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Preface
Technical computation forms the heart of problem solving in mathematics, engineering,
and science. To help you, Maple™ offers a vast repository of mathematical algorithms
covering a wide range of applications.

At the core of Maple, the symbolic computation engine is second to none in terms of
scalability and performance. Indeed, symbolics was the core focus when Maple was first
conceived at the University of Waterloo in 1980 and to this day Maple continues to be the
benchmark software for symbolic computing.

Together with a large repository of numeric functionality, including industry-standard lib-
raries such as the Intel® Math Kernel Library (MKL), Automatically Tuned Linear Algebra
Software (ATLAS), and the C Linear Algebra PACKage (CLAPACK), as well as a broad
selection of routines from the Numerical Algorithms Group (NAG® ) libraries, you can
rely on Maple to support you a across many domains and applications. Using its unique
hybrid technology, Maple integrates the symbolic and numeric worlds to solve diverse
problems more efficiently and with higher accuracy.

The Maple user interface allows you to harness all this computational power by using context-
sensitive menus, task templates, and interactive assistants. The first steps are intuitively
easy to use and quickly lead you into the captivating, creative, and dynamic world of Maple.

As you get more proficient, you will want to explore more deeply and directly access all of
the computational power available to you. You can accomplish this through the Maple
programming language. Combining elements from procedural languages (such as Pascal),
functional languages (such as Lisp) and object-oriented languages (such as Java™ ), Maple
provides you with an exceptionally simple yet powerful language to write your own programs.
High-level constructs such as map allow you to express in a single statement what would
take ten lines of code in a language like C.

Maple allows you to quickly focus and reliably solve problems with easy access to over
5000 algorithms and functions developed over 30 years of cutting-edge research and devel-
opment.

Maple's user community is now over two million people. Together we have built large col-
lections of Maple worksheets and Maple programs, much of which is freely available on
the web for you to reuse or learn from. The majority of the mathematical algorithms you
find in Maple today are written in the Maple Programming Language. As a Maple user, you
write programs using the same basic tools that the Maple developers themselves use.
Moreover you can easily view most of the code in the Maple library and you can even extend
the Maple system, tying your programs in with existing functionality.
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This guide will lead you from your first steps in Maple programming to writing sophisticated
routines and packages, allowing you to tackle problems in mathematics, engineering, and
science effectively and efficiently. You will quickly progress towards proficiency in Maple
programming, allowing you to harness the full power of Maple.

Have fun!

Audience
This guide provides information for users who are new to Maple programming, as well as
experienced Maple programmers. Before reading this guide, you should be familiar with
the following.

• The Maple help system

• How to use Maple interactively

• The Maple User Manual

Maple User Interfaces
You can access Maple functionality through several user interfaces. Maple interfaces accept
user input, communicate with the Maple computational engine, and display solutions to
mathematical problems.

The Standard Interface

The standard interface facilitates the performance of computations and lets you manipulate
mathematical expressions. It also provides layout and document processing features that
you can use to annotate your problem-solving process. The standard interface will be the
focus of this guide.

To display the standard interface, double-click your Maple desktop icon (Windows® and
Macintosh®) or run the xmaple command (UNIX®).

Other Maple Interfaces
• MapleNet™ lets you publish your interactive Maple documents on the web. Users with

an Internet connection can then view and manipulate your published documents in a web
browser. MapleNet also provides a web service interface that allows connected applications
to pass data to Maple, run a program, and retrieve results. It also lets you create custom
JavaServer™ Pages (JSP) applications and Java applets. For more information about
MapleNet, see MapleNet (page 480).

• OpenMaple™ is the Maple application programming interface (API) that lets you build
custom user interfaces or embed Maple in an existing application. OpenMaple can be
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used with a variety of languages including C, C++, Java, Fortran, Visual Basic®, and
C#. For more information about OpenMaple, see OpenMaple (page 482).

• The Maple command-line interface is a console-based application that can be used for
batch processing Maple command files. For more information, see The Maple
Command-line Interface (page 493).

• Maplet™ applications are custom interfaces that are created using the Maple programming
language. For more information, see Programming Interactive Elements (page 463).

