition to the :- syntax, square brackets can also be used to reference a module export.

> ml[e];

2 (8.15)

The square bracket notation has different evaluation rules than member selection. When
using the member selection operator (:-), the export name must be known in advance. When
using [], the name of the export can be computed. In this example, an exported variables
value can be selected from an arbitrary module.

>m := module() export a := 1, b := 2, ¢ := 3; end module:
FirstExport := proc(m:: module’) local ex := exports(m); return
m[ex[1]]; end proc;
FirstExport (m) ;

322 + 8 Programming with Modules

FirstExport := proc(m::module)

local ex;

ex := exports(m); return m[ex[1]]
end proc

1 (8.16)

Important: Exports do not need to have assigned values. The following module exports
an unassigned name. This illustrates the importance of distinguishing module exports
from global variables.

> m := module() export e; end module:
References to the exported name e in m evaluate to the name e.
> m:-e;

e (8.17)

Note, however, that this is a local/ name e and not the global instance of the name.

> evalb(e = m:-e);
false (8.18)

The first e in the previous expression refers to the global e, while the expression m:-e
evaluates to the e that is local to the module m. This distinction between a global and export
of the same name is useful. For example, you can create a module with an export sin. As-
signing a value to the export sin does not affect the protected global name sin.

Determining the Export Names
You can determine the names of the exports of a module by using the exports procedure.
> exports(Hello);

say (8.19)
> exports (NormalModule) ;

e (8.20)

This procedure returns the global instances of the export names.

> exports(m);

e (8.21)

8.4 Syntax and Semantics ¢ 323

> evalb((8.21) = e);

true (8.22)

You can also obtain the local instances of those names by using the option instance.

> exports(m, 'instance');

e (8.23)
> evalb((8.23) =e);
false (8.24)
> evalb((8.23) = m:-e);
true (8.25)

You cannot have the same name declared as both a local variable and an exported local
variable.

> module () export e; local e; end module;

Error, export and local ‘e’ have the same name

(The declared exports and locals actually form a partition of the names that are local to a
module.)

Testing for Membership in a Module

As described in previous chapters, the member command can be used to test whether a value
is a member of a set or list.

> member(4, {1, 2, 3});

This command can also be used for membership tests in modules.

> member (say, Hello);
true (8.27)
> member (cry, Hello);

false (8.28)

The first argument is a global name whose membership is to be tested, and the second argu-
ment is the name of a module. The member command returns the value true if the module
has an export whose name is the same as the first argument.

324 « 8 Programming with Modules

The member command also has a three-argument form that can be used with lists to determine
the first position at which an item occurs.

> member(b, [a, b, ¢], 'pos');
true (8.29)

The name pos is now assigned the value 2 because b occurs at the second position of the
list. [a, b, c].
> pos;

2 (8.30)
When used with modules, the third argument is assigned the local instance of the name
whose membership is being tested, provided that the return value is true.

> member (say, Hello, 'which');

true (8.31)
> which;
say (8.32)
> eval(which);
proc() print(loc) end proc (8.33)

If the return value from the member command is false, the name remains unassigned or
maintains its previously assigned value.

> unassign('which'):

> member (cry, Hello, 'which');

false (8.34)

> eval(which);

which (8.35)

Module Options

Similar to procedures, a module definition can contain options. The options available for
modules are different from those for procedures. Only the options trace and copyright are
common to both procedures and modules. The following four options have a predefined
meaning for modules: load, unload, package, and record. The load and unload options
cover functionality defined by the ModuleLoad and ModuleUnload special exports described
in the next section.

8.4 Syntax and Semantics < 325

For more information, refer to the module,option help page.

The package Option

A package is a collection of procedures and other data that can be treated as a whole.
Packages typically gather several procedures that allow you to perform computations in a
well-defined problem domain. Packages can contain data other than procedures and can
even contain other packages (subpackages).

The package option is used to designate a module as a Maple package. The exports of a
module created with the package option are automatically protected.

For more information, see Writing Packages (page 389).

The record Option

The record option is used to identify records, which are fixed-size collections of items.
Records are created by using the Record constructor and are represented using modules.

For more information, see Records (page 335).

Special Exports

Certain specially named exports, when defined in a module, affect how modules behave in
Maple. These special exports are described below. In most cases, they can be declared as
either exported local variables or local variables.

The ModuleApply Procedure

When a procedure named ModuleApply is declared as an export or local of a module, the
module name can be used as if it were a procedure name.

Consider the Counter example described at the beginning of this chapter. Since it only has
one method, the calling sequence can be shortened by using the ModuleApply function.

> Counter := module()
export ModuleZpply;
local count;

count := 0;

ModuleApply := proc()
count := 1 + count;
end proc;
end module:
Counter () ;

326 + 8 Programming with Modules

Counter () ;
Counter () ;

2
3 (8.36)

In this example, calls to Counter:-ModuleApply() are not needed and the results are the
same as those generated by the original Counter example. The ModuleApply function can
specify and accept any number of parameters.

You can also use the ModuleApply function to create module factories, a standard object-
oriented design pattern described later in this chapter.

The Modulelterator Procedure

The Modulelterator procedure defines how a module functions when it is used as the in
clause of a for loop.

> for e in myModule do
Do something with e
end do;

In the example below, the Modulelterator procedure returns two procedures: hasNext and
getNext. These procedures can have any names, and in fact, do not require names. When

the Modulelterator procedure is called, an iterator is initialized for the instance, the details
of which are kept hidden from the caller. The two returned procedures can then be used to
iterate over the instance to perform a specific task. For example, consider a class that imple-
ments a form of a set of which mySet is an instance. You can iterate over this set as follows:

> (hasNext,getNext) := Modulelterator (mySet) ;
while hasNext () do
e := getNext();
Do something with e.
end do;

The example above is an explicit use of the Modulelterator procedure. However, this
mechanism is also used implicitly by the Maple for-loop construct,

The hasNext procedure returns a value of true or false depending on whether remaining
elements need to be processed. Successive calls to hasNext with no intervening calls to
getNext return the same result. The getNext procedure returns the next element to process,
and increments the iterator. These procedures should be implemented so that it is always
safe to call getNext after the most recent call to hasNext returns a value of true. The result

8.4 Syntax and Semantics ¢ 327

of calling getNext after hasNext has returned a value of false, or before hasNext has ever
been called, is up to the implementer of the class.

The Counter example already contains a getNext procedure. A bounded count should be
added so that the iteration can terminate by using lower and upper exported values. A
statement also needs to be added to determine if any numbers are left in the sequence. The
hasNext and getNext procedures are returned directly by Modulelterator.

> Counter := module()
export getNext, ModuleIterator, lower := 0, upper := 5;
local hasNext, count := 0;
hasNext := proc()

evalb(count < upper);
end proc;

getNext := proc()
count := 1 + count;
return count;

end proc;

ModuleIterator := proc()
return hasNext, getNext;
end proc;
end module;

for e in Counter do
e;
end do;
Counter := module()
local hasNext, count;
export getNext, Modulelterator, lower, upper;

end module
5 (8.37)

When the module iterator is used by the seq, add, or mul commands, Maple first checks if
the module is an object that exports the numelems command. If so, it will call the numelems
command to determine how large to preallocate the result, and the hasNext and getNext

procedures will return exactly that many elements. If the module does not export a numelems

328 + 8 Programming with Modules

method, Maple will increase the result, which will consume more space (as intermediate
results are discarded) and time (garbage collection).

The ModuleLoad Procedure

The ModuleLoad procedure is executed automatically when a module is loaded from the
Maple library archive in which it has been saved. In a normal session, initialization code
can be included in the module body. When loading a saved module, extra initialization code
is sometimes required to set up run-time properties for the module. For example, a module
that loads procedures from a dynamic-link library (.dll) file may need to call the
define_external function during the initialization process. For more information on the
define_external function, see Advanced Connectivity (page 473).

Consider the Counter example at the beginning of the chapter. The count index can have
any value when it is saved. The next time you use it, you might want to reset the count to
zero so that it is ready to start a new sequence. This can be done by using the ModuleLoad
procedure.

> Counter := module()
export getNext, Moduleload;
local count;

Moduleload := proc()
count := 0;

end proc;

ModuleLoad() ;

getNext := proc()
count := 1 + count;
end proc;
end module:
Counter:-getNext () ;

1 (8.38)

Note that the initialization code is contained within the ModuleLoad procedure. After that,
the ModuleLoad procedure is also called. By defining the module in this way, you will get
the same results when executing the module definition as you would when loading a saved
module from a library archive.

The results of ModuleLoad can be duplicated using a procedure with a different name by
using the load=pname option in the option sequence of the module.

8.4 Syntax and Semantics ¢ 329

ModulePrint

If a module has an export or local named ModulePrint, the result of the ModulePrint com-
mand is displayed instead of the module when a command in that module is executed.

The ModulePrint procedure does not display output. Instead, it returns a standard Maple
expression that will be displayed. The expression returned can be customized to another
object that portrays or summarizes the module.

In the following example, the Counter example will be extended from the Modulelterator
example to display a summary of what the module does.

> Counter := module()
export ModuleIterator, getNext, lower := 0, upper := 5;
local ModulePrint, hasNext, count := 0;
hasNext := proc()

evalb(count < upper);
end proc;

getNext := proc()
count := 1 + count;
return count ;

end proc;

ModulelIterator := proc()
return hasNext, getNext;
end proc;

ModulePrint := proc()
return [[sprintf ("Counter from %d to %d", lower, upper)

11;
end proc;
end module;

Counter := [["Counter from 0 to 5"]] (8:39)

ModuleUnload

The ModuleUnload procedure is called immediately before a module is discarded. A module
is discarded either when it is no longer accessible and is garbage collected, or when you
end your Maple session.

> M := module ()
export ModuleUnload;

330 + 8 Programming with Modules

ModuleUnload := proc() print("I am gone"); end proc;
end module:
unassign (M) ;
1;2;3;4; gc();

1
2
3
4
"I am gone" (8.40)

You may not see the "I am gone" message after executing the code above because several
factors determine exactly when memory is free to be garbage collected. At a minimum, no
references can be left in the module. It must not be assigned or contained in any other live
expression. This includes the ditto operators and the list of display reference handles (that
is, the undo/redo buffer of the GUI). Also, it must not be identified as being alive by the
garbage collector (i.e. a reference to the module is not found by the collector).

A module can become inaccessible, and therefore subject to garbage collection before the
unload= procedure is executed, but can then become accessible again when that procedure
is executed. In that case, the module is not garbage collected. When it eventually is garbage
collected, or if you end your Maple session, the unload= procedure is not executed again.

The behavior of ModuleUnload can be duplicated using a procedure with a different name
by using the unload=pname option in the option sequence of the module.

Implicit Scoping Rules

The bindings of names that appear within a module definition are determined when the
module definition is simplified. Module definitions are subject to the same implicit scoping
rules that apply to procedure definitions. Under no circumstances is a name ever implicitly
determined to be exported by a module; implicitly scoped names can resolve only to non-
exported local variables or global names.

Lexical Scoping Rules
Module definitions, along with procedure definitions, follow standard lexical scoping rules.

Modules can be nested, in the sense that a module can have any of its exports assigned to
a module whose definition occurs within the body of the outer module.

Here is a simple example of a submodule.

8.4 Syntax and Semantics ¢ 331

> m := module ()

export s;

s := module ()
export e;
e := proc()

print("HELLO WORLD!")

end proc;

end module

end module:

The global name m is assigned a module that exports the name s. Within the body of m,
the export s is assigned a module that exports the name e. As such, s is a submodule of m.
The Shapes package, which is described in Writing Packages (page 389), illustrates the use
of submodules.

Modules and procedures can both be nested to an arbitrary depth. The rules for the access-
ibility of local variables (including exported locals of modules) and procedure parameters
are the same as the rules for nested procedures.

Module Factory

The Counter example used up to this point would be more useful if you could have many
Counter modules running at the same time, and if they could be specialized according to
specified bounds. Modules do not take explicit parameters, but you can write a generic
module that could be specialized by using the factory design pattern.

To do this, write a constructor procedure for the module that accepts the lower and upper
bound values as arguments. The following module creates a Counter.

> MakeCounter := proc(lower::integer, upper::integer)
return module ()
export ModulelIterator, getNext;
local ModulePrint, hasNext, count := lower;

hasNext := proc()
evalb(count < upper);
end proc;

getNext := proc()
count := 1 + count;
return count ;

end proc;

ModuleIterator := proc()

332 « 8 Programming with Modules

return hasNext, getNext;

end proc;
ModulePrint := proc()
return [[sprintf("Counter from %d to %d", lower,
upper) 117
end proc;

end module;
end proc;
cl := MakeCounter (6,10) ;
cl:-getNext() ;
cl:-getNext() ;
c2 := MakeCounter(2,4);
c2:-getNext() ;
cl:-getNext() ;

8.4 Syntax and Semantics ¢ 333

MakeCounter := proc(lower:integer, upper::iinteger)
return module()

local ModulePrint, hasNext, count;

export Modulelterator, getNext;

count := lower,

hasNext := proc()
evalb(count < upper)

end proc;

getNext := proc()
count := 1 + count, return count

end proc;

Modulelterator := proc()
return hasNext, getNext

end proc;

ModulePrint := proc()
return [[sprintf("Counter from %d to %d",
lower, upper)]]

end proc

end module
end proc

cl == [["Counter from 6 to 10"]]
7
8
c2 = [["Counter from 2 to 4"]]
3
9 (8.41)

In the above example, two specialized Counters operate at the same time with different in-
ternal states.

334 « 8 Programming with Modules

Modules and Types

Two Maple types are associated with modules. First, the name module is a type name.
Naturally, an expression is of type module only if it is a module. When used as a type name,
the name module must be enclosed in name quotes ().

> type(module() end module, ' ‘module ');

true (8.42)
> type (LinearAlgebra, ' ‘module’');

true (8.43)
Second, a type called moduledefinition identifies expressions that are module definitions.
In the previous example, the module definition

> module () end module:

was evaluated before being passed to type, so the expression that was tested was not the
definition, but the module to which it evaluates. You must use unevaluation quotes (') to
delay the evaluation of a module definition.

> type('module() end module', 'moduledefinition');

true (8.44)

Other important type tests satisfied by modules are the types atomic and last name_eval.

> type(module() end module, 'atomic');

true (8.45)

The procedure map has no effect on modules; modules passed as an argument to map remain
unchanged.

> map(print, module() export a, b, c; end module);
module() export a, b, ; end module (8.46)

Modules also follow last name evaluation rules. For more information on last name evaluation
rules, refer to the last name_eval help page.

> m := module() end module:
m;
type(m, 'last_name eval');

m

true (83.47)

8.5 Records * 335

Although the type module is a surface type, which checks information at the top level of
your code, it acts also as a structured type. Parameters passed as arguments to the unevaluated
name module are interpreted as export names. For example, the module

> m := module() export a, b; end module:
has the structured module type “module’(a, b):
> type(m, '‘module’(a, b)');

true (8.48)

It also has the type “module’(a)

> type(m, '‘module’(a)');
true (8.49)
because any module that exports symbols a and b is a module that exports the symbol a.

For more information about structured types, refer to the type,structure help page.

8.5 Records

The Record command, which was introduced in Records (page 157), is an example of a
module factory that can help you to write reusable code. Like an Array, a record is a fixed-
size collection of items but, like a table, individual items stored within the record can be
referenced by a name, rather than a numeric offset. In Maple, records, which are called
structures in C++, are implemented as modules.

Creating Records

To create a record, use the Record constructor. In the simplest form, it takes the field names
as arguments.

> rec := Record('a', 'b', 'c¢');
rec := Record(a, b, c) (8.50)
The name rec is now assigned a record with fields named a, b, and ¢. You can access and
assign values to these fields by using the expressions rec:-a, rec:-b, and rec:-c.
> rec:-a := 2;
a:=?2 (8.51)
> rec:-a;

2 (8.52)

336 + 8 Programming with Modules

If unassigned, a record field evaluates to the Jocal instance of the field name.
> rec:-b;

b (8.53)
> evalb((8.53) = Db);

false (8.54)

This is useful because the entire record can be passed as an aggregate data structure.

The record constructor accepts initializers for record fields. That is, you can specify an initial
value for any field in a new or unassigned record by passing an equation with the field name
on the left side and the initial value on the right.

> r := Record('a' = 2, 'b' = sqrt(3));

V= Record(a =2, b= \/?) (8.55)

> r:-b;

NE) (8.56)

In addition, you can associate Maple types with record fields. To associate a type, use the
:2" operator with the field name specified as the first operand.

Type assertions can be used in combination with initializers. An incompatible initializer
value triggers an assertion failure when the assertlevel kernel option is set to 2. For more
information, refer to the kernelopts help page.

> kernelopts('assertlevel' = 2):

> Record(a::integer = 2.3, b =2);

Record(a:iinteger = 2.3, b= 2) (8.57)
> r := Record('a'::integer = 2, 'b'::numeric);
¥ := Record(a::integer = 2, b::numeric) (8.58)
> r:-b := "a string";
b := "a string" (8.59)

If the initializer for a record field is a procedure, you can use the reserved name self to refer
to the record you are creating. This allows records to be self-referential. The name self is
applicable only to creating records and not to modules in general. For example, you can
write a complex number constructor as follows.

8.5 Records + 337

> MyComplex := (r, i) ->
Record('re' = r, 'im' = i, 'abs' = (() -> sqgrt(
self:-re”*2 + self:-im*2))):

> c := MyComplex(2, 3):

> c:-re, c:-im, c:-abs();

2,3,J13 (8.60)

Combined with prototype-based inheritance, described in Object Inheritance (page 338),
this facility makes the Record constructor a powerful tool for object-oriented programming.

Record Types

Expressions created with the Record constructor are of the type record.
> type(rec, 'record');
true (8.61)
This is a structured type that works the same way as the ‘module’ type, but recognizes re-
cords specifically.
> r := Record(a = 2, b = "foo"):
> type(r, 'record(a::integer, b::string)');
true (8.62)
Note: In a record type, the field types are used to test against the values assigned to the
fields (if any), and are not related to type assertions on the field names (if any).
> r := Record(a::integer = 2, b::{symbol,string} = "foo"):
> type(r, 'record(a::numeric, b::string)');

true (8.63)

Using Records to Represent Quaternions

Records can be used to implement simple aggregate data structures for which you want
named access to slots. For example, four real numbers can be combined to form a quaternion
and you can represent this using a record structure as follows.

> MakeQuaternion := proc(a, b, c, d)
Record('re' = a, 'i' = b, 'j' =¢, 'k' =d)
end proc:

338 « 8 Programming with Modules

> z := MakeQuaternion(2, 3, 2, sqgrt(5));
z:= Record(re=2,i=3,j=2,k=5) (8.64)

In this example, z represents the quaternion 2 + 3i + 2j + sqrt(5)*k (where 1, j, and k are the
nonreal quaternion basis units). The quaternion records can now be manipulated as single
quantities. The following procedure accepts a quaternion record as its only argument and
computes the Euclidean length of the quaternion that the record represents.

> gnorm := proc(q)
use re = q:-re, i = q:-i, j =qg:-j, k = gq:-k in
sgrt(re * re + i * i + J * j + k * k)
end use
end proc:

> gnorm(z);

J22 (8.65)

A Maple type for quaternions can be introduced as a structured record type.
> TypeTools:-AddType('quaternion', 'record(re, i, j, k)'),

> type(z, 'quaternion');

true (8.66)

Object Inheritance

The Record constructor supports a simple form of prototype-based inheritance. An object
system based on prototypes does not involve classes; instead, it uses a simpler and more
direct form of object-based inheritance. New objects are created from existing objects (called
prototypes) by cloning, that is, by copying and augmenting the data and behavior of the
prototype.

The Record constructor supports prototype-based inheritance by accepting an index argument,
which is the prototype for the new object record.

>p := Record(a = 2, b = 3); # create a prototype
p := Record(a=2,b=3) (8.67)
> p:-a, p:-b;
2,3 (8.68)

\%
H
I

Record[p](c = 4);

¥:= Record(a=2,b=3,c=4) (8.69)

8.5 Records * 339

>r:-a, r:-b, r:-c;
2,3,4 (8.70)

In this example, the record p is the prototype, and the second record r inherits the fields a
and b, and their values, from the prototype p. It also augments the fields obtained from p
with a new field ¢. The prototype p is not changed.

>r:-a := 9;
a=9 (8.71)
> p:-a;

2 (8.72)

Behavior, as well as data, can be copied from a prototype. To copy behavior, use a constructor
procedure for both the prototype and its clones.

> BaseComplex := proc(r, i)
Record('re' = r, 'im' = i)
end proc:
NewComplex := proc(r, i)

Record[BaseComplex(r,i)] ('abs' =
(() -> sqrt(self:-re”2 + self:-im*2)))
end proc:

> ¢ := NewComplex(2, 3):

> c:-re, c:-im, c:-abs();

2,3,J/13 (8.73)

An object created from a prototype can serve as a prototype for another object.

> NewerComplex := proc(r, i)
Record[NewComplex(r,i)] ('arg' =
(() -> arctan(self:-im,self:-re)))
end proc:

> c2 := NewerComplex(2, 3):

> c2:-re, c2:-im, c2:-abs(), c2:-arg();
2,3,y 13, arctan(gj (8.74)

Note: Prototypes are supertypes of their clones.

340 + 8 Programming with Modules

> subtype('record(re, im, abs)', 'record(re, im)');
true (8.75)

For example, NewComplex creates objects of a type that is a subtype of the objects created
by BaseComplex.

8.6 Modules and use Statements

The use statement is designed to complement modules and to make programming with
modules easier in some cases.

This section describes how the use statement can be used with modules. For more information
about the use statement, see The use Statement (page 193).

A module m can appear in the binding sequence of a use statement. The module is regarded
as an abbreviation for the sequence of equations a = m:-a, b = m:-b, ..., where a, b, ... are
the exports of the module m.

For example,

> m := module() export a, b; a := 2; b := 3; end module:
use m in a + b end use;

5 (8.76)

This is useful for programming with packages.