For more information about the Maple user interfaces, refer to the Maple User Manual or
the versions help page.

Programming in the Standard Interface
Most of the time, you will enter Maple code directly in a worksheet or document. The
standard interface also provides other functionality for entering Maple code. For example,
you can enter your code in a startup code region if you want to run certain commands or
procedures automatically when a Maple document is opened. You can also enter your code
in a code edit region if you want to keep a set of Maple commands or procedures in a con-
fined region within your document. For more information, refer to the worksheet,document-
ing,startupcode and CodeEditRegion help pages.

You can also include your code in an external text file to be read by a worksheet or document,
or batch processed. For more information, refer to the file help page.

Document Mode and Worksheet Mode

Two modes of interactive operation are available in the standard interface: document mode
and worksheet mode.

In document mode, you enter mathematical expressions within document blocks; no Maple
input prompt (>) or execution group boundaries are displayed in the document. You can
use this mode to create professional reports that combine text and typeset math with plots,
images, and other interactive components.

In worksheet mode, you enter mathematical expressions at input prompts, which are displayed
at the start of each input line in a Maple document. When you type an expression and press
Enter, the expression is evaluated and a new input prompt is displayed in the next line. In
both modes, the default format for entering mathematical text is 2-D math notation.

Both modes are equally suitable for creating and running programs in Maple. Select the
mode that suits your preferences and tasks. For more information about both modes, refer
to the worksheet,help,documentsvsworksheets help page.
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1-D and 2-D Math Notation

When programming in Maple, you must also consider whether to use 2-D math notation or
1-D math notation. In 2-D math notation, typeset mathematical text is displayed in black
italicized characters.

In 1-D math notation (or Maple input), mathematical text is displayed in a red fixed-width
font that is not typeset.

int(sin(x),x):>

1-D math notation can be used in external text files to write Maple code that can be read
by a worksheet or batch processed. You can enter individual statements in 1-D math notation
or configure Maple to display mathematical input in 1-D math by default in all future Maple
sessions.

Note: While 2-D math is the recommended format for mathematical text and equations
and can be used for short command sequences and procedures, it is generally not recom-
mended for long programs and package definitions.

Most input in this guide is shown in 1-D math notation. To clearly distinguish commands
and input, this guide uses a leading prompt character (>) and all input is entered in worksheet
mode.

For more information on starting Maple, toggling between 1-D and 2-D math notation, and
managing your files, refer to the Maple User Manual or enter ?managing at the Maple
prompt.

Web Resources
• Maplesoft ApplicationCenter: The Application Center provides thousands of complete

applications that you can download and use in Maple. For more information, visit
http://www.maplesoft.com/applications.

• MaplePrimes™: MaplePrimes is an online forum where you can search for tips and
techniques, read blogs, and discuss your work in Maple with an active community. For
more information, visit http://www.mapleprimes.com.

• Maplesoft Online Help: Documentation included with Maple is also posted online. The
web version offers the latest updates, Google™-based searching, and an easy way to
provide feedback on help documentation. For more information, visit,
http://www.maplesoft.com/support/help.
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• Teacher Resource Center: The Teacher Resource Center provides course content, lecture
notes, demonstrations, and other resources to help teachers incorporate Maple in their
classrooms. For more information, visit http://www.maplesoft.com/TeacherResource.

• Student Resource Center: The Student Resource Center provides online forums, training
videos, and other resources to help students with their work in Maple. For more inform-
ation, visit http://www.maplesoft.com/studentcenter.

For additional resources, visit http://www.maplesoft.com.

Conventions
This guide uses the following typographical conventions.

• bold font - Maple command, package name, option name, dialog box, menu, or text field

• italics - new or important concept

• Note - additional information that is relevant to a concept or section

• Important - information that must be read and followed

Customer Feedback
Maplesoft welcomes your feedback. For suggestions and comments related to this and other
manuals, contact doc@maplesoft.com.
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1 Introduction to Programming in Maple
Maple provides an interactive problem-solving environment, complete with procedures for
performing symbolic, numeric, and graphical computations. At the core of the Maple com-
puter algebra system is a powerful programming language, on which the Maple libraries of
mathematical commands are built.