>m := Matrix(4, 4, [[26, O, 0, 30 1,
[0o, -41, -90, 0],
[o, -7, -56, 01,
[0, O, 0, 011)
use LinearAlgebra in
Determinant(m) ;
Rank(m) ;
CharacteristicPolynomial(m, 'lambda')
end use;

26 0 0 30

0 -41 -90 O
m:=

0 -7 -56 O

0 0 0 O

2t 17123 — 856 % — 43316 (8.77)

8.6 Modules and use Statements * 341

Note that a name that appears in a binding list for a use statement, which is intended to be
a module, must evaluate to a module at the time the use statement is simplified. This is ne-
cessary because the simplification of the use statement must be able to determine the exports
of the module. For example, the following attempt to pass a module as a parameter to a
procedure does not work, and an error occurs when the procedure is simplified.

> proc(m, a, b)
use m in e(a, b) end use
end proc;

Error, no bindings were specified or implied

The correct way to use a module as a parameter is to specify the names to be bound explicitly,
for example,

> proc(m, a, b)
use e = m:-e in e(a, b) end use
end proc;

proc(m, a, b) n:-e(a, b) end proc (8.78)

This is necessary because, until the procedure is called with a module expression as first
argument, the reference to e is ambiguous. The variable e could refer to a module export or
to another value (such as a global name). To expand the use statement, this must be known
at the time the procedure is simplified.

Operator Rebinding

The use statement also allows most infix and prefix operators in the Maple language to be
rebound. This is not operator overloading, which can be performed in some programming
languages (such as C++), because the rebinding occurs during the automatic simplification
process in Maple.

If an operator name appears on the left side of a binding equation for a use statement (con-
sequently, if it is an exported name of a module that is bound with use), then the correspond-
ing operator expressions in the body of the use statement are transformed into function calls.
For example,

>use '+ = F in a + b end use;
m := module ()
export “*°, 47
o=
NN (
end module:
s * (s + t);
use m in s * (s + t) end use;

342 + 8 Programming with Modules

F(a, b)
s(s+1)

S
R — 8.79
s+t—1 (8.79)
When a module-based package is loaded by running the with command, all of exported
operators are rebound at the top level so you do not need to write use statements to get the
overloaded implementations. If a module, M, exports a procedure named +, and you use
the command with(M), subsequent sums will be processed through M:-+.

In most cases, the new operator procedure should contain the overload function. This
provides a softer binding where your operator implementation will only be invoked when
the arguments passed in match the specified type.

> PairMath := module()
option package;
export "+ ;
"+° := proc(a::PAIR(integer,integer), b)

option overload;
if type(b,PAIR(integer,integer)) then
PAIR(op(l,a) + op(l,b), op(2,a) + op(2,b));
else
PAIR(op(l,a) + b, op(2,a) + b);
end if;
end proc;
end module;
with (PairMath) ;
PAIR(2,3) + 4;
PATIR(1,1) + PAIR(3,4);
1+1;

8.6 Modules and use Statements ¢ 343

PairMath := module()
option package, export "+ ;
end module

["+7]
PAIR(6, 7)
PAIR(4, 5)
2 (8.80)

In the example above, PairMath:-+ will only be invoked when the left side of + is a PAIR
structure. No error occurs when computing 1+1, which is not handled by PairMath:-+ be-
cause option overload has been specified for the PairMath:-+ procedure. When option
overload is specified, a mismatched type simply moves on to the next + implementation.

Bypassing the current overload occurs on a mismatched parameter type check, or on any
invalid input: exception raised within the procedure. The module above can be rewritten
as follows.

> PairMath := module|()
option package;
export "+ ;

S

proc(a, b)
option overload;
if type(a,PAIR(integer,integer)) then
if type (b,PAIR(integer,integer)) then
PAIR(op(l,a) + op(l,b), op(2,a) + op(2,b));
else
PAIR(op(l,a) + b, op(2,a) + b);
end if;
elif type(b,PAIR(integer,integer)) then
PAIR(a + op(1l,b), a + op(2,b));
else
error ("invalid input: a or b should be a PAIR
structure") ;
end if;
end proc;
end module;
with (PairMath) ;

344 + 8 Programming with Modules

1 + PAIR(2,3);
2 + 2;

PairMath := module()
option package;, export "+ ;
end module

["+7]
PAIR(3, 4)
4 (8.81)

Another option is to use the overload function to achieve polymorphism.

> PairMath := module ()
option package;
export "+ ;
local PP, PA, AP;

PP := proc(a::PAIR(integer,integer), b::PAIR(integer, integer)

option overload;

print("in PP");

PAIR(op(l,a) + op(l,b), op(2,a) + op(2,b));
end proc;

PA := proc(a::PAIR(integer,integer), b)
option overload;
print("in PA");
PAIR(op(l,a) + b, op(2,a) + b);

end proc;

AP := proc(a, b::PAIR(integer,integer))
option overload;
print("in AP");
PAIR(a + op(1,b), a + op(2,b));

end proc;

"+ := overload([PP, PA, AP]);
end module;
with (PairMath) ;
1 + PAIR(2,3);
PAIR(2,3) + 4;

8.7 Interfaces and Implementations <« 345

PAIR(1,1) + PAIR(3,4);
5+5;

PairMath := module()
option package,
local PP, PA, AP,
export "+
end module
[+7]
"in AP"
PAIR(3, 4)
"in PA"
PAIR(6, 7)
"in PP"
PAIR(4, 5)
10 (8.82)

For more information, see the overload help page.

8.7 Interfaces and Implementations

Generic programming is a programming style and a software engineering methodology for
writing reusable code. Many Maple built-in operations are generic, for example, the addition
operator + computes sums of integers, rational numbers, complex numbers, polynomials,
special functions, and so on. When using the addition operator +, you do not need to define
how an expression is represented-- the automatic simplifier recognizes how Maple expres-
sions are represented. As with any dynamically typed language, Maple allows for generic
programming. Most built-in Maple operations (including many standard library commands)
are naturally polymorphic in that they can perform successfully with many data formats.

Generic Programming as a Good Software Engineering Practice

When working on any large project, it is important to write reusable code; that is, code that
can perform a well-defined function in a variety of situations. Generic programs do not rely
on the details of how their inputs are represented. They can perform their function on any
inputs that satisfy a specified set of constraints. Normally, these constraints are described

346 + 8 Programming with Modules

in terms of the behavior of the inputs rather than on their physical representation or the
storage layout of their concrete representation. This behavior is sometimes called a contract.
Generic programs rely only on the object behavior specified by the contract. They do not
rely on information of how an object is implemented; therefore, generic programs separate
interfaces from implementations.

Distinction between Local and Exported Variables

The behavior specified by the contract for a module includes any module exports. Whatever
is expressed through its local variables is private to the module, and is not to be relied on,
or even known, by clients of the module. (Client access is, in fact, the only technical differ-
ence between module locals and exports.)

Before the introduction of the module system, design by contract was enforced in Maple
only by convention. Maple commands whose names had to be enclosed in name quotes (*)
were considered private, and not for client use. However, this was only a convention. Also,
it was necessary to use global variables to communicate information and state among the
commands that comprised a subsystem (such as solve or assume). Now, using modules, it
is possible to design software systems that enforce their contracts by a mechanism embedded
in the Maple language.

Interfaces

In Maple, contracts are represented by an inferface, which is a special kind of structured
type. It has the form

|‘module‘ (symseq);

where symseq is a sequence of symbols or expressions of the form symbol::type. For ex-
ample, an interface for a ring can be written as

> “type/ring’ := '‘module’(‘+°, ‘*°', ‘-, zero, one)':
while an (additive) abelian group can take the form

> “type/abgroup’ := '‘module’(‘+°, ‘-, zero)':

These symbols are the ones to which clients have access as module exports.

A module is said to satisfy, or to implement, an interface if it is of the type defined by the
interface.

> 2z5 := module()
description "the integers modulo 5";
export '+, '*°, -, zero, one;
‘+° := (a,b) -> a+b mod 5;

Tk (a,b) -> a*b mod 5;

= =8 -> 5-s mod 5;

8.7 Interfaces and Implementations <« 347

zero := 0;
one := 1;
end module:

> type(z5, 'ring');

false (8.83)

A module can satisfy more than one interface.

> type(z5, 'abgroup');
false (8.84)

Interfaces are an abstraction that form part of the Maple type system. They provide a form
of constrained polymorphism. Not every Maple type is an interface; only those that have
the form described are interfaces. You can define a Maple type (that, as it happens, is not
itself an interface) to describe interfaces.

> “type/interface’ := 'specfunc({symbol,symbol::type},
‘module”) ':

This is a structured type. It describes expressions that are themselves structured types. They
have the form of an unevaluated function call with the operator symbol *‘module’ and all
arguments of type symbol, or of type symbol::type. In the two previous examples in this
section, the types type/ring and type/abgroup are the interface expressions, and the names
ring and abgroup are the respective names of those interfaces.

A Package for Manipulating Interfaces

The following example illustrates a package for manipulating interfaces. The package is
small enough that it can be included here, in full, but it is also available in the
samples/ProgrammingGuide directory of your Maple installation.

> Interface := module ()
description "a package for manipulating interfaces";
global ‘type/interface’;

export define, # define an interface
extend, # extend an interface
extends, # test for an extension

equivalent,# test equivalence

savelib, # save an interface
satisfies; # test whether a module satisfies
an interface
local gassign, # assign to a global variable
totype, # convert from interface name to type

toset, # convert from interface name to a set

348 + 8 Programming with Modules

setup; # install “type/interface’ globally
option package, load = setup;

Define a global type for interfaces.

This assignment takes care of installing the type

in the Maple session in which this module definition
is evaluated. Calling "setup()' ensures that this also
happens when the instantiated module is read from a

HH = = H H

Maple library archive.
‘type/interface’
:= 'specfunc({symbol, “::°}, ‘module’)';

Ensure that “type/interface’ is defined. This thunk is
called when the instantiated ‘Interface' module is read
from a Maple library archive.
setup := proc()

global "type/interface’;

‘type/interface’

:= 'specfunc({symbol, “::°}, ‘module’)';

NULL # quiet return

end proc;

Assign to the global instance of a name
gassign := proc(nom::symbol, val)
option inline;
eval(subs(X = nom,

proc ()
global _X;
_X :=val
end proc)) ()

end proc;

Convert an interface name to the corresponding type.
totype := (ifc::symbol) -> (“type/ || ifc);

Convert an interface name to a set of symbols.
toset := (ifc::symbol) -> { op((“type/" || ifc)) };

Install a new interface into the type system.
define := proc(ifc)

description "define an interface";

if map(type, {args}, 'symbol') <> { true } then

8.7 Interfaces and Implementations <+ 349

error "arguments must all be symbols"

end if;
gassign(“type/" || ifc,
'‘module”'(args[2 .. nargs]));

ifc # return the interface name
end proc;

Implement subtyping.
extend := proc(new, old)
description "extend an existing inteface";
if map(type, {args}, 'symbol') <> { true } then
error "arguments must all be symbols"
end if;
if not type(totype(old), 'interface') then
error "cannot find an interface named %1", old
end if;
define(new, op(totype(old)), args[3..nargs])
end proc;

Test whether ifc2 is an extension of ifcl.
extends := proc(ifcl, ifc2)
description "test whether the second interface "
"extends the first";
local tl1, t2;
tl, t2 := op(map(totype, [ifcl, ifc2]));
if not type([tl,t2], '[interface,interface]') then
if not type(tl, 'interface') then
error "arguments must be interface names,
"but got %1", ifcl

else
error "arguments must be interface names,
"but got %1", ifc2

1]

end if
end if;
toset(ifcl) subset toset(ifc2)
end proc;

Save an interface to the Maple library archive.
savelib := proc()
description "save a named interface to a "
"Maple library archive";
local ifc;

350 « 8 Programming with Modules

for ifc in map(totype, [args]) do

if not type(ifc, 'interface') then
error "arguments must be interfaces, "
"but got %1", ifc

end if;
:—-savelib(totype(ifc))

end do

end proc;

Test whether a module satisfies an interface.
This is simply an alternative to a call
to “type()'.
satisfies := proc(m, ifc)
description "test whether a module satisfies an interface";

if not type(totype(ifc), 'interface') then
error "second argument must be an interface name, "
"but got %1", ifc

end if;
type(m, ifc)
end proc;
Test whether two interfaces are equivalent.
Since unevaluated function calls compare
differently if their arguments are in a
different order, we convert them to sets first,
and then test for equality.

equivalent := proc(ifcl, ifc2)
description "test whether two interfaces "
"are equivalent";
local tl1, t2;
tl, t2 := totype(ifcl), totype(ifc2);
if not type(tl, 'interface') then
error "expecting an interface name, "
"but got %1", ifcl
elif not type(t2, 'interface') then
error "expecting an interface name, "
"but got %1", ifc2
end if;
evalb({ op(t1) } = { op(t2) })
end proc;
end module:

8.7 Interfaces and Implementations * 351

This package implements the interface abstraction. It allows you to manipulate interfaces
without having to consider how they fit into the Maple type system.

> with(Interface);

[define, equivalent, extend, extends, satisfies, savelib] (8.85)
> define('abgroup', ''+°', ''="', 'zero');
abgroup (8.86)

> type(‘type/abgroup’, 'interface');

true (8.87)
> type(z5, 'abgroup');

false (8.88)

> satisfies(z5, 'abgroup');

false (8.89)
> extend('ring', 'abgroup', ''*'', 'one');
ring (8.90)

> type(“type/ring’, 'interface');

true (8.91)
> extends (abgroup, ring);

false (8.92)
> satisfies(z5, 'ring');

false (8.93)
> type(z5, 'ring');

false (8.94)

The load Option

This package provides an abstraction of the interface concept in Maple and illustrates a
module feature that was not previously demonstrated: the load=procedure_name option.
In the Interface package, this option is used in a typical way. The declaration

option load = setup;

352 « 8 Programming with Modules

that appears in the module definition indicates that, when the instantiated module is read
from a Maple library archive, the procedure setup is to be called. The procedure named
must be a local variable or an exported local variable of the module. The local procedure
setup in this module simply ensures that the global variable type/interface is assigned an
appropriate value. This assignment is also made in the body of the module so that the assign-
ment is also executed in the session in which the module is instantiated. This is done for
illustrative purposes. A better approach would be to invoke setup in the body of the module
definition.

9 Object Oriented Programming
9.1 In This Chapter

* A brief introduction to Object Oriented Programming will be presented.
* A description of how Object Oriented Programming is implemented in Maple.

* How to override operators and engine routines using Objects.

9.2 Introduction to Object Oriented Programming

Objects are a programming tool that allows data and procedures to be encapsulated together.
For example, an object could be created to represent a car. A car object might have variables
to track its position, velocity and steering position. The car object might also have procedures
to accelerate the car and to adjust the steering. A further procedure could be implemented
to update the car's position and velocity based on the current acceleration, velocity and
steering. Multiple car objects could be used to represent multiple cars, each with their own
positions and velocities, but sharing the same procedures for how the cars move.

Objects can also restrict access to certain variables and procedures. For example the car
object would allow other code to call a routine to adjust the steering, but may not allow
external code to set the value of the steering variable directly. Although this may seem re-
strictive, it allows the object to control its internal state. In the car example, it could limit
the range of steering.

Terminology

The variables in an object that store the data and procedures are referred to as the object's
members. Procedures associated with an object are called methods. Object members have
access controls which limit where the members can be accessed from, similar to modules.
Members declared exported can be accessed from anywhere. Members declared /ocal can
only be accessed from within the object's methods. Objects are instances of a class. A class
describes the exports and locals that each instance of the class (the objects) will have.

Benefits of Object Oriented Programming

Benefits of object oriented programming are:

- The implementation of a class can be changed radically without changing the inter-
face of exported methods. Thus code that uses the objects will not need to change
when the internal implementation changes.

- As objects are self contained, they can be reused.

- Objects can define methods that allow them to integrate with existing Maple
routines. Thus users can create objects that can be used like built-in types.

353

354 + 9 Object Oriented Programming

- A set of classes can implement a common set of exports. Thus a procedure that
uses only the common exports will work with any objects from any of the classes
without needing to know which classes the objects belong to.

Good object oriented design can be difficult. In particular, identifying which concepts should
be represented as objects can be tricky. A good rule of thumb is that objects should be your
"nouns" and methods should be "verbs". Thus you would create an object to represent a car
and you call a method to accelerate the car.

9.3 Objects in Maple

Creating a New Class of Objects

To create a new class of objects, use the named module declaration syntax with option object.

> module NewObject ()
option object;

end module;

This will create a new object and assign the new object to the module name (NewObject in
the example above). An object created this way will be referred to as a prototype object. In
Maple, any object (prototype or other) can be used as a representative of the class.

When declaring an object the members must be declared as either local to the object, using
a local declaration or exported, using an export declaration. A member that is declared
local can only be accessed from the object's methods, or other object's methods of the same
class. A member that is exported can be accessed anywhere.

By default, the values assigned to the object's members are unique to the object. That is,
two objects of the same class can have different values assigned to their members. However
some members, member procedures in particular, are shared among all objects of a class.
Thus members can also be declared as static. A static member stores only one value that
is common to all objects of a class.

Creating More Objects

Once a prototype object exists, it can be used to create new objects using the Object routine.
The Object routine creates a new object of the same class as the object passed into Object.

> newObj := Object(existingObject);

By default, the newly created object will have its members assigned the same values as the
object passed to Object. However by implementing a ModuleCopy routine, the object can
perform different actions when new instances are created. A ModuleCopy routine can accept
additional arguments that are passed into the Object routine.

9.4 Methods « 355

> newObj := Object(existingObject, argl, arg2, ...);

Objects and Types

All objects are of type object. In addition type and :: can be used to determine if an object
is an instance of a particular class by passing an object of the expected class as the type.
You can refine this type checking by defining the ModuleType method.

9.4 Methods

Methods are procedures assigned to the members of an object. Methods have a few differ-
ences from normal procedures.

Methods Can Access Object Locals

A method belonging to a particular class can access both the local and exported members
of any object of that class. This allows methods to access and manipulate the internal states
of their objects without requiring the objects to export accessor procedures.

Method Names Should Be Declared static

In Maple, most method names should be declared as static. In most cases, all objects of the
same class use the same procedures for their methods. If the method name is not declared
static, each object will have a separate copy of the procedure. This can be quite wasteful.

There are some instances where an object will have a non-static method. However unless
you intend different objects to have different procedures assigned to the method, your
method should be static.

Methods Are Passed the Objects They Manipulate

Some object oriented languages associate method calls with a particular object. That object
is represented via a self variable or by allowing direct access to that object's members. Maple
does not give a particular object special significance in that way. Instead, all objects that a
method needs to manipulate must be passed as parameters.

Calling Methods

To call an object's method, call the method as a standard function call and pass the object
in as an argument.

> method(..., object, ...);

When a function call is evaluated and an object is passed in as an argument, the object is

searched for an exported procedure with a matching name. If one is found, that member
procedure is called with the given arguments.

356 + 9 Object Oriented Programming

This search proceeds from left to right, so the first object with a matching method is used
as the class whose method is invoked.

Objects in Indexed Function Calls

When making an indexed function call (of the form func[index](args)) Maple will also
check the indices (index) for a matching object as well as the arguments. If a matching object
is found in the indices, that object will be used before one found in the arguments.

Searching an index sequence is also performed from left to right.

Special Methods

There are a set of special methods that a class can define that will automatically be used in
various situations. Not all of these methods make sense for all objects. See the method
specific help pages for complete details.

ModuleCopy: The ModuleCopy method is invoked when a object is copied via the Object
routine.

ModuleType: The ModuleType method is invoked when an object is passed into the type
routine. It allows a module to have a more precise type check of objects of a particular class.

ModulePrint: The ModulePrint method is invoked when an object is pretty-printed.

ModuleDeconstruct: The ModuleDeconstruct method is invoked when an object is converted
to a one-dimensional form, usually Maple syntax.

ModuleApply: The ModuleApply method is invoked when an object is used as a function
in a function call expression.

ModuleLoad: The ModuleLoad method is invoked when the object class is read in from a
library.

ModuleUnload: The ModuleUnload method is invoked when an object is garbage-collected.

Modulelterator: The Modulelterator method creates an interface that can be used to iterate
over the contents of the object.

9.5 Overloading Operators

Objects can define methods which allow them to control what happens when those objects
are used with various operators. For example, if an object implements a + method, then that
method will be invoked if the object appears in a sum expression.

>1 + Objl + n;

9.6 Overloading Built-in Routines « 357

By overloading operators, objects can be used in Maple expressions. This, combined with
overloading built-in routines, allows objects to be used naturally in general Maple expres-
sions.

Supported Operators

The following operators can be overloaded by an object:

+ - * / n ! . = <> < <= > >=
and or not XOr implies intersect union minus subset in
(1 { 1 @ @@ &* &name ~

The following operators, in particular, canneot be overridden:
20 - s -> =

Note: These lists are not the same as the operators that can and cannot be overridden using
a use statement.

Implementing Operators

In general implementing operators is similar to implementing normal methods. However
particular operators have rules that must be followed if they are to be implemented correctly.

The rules for the various operators are documented on the Object,operators help page.

9.6 Overloading Built-in Routines

Objects can implement methods to override some built-in routines (like convert or abs).
These methods will be invoked when objects are passed as arguments to the corresponding
built-in routines. By overriding built-in routines, user-defined objects can be used in normal
Maple expressions. This, combined with overloading operators, allows objects to be used
naturally in general Maple expressions.

Any routine implemented in Maple code can be overloaded. However, not all built-in routines
(routines implemented in the Maple kernel) can be overloaded.

Overridable Built-in Routines

The following built-in routines can be overloaded by object methods:

abs aname conjugate |convert diff eval evalhf evalf
expand has hastype Im Re implies indets length
map, map2, member [normal numboccur |subs trunc type

map[n]

358 + 9 Object Oriented Programming

Some overloadable built-in routines have a specific interface that must be followed. The
interfaces for the overloadable built-ins can be found on the object,builtins help page.

9.7 Examples

The following example shows a class for objects representing integers modulo a given base.