1.1 In This Chapter
• Components of the Maple software

• Maple statements

• Procedures and other essential elements of the Maple language

1.2 The Maple Software
The Maple software consists of two distinct parts.

• The user interface

• The computation engine

The User Interface

You can use the Maple user interface to enter, manipulate, and analyze mathematical ex-
pressions and commands. The user interface communicates with the Maple computation
engine to solve mathematical problems and display their solutions.

For more information about the Maple user interface, refer to the Maple User Manual.

The Computation Engine

The Maple computation engine is the command processor, which consists of two parts: the
kernel and math library.

The kernel is the core of the Maple computation engine. It contains the essential facilities
required to run and interpret Maple programs, and manage data structures. In this guide,
the kernel commands are referred to as built-in commands.

The Maple kernel also consists of kernel extensions, which are collections of external
compiled libraries that are included in Maple to provide low-level programming functionality.
These libraries include Basic Linear Algebra Subprograms (BLAS), GNU Multiple Precision
(GMP), the NAG® C Library, and the C Linear Algebra PACKage (CLAPACK).

The math library contains most of the Maple commands. It includes functionality for nu-
merous mathematical domains, including calculus, linear algebra, number theory, and
combinatorics. Also, it contains commands for numerous other tasks, including importing
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data into Maple, XML processing, graphics, and translating Maple code to other programming
languages.

All library commands are implemented in the high-level Maple programming language, so
they can be viewed and modified by users. By learning the Maple programming language,
you can create custom programs and packages, and extend the Maple library.

1.3 Maple Statements
There are many types of valid statements. Examples include statements that request help
on a particular topic, display a text string, perform an arithmetic operation, use a Maple
library command, or define a procedure.

Statements in 1-D notation require a trailing semicolon (;) or colon (:). If you enter a state-
ment with a trailing semicolon, for most statements, the result is displayed. If you enter a
statement with a trailing colon, the result is computed but not displayed.

2 + 3;>

(1.1)

2 + 3:>

For more information about statements in Maple, see Maple Statements (page 173).

Getting Help

To view a help page for a particular topic, enter a question mark (?) followed by the corres-
ponding topic name. For example, ?procedure displays a help page that describes how to
write a Maple procedure.

For more information about getting help in Maple, refer to the help and HelpGuide help
pages.

This type of Maple statement does not have a trailing colon or semicolon.

Displaying a Text String

The following statement returns a string. The text that forms the string is enclosed in double
quotes, and the result (the string itself) is displayed because the statement has a trailing
semicolon.

"Hello World";>

(1.2)

Normally, you would create a string as part of another statement, such as an assignment or
an argument for a procedure.
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For more information about strings in Maple, see Maple Language Elements (page 15).

Performing an Arithmetic Operation

The arithmetic operators in Maple are + (addition), - (subtraction), * (multiplication), / (di-
vision), and ^ (exponentiation). A statement can be an arithmetic operation that contains
any combination of these operators. The standard rules of precedence apply.

(44*3+13)^2/116;>

(1.3)

Maple computes this result as an exact rational number.

Assigning to a Name

By naming a calculated result or complicated expression, you can reference it. To assign
to a name, use the assignment statement, :=.

a := 103993/33102;>

(1.4)

2 * a;>

(1.5)

For more information about names and assignment, seeMaple Language Elements (page 15).

Using Maple Library Commands

After a value is assigned to a name, for example, the value assigned previously to a, you
can use the name as if it were the assigned object. For example, you can use the Maple library
command evalf to compute a floating-point (decimal) approximation to 103993/33102 divided
by 2 by entering the following statement.

evalf(a/2);>

(1.6)

You can use the Maple library of commands, introduced in The Computation
Engine (page 1), for many purposes. For example, you can find the derivative of an ex-
pression by using the diff command.
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diff(x^2 + x + 1/x, x);>

(1.7)

Note the difference between the names used in these two examples. In the first example, a
is a variable with an assigned value. In the second example, x is a symbol with no assigned
value. Maple can represent and compute with symbolic expressions.