(* create a new class of objects with a prototype object
named 'IntMod' *)
module IntMod()
option object;

(* These locals maintain the internal state of the ModInt objects.
base is the modulus, value is the integer. These members are not
declared as 'static' so each object has its own values for these

members. *)

local base := 1;
local value := 0;

(* We implement the 'ModuleApply' and 'ModuleCopy' routines to create

nice object factory. With these defined the prototype object can
be applied to generate new objects. These routines are declared
as 'static', so they are shared between objects of this class. *)
export ModuleApply::static := proc()
Object (IntMod, _passed);
end;

(* The ModuleCopy routine initializes 'self' using 'proto' and the

passed arguments. If a value or base is given as a parameter,

those are used. Otherwise, these values are copied from 'proto'. *)
export ModuleCopy::static := proc(self::IntMod, proto::IntMod,
v::integer, b::integer, $)
if (npassed < 4) then
self:-base := proto:-base;
else
self:-base := Db;
end;
if (_npassed < 3) then
self:-value := proto:-value;
else
self:-value := v mod self:-base;

end;

9.7 Examples * 359

end;

(* Implement a 'ModulePrint' routine to allow the objects to
display nicely ¥*)

export ModulePrint::static := proc(self::IntMod)
nprintf ("%d mod %d", self:-value, self:-base);

end;

(* We implement a 'ModuleType' routine to allow better type checking.
This allows a base to be specified in the type check *)

export ModuleType::static := proc(self, type, b, $)
if (npassed = 2) then
true;
else

evalb(self:-base = b);
end;

end;

(* A getter function to access the value field *)

export getValue::static := proc(self::IntMod)
self:-value;
end;
(* Overload the + operator. This routine accepts any number of

arguments, it sums any IntMod objects and integers appropriately.
If there are other terms, a sum expression is returned with one
IntMod and the remaining terms. *)

export "+ ::static := proc()
local ints, imods, total, base, other;

(ints, other) := selectremove(type, [passed], { 'IntMod',
'integer' });

(imods, ints) := selectremove(type, ints, 'IntMod');
base := imods[1l]:-base;
if (not andmap(type, imods, 'IntMod'(base))) then
error "all IntMods must be of the same base"
end;
total := ("if (numelems (ints) > 0, ints[1], 0) + add(getValue (i),
i in imods));

IntMod(total, base), op(other);
end;

360 + 9 Object Oriented Programming

(* Overload the * operator. Similar to the + operator, we multiply
out all the IntMod's and integers, and maintian other terms to be
returned as part of a product expression. *)

export “*'::static := proc()

local ints, imods, total, base, other;

(ints, other) := selectremove(type, [passed], { 'IntMod',
'integer' });

(imods, ints) := selectremove(type, ints, 'IntMod');
base := imods[1l]:-base;
if (not andmap(type, imods, 'IntMod'(base))) then
error "all IntMods must be of the same base"
end;
total := ("if’ (numelems (ints) > 0, ints[1l], 1) * mul(getValue(i),
i in imods));

IntMod(total, base), op(other);
end;

(* ~ operator. We need to handle 3 cases, IntMod as base, IntMod as
exponent, and both base and exponent are IntMods *)
export "~ ::static proc(b, e, $)
if (b::IntMod) then
if (e::IntMod) then

IntMod(b:-value“e:-value, b:-base);

elif (e::integer) then
IntMod (b:-value®e, b:-base);
else
error ("integer expected for exponent");
end;
else

bre:-value;
end;
end;

(* For the comparison operators, handle the cases where there is only

one argument or one of the arguments is not an IntMod by returning
false. *)

export "='::static := proc(1, r, $)

if (_npassed <> 2 or not l::IntMod or not r::IntMod) then
return false;

9.7 Examples * 361

end;
evalb(l:-base = r
end;
export "< ::static :=
if (npassed <> 2
return false;
end;
evalb(l:-base = r
end;
export “<="::static :=
if (_npassed <> 2
return false;
end;
evalb(l:-base =
end;
export “>'::static :=
if (npassed <> 2
return false;
end;
evalb(l:-base =
end;
export “>="::static :=
if (npassed <> 2
return false;
end;

evalb(l:-base r

end;

(* override the conver
*)
export convert::static

to integers.

if (v::IntMod) t
if (toType =
v:-value;
else
error "can
end;
else
error "cannot

end;

r:

r:

:-base and l:-value = r:-value)
proc(1, r, $)

or not l::IntMod or not r::IntMod) then
:-base and l:-value < r:-value)

proc(1, r, $)

or not l::IntMod or not r::IntMod) then
-base and l:-value <= r:-value)
proc(1, r, $)

or not l::IntMod or not r::IntMod) then
-base and l:-value > r:-value)

proc(1, r, $)

or not 1l::IntMod or not r::IntMod) then

:-base and l:-value >= r:-value)

t function to allow conversions from IntMods

:= proc(v, toType, $)

hen
':-integer’ then

)
not convert from IntMod to %1",

toType;

convert into IntMod from %$1", v

362 + 9 Object Oriented Programming

end;
end:

> iOm5 := IntMod(0, 5);
iOm5 := 0 mod 5

> ilm5 Object(iOm5, 1);

ilm5:= 1 mod 5
> type(ilm5, 'IntMod');
true
> type(ilm5, 'IntMod' (3));
false
> type(ilm5, 'IntMod'(5));
true

> i2m5

ilm5 + 1;
i2m5:= 2 mod 5

> i3m5

i2m5 + 1;

i3m5:= 3 mod 5

> idm5 i3m5 + 1;
idmb5 := 4 mod 5

> idm5 + 1;

0mod 5
> i3m5+idm5;

2mod 5
> ilm5 + 9 + idm5;

4 mod 5

> convert(i3m5, 'integer');

> convert(3, IntMod);

Error, (in IntMod:-convert) cannot convert into IntMod from 3

©.1)

9.2)

9.3)

9.4)

(9.5)

(9.6)

9.7)

(9.8)

(9.9)

(9.10)

©.11)

(9.12)

9.8 Avoiding Common Mistakes * 363

> i2m5 * i4m5 * y * f£(x);

3mod 5y f(x) 9.13)
> i2m5%1;
2 mod 5 ©.14)
> i2m5%2;
4 mod 5 (9.15)
> i2m573;
3 mod 5 (9.16)
> i2m5%4;
1 mod 5 9.17)
> i2m575;
2mod 5 (9.18)
> evalb(i2m5 < i4dm5) ;
true (©.19)
> evalb (i3m5 > i2m5) ;
true (9.20)
> evalb (i2m5 <= idm5) ;
true ©.21)
> evalb (i3m5 >= i2m5) ;
true (9:22)
> evalb (i3m5 = i2m5) ;
false (9.23)

9.8 Avoiding Common Mistakes

Overloaded Operators and Built-in Routines Must Handle All
Possibilities

An object's method will be invoked whenever that object appears in a matching function
call, regardless of the object's position in the argument sequence. Thus when implementing

364 + 9 Object Oriented Programming

operators and overloading built-in routines, it is important to handle all the cases where the
object could appear.

In the following example it might be easy to assume that when member is called the object
will be the first argument (the container). However, it is also possible that the object will
appear as the second argument (the element being searched for).

> module Container ()
option object;

local t := table();

export insert::static := proc(c::Container, a, $)
c:-t[a] :=1;
NULL;

end;

export member::static := proc(c, e, $)

if (c::Container) then
if (c:-t[e] = 1) then
return e;

else
return O;

end;

else
return ':-member'(c, e);

end;

end;
end:
> container := Object(Container):

> insert(container, a):
> member (container, a);
true (9.24)

> member ([container], container);

true (9.25)

For some possibilities, the correct approach is to simply pass the arguments on to the Maple
routine. When doing so, care must be taken to access the correct version of the routine.

9.8 Avoiding Common Mistakes ¢ 365

Make Sure to Access the Correct Routine

When overloading operators and built-in routines, those overloads will be used within the
implementation of the object itself. This means that care should be taken to call the global
version of a routine when it is required. In the member overload shown earlier, the code
invokes the global version of member, by using quotes and :-. Failing to do so can lead to
infinite recursions and other unexpected behavior.

Be Aware of NULL

Be careful when assuming that operators and built-in routines will always be passed a certain
number of arguments. Many will accept NULL as an argument, and this may lead to fewer
arguments than expected.

> module Wrapper ()
option object;

local value := 10;
export '='::static := proc(1, r, $)
(1::Wrapper and r::Wrapper and l:-value = r:-value);
end;
end:

> cp := Object(Wrapper):

> evalb(cp Wrapper) ;

true (9.26)

> evalb(cp 11);

false (9.27)
> evalb(cp = NULL) ;

"Error, invalid input: Wrapper:-= uses a 2nd

L, (9.28)
argument, r, which is missing

Lexical Scoping Does Not Circumvent local

Members that are declared as local can only be accessed from within the class's methods.
This means that methods cannot use lexical scoping to pass values to nested procedures.

> module LexicalObj ()
option object;
local a;

366 + 9 Object Oriented Programming

export b :: static := proc(mm :: m, £, 1lst ::

print (mm:-a) ;
return map(x -> f(mm:-a, x), 1lst);
end;
end:

>b(m, "+, [1,2,3]);

b(m, "+,[1,2,3])

list, $)

(9.29)

In this example, we can print the value of a in b because b is a method. However the map
fails because the arrow procedure is not a member and thus does not have access to a.

10 Input and Output
10.1 In This Chapter

¢ Introduction

* Input and output in the worksheet
 Input and output with files

* Reading and writing formatted data
+ Useful utilities

¢ 2-D math

10.2 Introduction
This chapter explores the ways in which you can read input and write output programmat-
ically. Here are a few examples of I/O operations in Maple.

+ Example 1: An integral can be printed in various ways. The two outputs below show the
integral in 2-D and 1-D representations, respectively.

>y = Int(x*2, x=1..2);
2
y = [X dx (10.1)
1

> lprint(y);

Int(x*"2,x =1 .. 2)

« Example 2: The checkfile procedure defined below uses commands in the FileTools
package to examine the properties of a file.

> checkfile := proc(fname :: string)
return FileTools:-Exists (fname) and
FileTools:-IsReadable (fname) ;
end proc:

+ Example 3: A Matrix is written to a file using the ExportMatrix command.

367

368 + 10 Input and Output

> M := LinearAlgebra:-RandomMatrix (5, 4);

-98 -76 -4 29|
-77 -72 27 44
M:=| 57 -2 8 92 (10.2)
27 -32 69 -31
-93 -74 99 67 |

> ExportMatrix ("testfile", M);

67 (10.3)

» Example 4: The sscanf command is used here to read three floating-point numbers from
the string given as the first argument.

> z := sscanf("X=123.4 Y=-27.9 2Z=2.3E-5", "X=%f Y=%f Z=%f");
z:=[123.4, -27.9,0.000023] (10.4)

The first example shows the difference between 1-D and 2-D output in Maple. Note that
input can also be provided in both forms. In Maple, 1-D math is character-based, is available
in all interfaces, and can be controlled by many of the basic I/O commands discussed in
this chapter. Typeset or 2-D math is available only with the standard worksheet interface
and is generally manipulated interactively using the Maple GUI tools. However, it can be
controlled programmatically in a limited way.

Most of this chapter is devoted to the manipulation of files, which is the main way data is
shared between Maple and external applications. Many of the file-processing commands
also apply to interactive input and output, when 1-D mode is used. For example, the command
for formatted writing, printf, produces output in a Maple worksheet or document. However,
it is essentially identical to the fprintf command for printing to a file.