For more information about the Maple library commands, refer to the Maple User Manual
or the help system.

1.4 Procedures
This section introduces the concept of procedures in Maple. For more information about
procedures, see Procedures (page 205).

Defining a Simple Procedure

A Maple procedure (a type of program) is a group of statements that are processed together.
The easiest way to create a Maple procedure is to enclose a sequence of commands, which
can be used to perform a computation interactively, between the proc(...) and end proc
statements.

Entering a Procedure Definition

The following procedure generates the string "Hello World". Enter this procedure in a Maple
session by entering its definition on one line.

hello := proc() return "Hello World"; end proc;>

(1.8)

You can also enter a procedure or any Maple statement on multiple lines. To move the
cursor to the next line as you are entering a multiline statement, hold the Shift key and press
Enter at the end of each line.

Note: This is necessary in the interactive worksheet environment only. If you enter code in
a code edit region, you can simply type the text and press Enter to move the cursor to next
line. For more information on code edit regions, refer to the CodeEditRegion help page.
For more information about using Shift+Enter, seeUnexpected End of Statement (page 12).

You can indent lines in a procedure by using the spacebar. After you enter the last line, end
proc;, press Enter.
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hello := proc()
return "Hello World";

end proc;

>

(1.9)

To run this procedure, enter its name followed by a set of parentheses and a semicolon:

hello();>

(1.10)

Procedures can also accept arguments. Consider the following example.

half := proc(x)
evalf(x/2);

end proc;

>

(1.11)

This procedure requires one input, x. The procedure computes the approximation of the
value of x divided by 2. When a return statement is not specified, a Maple procedure returns
the result of the last statement that was run. Since evalf(x/2) is the last calculation performed
in the procedure half (in fact, it is the only calculation), the result of that calculation is re-
turned.

The procedure is named half by using the := notation in the same way that you would assign
any other object to a name. After you have named a procedure, you can use it as a command
in the current Maple session. The syntax to run your procedure is the same syntax used to
run a Maple library command: enter the procedure name followed by the input to the pro-
cedure enclosed in parentheses.

half(2/3);>

(1.12)

Recall, a was assigned the value 103993/33102.

half(a);>

(1.13)

half(1) + half(2);>

(1.14)

The basic syntax for a procedure is given below.
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proc( P )
...

end proc

The letter P indicates the parameters. The body of the procedure is between the proc and
end proc keywords.

Consider the following two statements, which calculate the angle in a right triangle given
the lengths of two sides.

theta := arcsin(opposite/hypotenuse);>

(1.15)

evalf(180/Pi*theta);>

(1.16)

The following example shows a procedure that corresponds to these statements. The proced-
ure definition contains two input parameters for the length of two sides of a right triangle.

GetAngle := proc( opposite, hypotenuse )
local theta;

>

theta := arcsin(opposite/hypotenuse);
evalf(180/Pi*theta);

end proc;

(1.17)

When you run the procedure definition, the output shown is the Maple interpretation of this
procedure definition. Examine it carefully and note the following characteristics.

• The name of this procedure (program) is GetAngle. Note that Maple is case-sensitive,
so GetAngle is distinct from getangle.

• The procedure definition starts with proc( opposite, hypotenuse ). The two names in
parentheses indicate the parameters, or inputs, of the procedure.

• Semicolons or colons separate the individual commands of the procedure.

• The local theta; statement declares theta as a local variable. A local variable has meaning
in the procedure definition only. Therefore, if you were to declare another variable called
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theta outside of the procedure, that variable would be different from the local variable
theta declared in the procedure and you could use theta as a variable name outside of
the procedure GetAngle without conflict.

For more information about local variables, see Variables in Procedures (page 227).

• Pi is a predefined variable in Maple. Two predefined functions, evalf and arcsin, are used
in the calculation.

• The end proc keywords and a colon or semicolon indicate the end of the procedure.

• As you enter the procedure, the commands of the procedure do not display output. The
procedure definition is displayed as output only after you complete it with end proc and
a semicolon.

• There is no explicit return statement, so the result of calling the procedure is the result
of the last calculation.

• The procedure definition that displays in the output is equivalent to, but not identical to,
the procedure definition you enter. When Maple parses the statement, the commands of
the procedure may be simplified.

The procedure definition syntax is flexible. You can do the following:

• Enter each statement on one or more lines

• Enter multiple statements on one line, provided they are separated by colons or semicolons

• Place extra semicolons between statements

• Omit the semicolon (or colon) from the statement preceding end proc

To hide the output resulting from a complicated procedure definition, use a colon instead
of a semicolon at the end of the definition.

Adding Comments to a Procedure

Consider the following example.
(* this procedure computes an interior angle of a right

triangle given the length of the side opposite the angle, and
the length of the hypotenuse.

*)
GetAngle := proc( opposite, hypotenuse )

local theta;
theta := arcsin(opposite/hypotenuse);
# convert the angle from radians to degrees
evalf(180/Pi*theta);

end proc:
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You can include single line comments anywhere in the procedure. They begin with a pound
character (#). You can also enter multiline comments between (* and *) symbols as shown
in the example above.

Note: Multiline comments cannot be entered in 2-D math notation. As an alternative, in a
Maple document, you can enter comments as text by adding a paragraph above or below
the Maple statement.

Calling a Procedure

Running a procedure is referred to as an invocation or a procedure call. When you invoke
a procedure, Maple runs the statements that form the procedure body one at a time. The
result of the last computed statement within the procedure is returned as the value of the
procedure call.

For example, to run the procedure GetAngle--that is, to cause the statements that form the
procedure to be run in sequence--enter its name followed by parentheses enclosing the inputs,
in this case, two numbers delimited (separated) by commas (,). End the statement with a
semicolon.

GetAngle(4,5);>

(1.18)

Only the result of the last calculation performed within the procedureGetAngle is returned-
-the result of evalf(180/Pi*theta). The assignment theta:=arcsin(opposite/hypotenuse);
is performed, but the statement result is not displayed.

Maple Library Commands, Built-In Commands, and User-Defined
Procedures

Maple comes with a large collection of commands and packages. Before writing custom
procedures, refer to the Maple help system to find out which commands are available. You
can easily include complex tasks in your user-defined procedures by using existing Maple
commands instead of writing new code.

Maple commands are implemented in one of two formats: those written and compiled in
an external language such as C and those written in the Maple programming language.

The commands that are compiled as part of the Maple kernel are referred to as built-in
commands. These are widely used in computations, and are fundamental for implementing
other Maple commands.

For more information about built-in kernel commands, see The Computation
Engine (page 1) and The builtin Option (page 221).
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The commands in the Maple library are written in the Maple programming language. These
commands exist as individual commands or as packages of commands. They are accessed
and interpreted by the Maple system as required. The code for the library commands and
the definitions of user-defined procedures can be viewed and modified. However, before
exploring library commands, it is important that you learn about evaluation rules to under-
stand the code.

Full Evaluation and Last Name Evaluation

For most expressions assigned to a name, such as e defined with the following statement,
you can obtain its value by entering its name.

restart;>

e := 3;>

(1.19)

e;>

(1.20)

This is called full evaluation--each name in the expression is fully evaluated to the last as-
signed expression in any chain of assignments. The following statements further illustrate
how full evaluation works.

c := b;>

(1.21)

b := a;>

(1.22)

a := 1;>

(1.23)

c;>

(1.24)

This group of statements creates the chain of assignments. , and c fully
evaluates to 1.

If you try this approach with a procedure, Maple displays only the name of the procedure
instead of its value (the procedure definition). For example, in the previous section,GetAngle
is defined as a procedure. If you try to view the body of procedure GetAngle by referring
to it by name, the procedure definition is not displayed.
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GetAngle;>

(1.25)

This model of evaluation is called last name evaluation and it hides the procedure details.
There are several reasons for this approach relating to advanced evaluation topics. The most
important concept to understand is that you will only see the name of a procedure when you
reference it by itself or when it is returned unevaluated; you will not see the full procedure
definition. To obtain the value of the name GetAngle, use the eval command, which forces
full evaluation.