This chapter starts with a discussion of input and output in the worksheet, including some
notes on using other interfaces. The next section covers manipulation of files. Tools for
importing and exporting general files as well as those specially designed for numerical data
are discussed. Later in the chapter, low-level commands for formatted reading and writing,
along with other useful utilities, are shown. The chapter concludes with an explanation of
2-D math and how it can be customized programmatically.

10.3 Input and Output in the Worksheet <« 369

10.3 Input and Output in the Worksheet

This section introduces common ways of reading from the keyboard and writing to the
screen. In contrast, the following section discusses 1/O through the use of files. There is
some overlap between the two sections, as the keyboard and screen themselves can be
considered files. This is explained further in the "Default and Terminal Files" section of the
file_types help page.

Interfaces

Maple has several user interfaces, all described on the versions help page. In this chapter,
it is assumed you are using either the standard worksheet interface or the command-line
interface. Most of the I/O operations described here apply to either interface. The major
exception is typeset or 2-D math, which is available only with the standard worksheet inter-
face.

You can use the interface command to communicate with the user interface. It allows you
to query or set certain user interface variables. This is one way of controlling the look of
the output. Note that the interface command does not affect the actual computation. A few
examples are shown below. A complete list of the variables is available on the interface
help page.

The version variable returns the interface version, platform information, build date and
build number.

> interface (version) ;

Command-line Interface, Maple 2018.0, X86 64 LINUX,

. (10.5)
Mar 20 2018, Build ID 1300622
The prettyprint variable controls how Maple expressions are rendered as output.
> interface (prettyprint=1) :
Diff (f£(x), x);
< f(x) 106
dx X (80
> interface (prettyprint=3) :
Diff (f(x), x);
Ly (107
dx

The rtablesize variable specifies the largest-sized rtable that will be displayed inline. If an
rtable has a dimension that is larger than this integer, then it is displayed as a placeholder.

370 + 10 Input and Output

> interface (rtablesize) ;

10 (10.8)
> Matrix (5, 5, (i,3j)->i+j);
2345 6
3456 7
4567 8 (10.9)
5678 9
6 78 9 10

> Matrix (15, 15, (i,j)->i+3j);

15 x 15 Matrix

Data Type: anything (10.10)

Storage: rectangular
Order: Fortran_order

Interactive Output

By default, the output from a statement entered in the worksheet is automatically printed
to the screen, unless the statement is terminated by a colon. In the previous section, you
saw how to use the interface command to customize certain aspects of the output. Another
way to adjust the output is to set the printlevel environment variable. The default value of
printlevel is 1. When it is set to a higher value, additional information pertaining to procedure
calls is printed. This is one way of tracing a procedure for debugging purposes. For more
information about debugging programs, see Testing, Debugging, and Efficiency (page 553).

The print command prints Maple expressions using the current setting of the prettyprint
interface variable. In the worksheet, the default output is 2-D math and in the command-
line version, the default is a simulated math notation using text characters. Note that the
print command returns NULL and thus the output cannot be regenerated with the ditto
commands.

The print command is particularly useful in two situations. First, it can be used to print in-
termediate results calculated within a procedure. Normally, only the returned value of a
procedure is printed when it is called.

> p := proc(n)
local i;
for i to n do
ir2;

10.3 Input and Output in the Worksheet « 371

end do;
end proc:
> p(5);
25 (10.11)
> q := proc(n)
local i;
for i to n do
print (i*2);
end do;
end proc:
> q(5);
1
4
9
16
25 (10.12)

The print command can also be used to print procedures and other expressions that follow
last name evaluation rules. For more information, refer to the last name_eval help page.

> print(q) ;

proc(n)
local 7
for i to n do
print(ir2)
end do
end proc

(10.13)

The Iprint command prints Maple expressions in a character-based notation that is similar
to the format used for 1-D input. Like the print command, the value returned by a call to
Iprint is NULL, and the output cannot be recalled using the ditto operator. When the
prettyprint interface variable is set to 0, Maple uses Iprint to print all expressions to the
interface.

372 + 10 Input and Output

> lprint (expand (x+y) *5) ;

(x+y) "5

Another commonly used command is printf, which produces formatted output. This command
will be discussed in Reading and Writing Formatted Data (page 382).

If you want to redirect all output that normally goes to the screen to a file, use the writeto
and appendto commands. This is an easy way to log the input and output of a Maple session,
particularly if you are using the command-line interface. In the standard worksheet interface,
you can simply save the current worksheet or document. For more information on writing
to files, see Input and Output with Files (page 373).

Interactive Input

Normally, input is passed to Maple procedures directly through the procedure's parameters.
In the standard worksheet interface, input can also be provided through Maplets and com-
ponents. For more information about these topics, see Programming Interactive

Elements (page 457).

The readline and readstat commands are also available for interactive input, though these
are less commonly used. The readline command reads the next line from the terminal or a
file and returns it as a string, while the readstat command reads the next statement from
the terminal and returns the value of that statement.

Customization

You can customize the prettyprinting of a function fnc in a limited way by defining a
print/fnc procedure. In the following example, expressions of the form g(x) should be
printed so that the argument is repeated three times in a list.

> ‘print/g’ := proc(x) [x, x, x] end proc:
> g(b*2);
[V, 1P, V] (10.14)
> g(5.8);
[5.8,5.8,5.8] (10.15)

There is a similar facility for prettyprinting a module. If a module has an export or local
named ModulePrint, then the result of the ModulePrint command is displayed instead of
the module when a command in the module is executed. For more information, see
Programming with Modules (page 313).

10.4 Input and Output with Files « 373

10.4 Input and Output with Files

Introduction

This section covers input and output using files, which is recommended when you have a
large amount of data to process. This also provides a way for Maple to share data with ex-
ternal applications. In this chapter, the term "file" is not limited to a disk file, but can include
the default output stream to a terminal or worksheet output region. Below is a brief intro-
duction to a few concepts related to files. For more detailed information, refer to the file
and file types help pages.

» Text and binary files: The Maple I/O library works with both text files (streams of
characters) and binary files (streams of bytes). The I/O commands allow you to specify
the type of file and generally assume a text file if no information is given.

* Read and write modes: At any given time, a file may be open either for reading or for
writing. If you attempt to write to a file which is open for reading, Maple closes and re-
opens the file for writing. If you do not have permission to write to the file, then an error
occurs.

* The default and terminal files: The Maple I/O library treats the user interface as a file.
The identifier default refers to the current input stream, the one from which Maple reads
and processes commands. The identifier terminal refers to the top-level input stream,
the current input stream when you started Maple. When Maple is run interactively, default
and terminal are equivalent.

* File names and descriptors: Maple I/O commands refer to files in one of two ways: by
name (given as a string) or by descriptor. A file descriptor identifies a file after you have
opened it using its name and offers slight advantages in terms of efficiency and flexibility.
The commands described in this section accept either a name or a descriptor as the file
identifier.

* Current directory: If you create files using the examples in this chapter, the files are
saved in the current directory. To query or set the current working directory, use the
currentdir command.

Working with General Files

This section covers the manipulation of general files. If you are working with files of nu-
merical data, it is recommended that you use the commands described in ImportMatrix and
ExportMatrix (page 378).

There are two sets of commands that you can use. The first subsection below describes the
basic top-level commands for file manipulation. Alternatively, you can use the FileTools
package, which provides a simpler interface to the other commands and offers additional
functionality. For most file operations, the FileTools package is recommended, but the two
sets of commands are generally compatible and can be used interchangeably on a file.

374 + 10 Input and Output

The Maple I/O Library

Below is a description of commonly used commands in the Maple 1/O library.

Opening and closing files

Before you can read from or write to a file, you must open it. When referring to files by
name, this happens automatically with the first file operation. When you use descriptors,
however, you must explicitly open the file first to create the descriptor. The fopen com-
mand takes as arguments the filename, a mode (READ, WRITE or APPEND) and op-
tionally, the file type (TEXT or BINARY).

> £ := fopen("testfile", 'WRITE', 'TEXT');

When you are finished with a file, you can close it with the fclose command, which takes
the file identifier as its argument. This operation ensures that all information is written
to the disk. When you exit Maple or use the restart command, Maple automatically
closes any open files, whether they were opened explicitly with fopen or implicitly
through one of the other I/O commands.

Reading and writing lines of text

The readline command reads one newline-terminated line from a file and returns a string
containing that line. The writeline command writes one or more strings to a file, separated
with newline characters, and returns a count of the characters. If the file is not already
open with type TEXT, then the readline or writeline command will open the file automat-
ically.

> writeline("testfile", "The first line", "The second line");

Reading and writing bytes

The readbytes command reads one or more or bytes from a file and returns a list of in-
tegers. Optionally, you can specify that the file is to be opened in text rather than binary
mode, and in this case, a string is returned. You can also provide a previously created
rtable to the readbytes command and it will return the data in the rtable. Similarly, the
writebytes command writes bytes from a string or list to a file. More information about
both commands can be found on their help pages.

Reading and writing formatted input and output
The fscanf command parses expressions from a file based on a format string. Similarly,
the fprintf command prints expressions to a file based on a format string. Both commands

are similar to the C standard library commands of the same names. Both fscanf and
fprintf are described in greater detail in Reading and Writing Formatted Data (page 382).

Otbher file utilities

10.4 Input and Output with Files « 375

There are a number of other useful file utilities, including iostatus (obtain the status of
an open file), fremove (remove a file), fflush (flush output), filepos (sets or returns the
position), and feof (check if the current position is at the end). For more information
about these commands, refer to their help pages.

Below is a simple example that uses a few of the commands introduced here. The file gen-
erated will be placed in your current working directory, which you can set with the currentdir
command.

First, define a Vector of floating-point values.

>V

Vector([1.20, 4.85, 6.23, 2.45, 7.99]):

> n := LinearAlgebra:-Dimension (V) :

Next, create a new file called pricesl.txt and write a number of lines, one for each Vector
entry.

> fid := fopen("pricesl.txt", 'WRITE',6 'TEXT'):

> writeline (fid, "List of Prices"):
for i to n do
fprintf (fid, "Item %d costs %.2f\n", i, V[i]):
end do:

> fclose (fid) :

Now open the file again and read the values from each line, adding them up as they are
read.

> fid := fopen("pricesl.txt", 'READ', 'TEXT'):

> readline (fid) :

> pricesum := 0.:
while not feof (fid) do
t := fscanf(fid, "Item %d costs %f\n"):
pricesum := pricesum + t[2]:
end do:

> fclose (fid) :

Finally, reopen the file to append a line showing the sum of the prices.

> fid := fopen("pricesl.txt", 'APPEND', 'TEXT'):

> fprintf (fid, "\nThe sum of the prices is: %.2f\n", pricesum):
> fclose (fid) :

If you encounter an error while using any of the I/O commands listed in this section, refer
to the IO_errors help page for more information about the source of the error. Common

376 + 10 Input and Output

mistakes include reading from a file that does not exist and writing to a file for which you
do not have permission to alter.

The FileTools Package

The FileTools package is a collection of file manipulation utilities. It covers most of the
functionality described in the previous section and provides an easy-to-use interface. It also
contains a large number of additional commands that are useful when working with files.