Last name evaluation applies to procedures, tables, and modules in Maple. For more inform-
ation, refer to the last_name_eval help page.

eval(GetAngle);>

(1.26)

Viewing Procedure Definitions and Maple Library Code

You can learn about programming in Maple by studying the procedure definitions of Maple
library commands. To print the body of Maple library commands, set the Maple interface
variable verboseproc to 2, and then use the print command.

For example, to view the procedure definition for the Maple least commonmultiple command,
lcm, enter the following statements.

For more information about interface variables, refer to the interface help page.

interface(verboseproc = 2):>

print(lcm);>

(1.27)

Because the built-in kernel commands are compiled in machine code, and not written in the
Maple language, you cannot view their definitions. If you print the definition of a built-in
procedure, you will see that the procedure has only an option builtin statement and no
visible body.

print(add);>

(1.28)
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1.5 Interrupting Computations and Clearing the Internal
Memory
Interrupting a Maple Computation

To stop a computation, for example, a lengthy calculation or infinite loop, use one of the
following methods.

Note:Maple may not always respond immediately to an interrupt request if it is performing
a complex computation. You may need to wait a few seconds before the computation stops.

• Click the interrupt icon in the toolbar (in worksheet versions). See Figure 1.1.

Figure 1.1: Maple Toolbar

Note: For more information on the toolbar icons, refer to the worksheet/reference/Work-
sheetToolbar help page.

• Hold the Ctrl key and press the C key (in UNIX and Windows command-line versions).

• Hold the Command key and press the period key (.) (in Macintosh command-line and
worksheet versions).

To perform a hard interrupt, which stops the computation and exits the Maple session, in
the Windows command-line interface, hold the Ctrl key and press the Break key.

Clearing the Maple Internal Memory

Clear the internal memory during a Maple session by entering the restart command or
clicking the restart icon in the worksheet toolbar. When you enter this command, the
Maple session returns to its startup state, that is, all identifiers (including variables and
procedures) are reset to their initial values.

restart;>

For more information on clearing the Maple internal memory and the restart command,
refer to the restart help page. For more information on the toolbar icons, refer to the work-
sheet/reference/WorksheetToolbar help page.

Maple tracks the use of permanent and temporary objects. Its internal garbage collection
facility places memory that is no longer in use on free lists so it can be used again efficiently
as needed. For more information on garbage collection and the gc command, see Garbage
Collection (page 604).
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1.6 Avoiding Common Problems
This section provides a list of common mistakes, examples, and hints that will help you
understand and avoid common errors. Use this section to study the errors that you may en-
counter when entering the examples from this chapter in a Maple session.

Unexpected End of Statement

Valid statements in Maple can end with a semicolon or nothing to execute a command, or
with a colon to suppress the output of a command. However, semicolons are required for
procedure statements. An error message is displayed if you press Enter in an input region
that is incomplete.

Tip: You can use the parse command to find errors in statements, and the Maple debugger
to find errors in programs. For more information on the debugger, see TheMaple Debugger:
A Tutorial Example (page 559) or refer to the parse and debugger help pages.

If you press Enter to move the cursor to a new line when you are entering a procedure
definition on multiple lines, the following error is displayed.

p:=proc()>

To prevent this error message from displaying as you enter a procedure definition, hold the
Shift key and press Enter at the end of each line, instead of pressing only Enter.

p := proc()
"Hello World";

end proc;

>

(1.29)

Missing Operator

The most common error of this type is omitting the multiplication operator.

2 a + b;>

You can avoid this error by entering an asterisk (*) to indicate multiplication.

2*a + b;>

(1.30)

Implicit multiplication, which can be used in 2-D math input, is not valid syntax in 1-D
math input.

Invalid, Wrong Number or Type of Arguments

An error is displayed if the argument(s) to a Maple library command are incorrect or missing.

12 • 1 Introduction to Programming in Maple



evalf();>
Error, invalid input: evalf expects 1 or 2 arguments, but received 0

solve(y=3*x+4, 5);>
Error, (in solve) a constant is invalid as a variable, 5

cos(x, y);>
Error, (in cos) expecting 1 argument, got 2

If such an error occurs, check the appropriate help page for the correct syntax. Enter ?top-
ic_name at the Maple prompt.

The same type of error message is displayed if you call a user-defined procedure, such as
GetAngle, with the wrong number of the arguments.

Unbalanced Parentheses

In complicated expressions or nested commands, it is easy to omit a closing parenthesis.

{[1,0], [0,1};>

In a valid statement, each (, {, and [ requires a matching ), }, and ], respectively.

{[1,0], [0,1]};>

(1.31)

Assignment Versus Equality

When you enter statements in a Maple session, it is important to understand the difference
between equality (using =) and assignment (using :=).

The equal sign, =, is used in equality tests or to create equations. Creating an equation is a
valid Maple statement.

x = y^2+3;>

(1.32)

solve(%,y);>

x;>

(1.33)

In the example above, % is a special name that stores the value of the last statement. The
solve command is used to isolate y in the equation defined in the first statement. The first
statement is not an assignment; x remains a symbol with no assigned value.
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You can use the assignment statement, :=, to assign x the value y^2+3. The assignment
statement assigns the value of the right-hand side to the left-hand side. After an assignment
is made, the left-hand side can be used in place of the value of the right-hand side. The left-
hand side cannot be a number; it must be a name, indexed name, function call, or sequence
of these values.

x := y^2+3;>

(1.34)

solve(x,y);>

(1.35)

x;>

(1.36)

For more information about equations and Boolean testing, see Boolean and Relational
Expressions (page 88) or refer to the evalb help page. For more information about names
and assignment, see Names (page 44) and Assignments (page 174).

1.7 Exercises
1. Assign the integers 12321, 23432, and 34543 to the names a, b, and c. Use these names

to find the sum and difference of each pair of numbers.

2. Write two procedures. The first requires two inputs and finds their sum. The second re-
quires two inputs and finds their product. Use these procedures to add and multiply pairs
of numbers. How could you use these procedures to add and multiply three numbers?

3. Display your procedure definitions. Are they identical to the code you entered to write
them?
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2 Maple Language Elements
Before programming in Maple, it is important to learn the properties and roles of the basic
elements of the Maple language. This chapter introduces some of the main concepts, which
will be described in more detail later in this guide.

2.1 In This Chapter
• Basic elements of the Maple language: the character set and tokens

• Maple tokens: reserved words, operators, names, strings, and natural numbers; function
types

• Using special characters

• Maple data types related to the tokens

2.2 Character Set
The Maple character set consists of letters, digits, and special characters. These include 26
lowercase letters, 26 uppercase letters, and 10 decimal digits.

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

There are also 33 special characters, which are listed in Table 2.1. These characters, or
combinations of these characters, have special meanings in the Maple language.

Table 2.1: Special Characters

MeaningCharacterMeaningCharacter
left parenthesis(blank
right parenthesis)semicolon;
left bracket[colon:
right bracket]plus+
left brace{minus-
right brace}asterisk*
left single quote (back quote)`slash/
right single quote (apostrophe)'caret^
double quote"exclamation!
vertical bar|equal=
ampersand&less than<
underscore_greater than>
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MeaningCharacterMeaningCharacter
percent%at sign@
backslash\dollar$
pound sign (sharp)#period.
question mark?comma,

tilde~

These are the only characters used in the Maple language. However, all character types can
be used in names and strings, including international characters. For more information on
how to create names using international characters, see Names (page 20).

Note: When you manipulate a string or determine the length of a string, non-ASCII and
international characters may be counted as more than one byte.

Many string manipulation commands interpret multibyte characters as multiple characters.

s := "\xC3\xBC";>

(2.1)

convert(s, bytes);>

(2.2)

2.3 Tokens
The Maple language combines characters into tokens. The set of tokens consists of reserved
words (also called keywords), programming-language operators, names, strings, and natural
integers.

Reserved Words

Maple keywords are reserved words that have special meanings. Therefore, you cannot
change them or use them as variables in procedures. The keywords are listed in Table 2.2.
You can find information about specific keywords in later chapters of this guide or the help
system.