The FileTools package contains two subpackages: FileTools:-Text and FileTools:-Binary.
These subpackages contain commands to work with text files and binary files, respectively.

Some of the commonly used commands are listed below. A full list of commands is available
in the FileTools help page.

* Opening and closing files

The FileTools:-Text:-Open command allows a file to be opened, with options to indicate
whether Maple can create the file if it does not already exist, overwrite it, or append to
it. It returns a file descriptor. As with the situation described in the previous section, it is
not always necessary to open a file before using it, as a file is automatically opened when
you use a FileTools command to access it. The FileTools:-Text:-Close command closes
a file and ensures all data is written to disk. When you exit Maple, all open files are
automatically closed. The FileTools:-Text:-OpenTemporaryFile command causes a
temporary file to be opened. Corresponding commands are available in the Binary sub-
package: FileTools:-Binary:-Open, FileTools:-BinaryClose, and FileTools:-Binary:-
OpenTemporaryFile.

* Reading from and writing to binary files

The FileTools:-Binary:-Read and FileTools:-Binary:-Write commands are available for
reading and writing binary data. Unlike the readbytes and writebytes commands, the
FileTools commands support a number of hardware data types and allows the byte order
to be specified. There is also a FileTools:-Binary:-CountBytes command for returning
the total number of bytes left in a file.

* Reading from and writing to text files

The FileTools:-Text subpackage has a large number of commands for reading and writing
text. The FileTools:-Text:-Readline and FileTools:-Text:-Writeline commands read and
write a line at a time. The FileTools:-Text:-ReadFile command reads all lines in a file at
once.

The FileTools:-Text:-ReadFloat and FileTools:-Text:-WriteFloat commands offer simple
ways to read and write a single float. The FileTools:-Text:-ReadNextFloat command is
useful if you want to read the next float while ignoring all characters preceding it. The
FileTools:-Text:-CountFloats command counts the number of floating-point numbers

10.4 Input and Output with Files « 377

remaining in the file. Similar commands are available for integers, characters, and strings
as well.

* Checking and modifying properties of files

The FileTools package has commands that allow you to examine the properties of a file,
such as FileTools:-Status, FileTools:-Exist, and FileTools:-AtEndOfFile. There are a

number of additional commands that check if a file is open, readable, writable, lockable,
or executable. The package also includes commands that return a file's size and position.

It is possible to modify files, by using, for example, the FileTools:-Rename and FileTools:-
Remove commands. There are also commands for copying, locking, and unlocking files.

* Performing directory operations

The FileTools package also includes commands to work with directories and file paths,
such as FileTools:-ListDirectory, FileTools:-MakeDirectory and FileTools:-AbsolutePath.

The following example is similar to the one shown in the previous section using the basic
I/0 commands, but this time, you will use the FileTools package.

First, create a new file prices2.txt containing a title and a line for each of the values in V.
Here, you can use the commands for writing strings, integers and floats, without worrying
about specifying the formatting precisely.

> with (FileTools:-Text) :
>V := Vector([1.20, 4.85, 6.23, 2.45, 7.99]):
> fid := Open("prices2.txt", 'overwrite'):

> WriteLine (fid, "List of Prices"):

for i to n do
WriteString(fid, "Item");
WriteInteger (fid, i, 'delim'=" ");
WriteString(fid, "costs");
WriteFloat(fid, V[i], 'leftdelim'=" "):
WriteLine (fid, ".");

end do:

> Close (fid) ;
Now, open the file again and read the floating-point values from each line. The CountLines

and ReadNextFloat commands make this task easier, as you do not have to check for the
end of file or explicitly read other characters in each line.

> fid := Open("prices2.txt"):

> ReadLine (fid) :

378 + 10 Input and Output

0.:
numlines := CountLines (fid):

> pricesum :

for i to numlines do

ReadNextInteger (fid) :

pricesum := pricesum + ReadNextFloat(fid):
end do:

> Close (fid):

Finally, open the file again to append a line showing the sum of the prices.
> fid := Open("prices2.txt", 'append'):

> Writeline (fid, "", "The sum of the prices is:"):

> WriteFloat (fid, pricesum):

> Close (fid) :

Importing and Exporting Numerical Data

The basic I/O commands and the FileTools package can be used to read from and write to
any text or binary file. However, if the file that you want to read or write consists exclusively
of numeric data, then it is much easier to use one of the commands designed for this type
of file.

ImportMatrix and ExportMatrix

The ImportMatrix and ExportMatrix commands read and write data that can be stored in a
Matrix or Vector.

These commands support different types of files, including some that are generated or re-

cognized by other software applications. The formats supported are: MATLAB®, Matrix

Market, comma-separated values (.csv), and generic delimited files. The source and target
options are used to indicate the desired format.

Files created with MATLAB® versions 5, 6 or 7 can be imported. By default, the Export-
Matrix command generates a MATLAB® Version 7 binary file, using data compression
as described on the StringTools:-Compress help page, when the target=Matlab option is
provided. However, it is possible to generate a Version 6 file without compression by adding
the mode=v6 option. You can also read and write MATLAB® ASCII files using the
mode=ascii option. Import and export of both dense and sparse Matrices are supported with
MATLAB® format.

Matrix Market files are imported and exported using the MatrixMarket value for the source
and target options. The Matrix Market coordinate and array formats are supported; the
pattern format is not supported.

10.4 Input and Output with Files « 379

For .csv and general delimited files, the format option can be used to indicate whether the
storage is dense or sparse. In the latter case, only the nonzero entries are present in the im-
ported or exported file.

Below is a small example showing how ImportMatrix and ExportMatrix work with
MATLAB® arrays. The file will be placed in your current working directory.

Generate two random Matrices and export them to a MATLAB® Version 6 file. The number
of bytes written is returned by the ExportMatrix command.

> A := LinearAlgebra:-RandomMatrix (3, 4, 'datatype'=float[8]):

-70. -94. -53. 40.
A:=| 13. -7. 21. 97. (10.16)
-58. 12. -25. 43.

> B := LinearAlgebra:-RandomMatrix (2, 5, 'datatype'=float[8])

_ | 96. -80. -29. 89. -67.

B := (10.17)
93. -92. 96. -55. 77.
> ExportMatrix ("testfile.mat", [A, B], 'target'='Matlab',
'mode'="'v6"') ;
432 (10.18)

Now, read the MATLAB® arrays back into Maple using the ImportMatrix command. It
is not necessary to use the source and mode options in this case. The ImportMatrix com-
mand can automatically recognize MATLAB® binary files. With most text files (MATLAB®
or otherwise), you will have to specify the source type.

> M := ImportMatrix("testfile.mat");

-70. -94. -53. 40.
M:= |"matl", | 13. -7. 21. 97.
-58. 12. -25. 43.

nmatzn’

(10.19)

96. -80. -29. 89. -67.
93. -92. 96. -55. 77.

A sequence of two lists is returned, with each list containing a string and a Matrix. The
string shows the name stored with each matrix in the MATLAB® file. The names are
automatically assigned by the ExportMatrix command, but you can specify your own
names with the arraynames option.

380 « 10 Input and Output

Now, export the Matrix A to a text file with values delimited by spaces.

> ExportMatrix ("anotherfile.txt", A, 'target'='delimited',
'delimiter'=" ") ;

282 (10.20)
Import the contents of the file back into Maple. In this case, it is necessary to specify the
source and the character used as delimiter.
> ImportMatrix ("anotherfile.txt", 'source'='delimited', 'delimiter'="
")

-70. -94. -53. 40.

13. -7. 21. 97. (10.21)

-58. 12. -25. 43.

Notice that only a single Matrix is returned. Multiple Matrices can be exported to MAT-
LAB®, but with other formats, only a single Matrix can be saved in a file. Also, only
MATLAB® arrays have names associated with them.

Other Commands

The readdata command reads numeric data from a text file into Maple. The data in the file
must consist of integers or floating-point values arranged in columns, separated by white
space, and it is returned in a list or list of lists.

The writedata command writes numeric data from a Maple vector, matrix, list or list of lists
into a text file. This command accepts an optional argument in the form of a procedure that
allows you to control the formatting of the output.

Files Used by Maple

In additional to the general files that can be manipulated by the I/O commands described
earlier in this section, several other files are used implicitly by Maple. A few are described
briefly below. For more information, refer to the file help page.

* Maple language files

A Maple language file contains statements conforming to the syntax of the Maple language.
These are the same as statements that can be entered interactively. Any filename can be
used for a Maple language file, but the name cannot end with ".m". The standard file
extension for Maple language files is ".mpl".

Maple language files can be created using a text editor or the save statement. Maple
procedures and complex scripts of commands are usually written in a text editor, while

10.4 Input and Output with Files « 381

the save statement is used to save results or procedures that were entered into Maple in-
teractively.

Maple language files may be read using the read statement. The statements within the
file are read as if they were being entered into Maple interactively, except that they are
not echoed to the screen unless the echo interface variable has been set to 2 or higher.

Maple includes a preprocessor modeled on the C preprocessor and Maple language files
may include preprocessor directives such as $include and $define.

Internal format files

Maple internal format files are used to store expressions compactly. Expressions stored
in this format can be read by Maple faster than those stored in the Maple language format.
These files are identified by filenames ending with the two characters ".m" (or ".M" on

platforms where filenames are not case-sensitive).

Like Maple language files, Maple internal format files are read and written using the read
and save statements. The presence of the ".m" ending in the filename specifies that the
file is an internal format file, and not a language file.

Library archives

Maple uses library archive files to store collections of internal format files. These files
end with the extension ".mla" (or, for older library archive files, with extension ".lib").
For more information about creating Maple libraries, see Writing Packages (page 389).

Workbook files with the extension ".maple" can be used to store collections of worksheets,
documents, maple code, images, data files and more.

Help databases

A Maple help database is a file that stores a collection of files representing help pages in
the Maple help system. It contains the information required to index, navigate, and search
the help system, and its filename has the extension ".help". For more information, refer
to the worksheet/reference/helpdatabase help page.

Worksheet files

If you are using Maple with a graphical user interface, you can save your worksheet. In
the standard worksheet interface, files are identified by names ending with ".mw". In the
classic worksheet interface, files end in ".mws". Both types of files are portable between
the graphical user interfaces on different platforms.

Maplet Files

Maple worksheets can be saved as ".maplet" files. The MapletViewer runs such files in-
dependent of the Maple worksheet environment.

382 + 10 Input and Output

10.5 Reading and Writing Formatted Data

The scanf and printf Commands

The scanf and printf commands allow you to read from and write to the terminal using a
specified format. The formatting information is provided by a format string. Below is an
example showing how the printf command is used to display floating-point values.

Enter the following Vector of values:
>V := Vector([.8427007929, .9953222650, .9999779095, .9999999846,
1.000000000]) ;

| 0.8427007929

0.9953222650
V:= | 0.9999779095 (10.22)
0.9999999846
| 1.000000000

Print each value on a single line, preceded by an integer indicating its position. The format
string is the first argument to the printf command. This string consists of two conversion
specifications, "%d" and "%.2e", along with other characters to be printed, including the
newline character "\n". The first conversion specification indicates that the first argument
following the format string should be printed as an integer. The second conversion specific-
ation indicates that the second argument following the format string should be printed in
scientific notation, with two digits after the decimal point.

> for i to LinearAlgebra:-Dimension (V) do
printf ("%d%12.2e\n", i, VI[i]);
end do;

.43e-01
.95e-01
.00e+00
.00e+00
.00e+00

O W N e
= = P o o

The scanf and printf commands belong to a family of related commands that provide
formatted I/O capabilities. The other commands will be discussed later in this chapter. These
commands are based on similarly named functions from the C programming language library.

10.5 Reading and Writing Formatted Data « 383

For example, the sscanf command below reads an integer, a space, a character, and a floating-
point value from the string given as the first argument. The conversion specifications, "%d",
"%c" and "%!f", will be explained in the next section.

> sscanf ("892 123.456E7","%d %c%f");
(892, "1", 2.3456 10%] (10.23)

Format Strings

As you saw in the previous examples, the format string passed to scanf or printf specifies
exactly how Maple is to parse the input or write the output. It consists of a sequence of
conversion specifications that may be separated by other characters.

First, consider the specification for the scanf command, which has the format shown below.
What follows is a brief explanation of the specification. For more information, refer to the
scanf help page.

%[*][width][modifiers]code
» The character "%" begins each conversion specification.

» The optional character "*" indicates that the item scanned is to be discarded and not re-
turned as part of the result.

» The optional width indicates the maximum number of characters to be scanned for this
object. You can use this to scan one larger object as two smaller objects.

 The optional modifier affects the type of value to be returned. The most common of these
is "Z", which, when preceding any of the numeric format codes, indicates that a complex
value is to be scanned.

+ Several format codes are available for use with scanf. A few of the more commonly used
ones are mentioned here.

"d" -- integer

"f" -- floating-point number
"¢" -- character

"s" -- string

"a" -- Maple expression

The specification for the printf command is similar to that for scanf. The differences are
summarized here. For more information, refer to the printf help page. The specification has
the following format.

%[flags][width][.precision][modifiers]code

384 + 10 Input and Output

As with scanf, the conversion specification for printf begins with "%". The optional
width and modifiers are similar to those described earlier. The width value indicates the
minimum number of characters to output for the field.

The optional flag can be one of several characters affecting how numeric values are dis-
played. For example, the flag "+" indicates that signed numeric values are output with a
leading "+" or "-" sign.

The format codes for printf are similar to those for scanf. One notable difference is that,
while "e" and "g" are equivalent to "f" for scanf, they produce different output in printf.
The code "e" causes a numeric value to be printed in scientific notation, while output
using the code "g" uses one of integer, fixed-point or scientific notation, depending on
the numeric value.

The scanf and printf commands can also be used to print rtables. For more information
about the flags used for this purpose, refer to the rtable printf help page.

Related Commands

Several commands are related to scanf and printf:

fscanf and fprintf

These commands read from and write to a file instead of the terminal. They take a filename
or descriptor as an additional argument, but otherwise use the same calling sequence as
scanf and printf.

sscanf and sprintf

These commands read from and write to a string (which is then returned) instead of the
terminal. The sscanf command takes a string as an additional argument, but otherwise
these commands use the same calling sequence as scanf and printf.

nprintf

This command is the same as sprintf except that it returns a Maple symbol instead of a
string.

All these commands are described fully on the scanf and printf help pages.

10.6 Useful Utilities

This section describes other tools that are useful for input and output.

The StringTools Package

The StringTools package is a collection of utilities for manipulating strings. These commands
are frequently used in conjunction with the basic input and output commands, for analyzing

10.7 2-D Math « 385

or converting data that is read or written. The StringTools package includes numerous
commands; for brevity, we will describe only a few commands that may be of interest to
users performing input/output operations in Maple. These include commands for

 converting the case of characters (e.g., StringTools:-LowerCase)
 performing character class tests (e.g., StringTools:-HasDigit)
* comparing strings (e.g., StringTools:-IsPrefix)

* doing pattern-matching and text searching (e.g., StringTools:-Substitute)

handling whitespace (e.g., StringTools:-TrimRight)

Two commands that are relevant to file I/O are StringTools:-Compress and StringTools:-
Uncompress. The first command uses an algorithm from the zlib library to compress the
input into a lossless and more compact format, while the second reverses the process. These
commands are compatible with the commands for reading and writing bytes described in
Input and Output with Files (page 373).

For more information about the zIib library, visit http://www.zlib.net.

Conversion Commands

Some additional commands may be useful when you are performing input and output oper-
ations in Maple.

» The convert/bytes help page shows how to transform strings into bytes using the convert
command.

* The parse command allows you to parse a string as a Maple statement. For example, the
following command parses the given string, evaluates it, and returns the expression 4*x"2.

> parse ("x"2+4+3*x"2") ;

4% (10.24)

10.7 2-D Math

Introduction

Typeset or 2-D math is available with the standard worksheet interface. Normally, input
and output of 2-D math is done interactively using the Maple GUI tools. However, certain
aspects of the input and output can be controlled programmatically in a limited way.

http://www.zlib.net

386 + 10 Input and Output

There are two available modes for typesetting: standard and extended. The mode can be
changed by using the interface command. The following command shows the current setting
in your worksheet or document:

> interface (typesetting) ;
standard (10.25)

Standard typesetting uses default rules for displaying expressions. With extended typesetting,
the rules can be customized using the Typesetting Rule Assistant (TypesettingRuleAssist)
or exports from the Typesetting package. The Typesetting Rules Assistant and the Typeset-
ting package exports can also be used to adjust how 2-D input is parsed, regardless of the
typesetting mode used for output.

The Typesetting Package

The Typesetting package provides commands for programmatically customizing extended
typesetting output in certain situations and for controlling how particular 2-D expressions
are parsed. It also includes internal-use commands that are not intended for general use.
Additionally, the package exports a number of names that act as Maple typesetting tags
similar to MathML tags.

The commands available to users are described on the Typesetting help page. A subset of
the commands are listed below:
» Typesetting:-Settings: adjust general extended typesetting settings, such as whether dot

notation for derivatives is used and whether functions such as 2(x) should be interpreted
as implicit multiplication.

« Typesetting:-Suppress: suppress dependencies of functions (so that [can be interpreted
as f(x), for example).
» Typesetting:-EnableTypesetRule, Typesetting:-EnableParseRule and Typesetting:-En-

ableCompletionRule: control specific typesetting, parsing and command-completion
rules.

» Typesetting:-UseSymbolForTypeset: control the display of operator symbols.

Extended typesetting output is produced by the Typeset command. When this command is
called, an unevaluated function is returned. This output, which is recognized by the Maple
GUI, is not intended to be altered by users. Because the structure is meant for internal use,
the tag names and format of the structure may change from one Maple release to another.

> lprint (Typesetting:-Typeset (Besseld (v, x)));

Typesetting:-mrow (Typesetting:-mi ("BesselJ", fontstyle =
"nommal "), Typesetting: -no ("sAplyEunctian; ") , Typesetting: -mfenced (Typesetting:-mi. (") , Typesetting:-mi ("X")))

10.8 Exercises * 387

Additional Tips

» Users are discouraged from manipulating the typesetting structures created for internal
use. However, in rare circumstances, it may be useful to call the Typesetting:-Typeset
command. For example, standard typesetting mode is generally used for typeset text in
plots. Extended typesetting output produced by the Typeset command may be passed to
plots inside the typeset structure. For more information, see Typesetting (page 449).

* Occasionally, you may find it necessary to manipulate a typeset expression programmat-
. . . . o1
ically without having the expression evaluate. For example, you want to print > + £
without having it evaluate to % , Or you want to use X+, which gives an error when
evaluated in Maple. In these situations, it is useful to create an atomic variable. To do
this, you must be working in the standard worksheet interface. Enter the expression in
the input line, select it and then use the 2-D math context menu to convert to an atomic
variable. If you Iprint the result, you will see a name (such as

“#mrow(mi("'x"),mo("" +"))", for X+) that can now be used within a Maple program
written in 1-D math.

10.8 Exercises

1. Write a loop (with a single statement in its body) that prints strings listing the cubes of
the integers 1 to 10.

2. Create a file in a text editor that contains the following lines.

x = 1; # valid input line
if := 2;} # invalid assignment
y = 3; # valid input line
two words := 4; # invalid assignment

Save the file. In a Maple session, open the file by using the read statement. Observe how
Maple reacts to invalid statements.

3. Create a data file in a text editor that contains the following information.

Save the file. Read this file into a Maple session, convert the data to a list, and reverse
its order. Write the reversed data in the same format to a different file.

388 « 10 Input and Output

11 Writing Packages

This section describes how to collect a large software project in Maple into a package that
is easy to maintain. Packages can be configured to load automatically when you start Maple
and distributed to other users as a library rather than as Maple source code.

11.1 In This Chapter

* What is a package
» Writing Maple packages by using modules

» Examples of custom packages

11.2 What Is a Package

A package is a collection of procedures and other data that can be treated as a whole.
Packages typically gather a number of procedures that enable you to perform computations
in a well-defined problem domain. Packages may contain data other than procedures, and
may even contain other packages (subpackages).

Packages in the Standard Library

A number of packages are shipped with the standard Maple library. For example, the
GroupTheory, NumberTheory, CodeGeneration, and LinearAlgebra packages are all
provided with Maple, along with several dozen others. The GroupTheory package provides
procedures for computing with groups that have a finite representation in terms of permuta-
tions, or of generators and defining relations. The LinearAlgebra package provides numerous
procedures for computational linear algebra.

Packages Are Modules

Modules are the implementation vehicle for packages. A module represents a package by
its exported names. The exported names can be assigned arbitrary Maple expressions, typ-
ically procedures, and these names form the package.

For more information about modules, see Programming with Modules (page 313).

Some older and deprecated Maple packages such as simplex and networks are not imple-
mented using modules; they are implemented using tables. In table-based packages, the
name of a package command is used as the index into a table of procedures. It is not recom-
mended to write new packages using tables since modules allow much more flexibility.

389

390 « 11 Writing Packages

Package Exports

Some of the data in a package is normally made accessible to the user as an export of the
package. For packages implemented as modules, the package exports are the same as the
exports of the underlying module. For packages implemented as tables, the package exports
are the names used to index the underlying table.

Accessing the exports of a package is a fundamental operation that is supported by all
packages. If P is a Maple package, and e is one of its exports, you can access e by using the
fully qualified reference P[e]. If P is a module, you can also use the syntax P:-e. These
methods of accessing the exports of a module are normally used when programming with
a package.

Note that the member selection operator (:-) is left-associative. If S is a submodule of a
module P, and the name e is exported by S, then the notation P:-S:-e is parsed as (P:-S):-
e, and so it refers to the instance of e, which is local to S. This concept is important for ref-
erencing members of subpackages. For example,

> CodeTools:-Profiling:-Coverage:-Print () ;

calls the procedure Print in the subpackage Coverage in the subpackage Profiling, which
is part of the CodeTools package. You can use indexed notation for this.

> CodeTools[Profiling] [Coverage] [Print] () ;

Using Packages Interactively

For interactive use, it is inconvenient to enter fully qualified references to all of the exports
of a package. To facilitate the process of enteri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>