For more information about reserved words in Maple, refer to the keyword help page.

Table 2.2: Reserved Keywords

PurposeKeywords
loop controlbreak, next
if statementif, then, elif, else
for and while loopsfor, from, in, by, to, while, do
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PurposeKeywords
proceduresproc, local, global, option, error, return, options,

description
modulesexport, module, use
ends structuresend
assume facilityassuming
exception handlingtry, catch, finally
read and save statementsread, save
ending Maplequit, done, stop
set operatorsunion, minus, intersect, subset
Boolean operatorsand, or, not, xor
implication operatorimplies
modulus operatormod

Programming-Language Operators

There are two main types of Maple language operators: unary and binary. Simply put, a
unary operator acts on one operand, as in -a, where the operator - is applied to a. A binary
operator acts on two operands, as in a+b, where + is the operator and the operands are a
and b.

The Maple binary and unary operators, and their meanings, are listed inTable 2.3 andTable
2.4. For more information about these operators, refer to the operators,binary and operat-
ors,unary help topics.

For information about the order of precedence of programming-language operators, refer
to the operators/precedence help page.

Table 2.3: Binary Operators

MeaningOperatorMeaningOperator
less than<addition+
less or equal<=subtraction-
greater than>multiplication*
greater or equal>=division/
not equal<>exponentiation^
equal or equation=sequence operator$
set unionunioncomposition@
set differenceminusrepeated composition@@
set intersectionintersectneutral operator&string
type declaration and
pattern binding

::expression separator,
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MeaningOperatorMeaningOperator
membershipinconcatenation||
logical andandnon-commutative

multiplication
.

logical ororarrow operator->
exclusive orxorellipsis..
implicationimpliesmodulomod
subsetsubsetassignment:=

Table 2.4: Unary Operators

MeaningOperator
unary plus (prefix)+
unary minus (prefix)-
factorial (postfix)!
sequence operator (prefix)$
logical not (prefix)not
neutral operator (prefix)&string
decimal point (prefix or postfix).

Most of the unary and binary operators can also be used in element-wise form with objects
that have multiple elements. To perform an element-wise operation, add a trailing tilde (~)
after an operator that has an element-wise form. An element-wise operation allows you to
apply an operation to the elements of a list, set, table, Array, Matrix, or Vector. For example,
compare Matrix multiplication with element-wise multiplication of paired entries in a
Matrix.

<1,2;3,4> . <2,2;2,2>;>

(2.3)

<1,2;3,4> .~ <2,2;2,2>;>

(2.4)

The Maple element-wise operators are listed inTable 2.5. For more information about these
operators, refer to the operators,elementwise help page.
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Table 2.5: Element-wise Operators

MeaningElement-wise
Operator

MeaningElement-wise
Operator

less than<~addition or unary plus+~
less or equal<=~subtraction or unary

minus
-~

greater than>~multiplication*~
greater or equal>=~division/~
not equal<>~exponentiation^~
equal or equation=~factorial (unary

postfix)
!~

set unionunion~composition@~
set differenceminus~repeated composition@@~
set intersectionintersect~neutral operator&name ~
membershipin~neutral operator

(unary prefix)
&name ~

logical oror~subsetsubset~
logical andand~non-commutative

multiplication
.~

exclusive orxor~concatenation||~
implicationimplies~modulomod~
logical not (unary
prefix)

not~element-wisefunct~

Also, three special nullary operators (also called ditto operators) can be used in interactive
sessions. These are special Maple names that can be used to refer to previously computed
non-NULL expressions.

% last expression

%% second-last expression

%%% third-last expression

While they can be used for simple computations, the ditto operators should be avoided when
writing programs. For results that need to be used in subsequent expressions, assign values
to variables instead.

Note: In a worksheet, the ditto operators do not necessarily reference the results of the
lines located above the execution groups in which they are used. They reference the results
of themost recently performed computations in the Maple session, regardless of the exe-
cution group or document in which they are located. Also, in terms of evaluation, the
ditto operators are treated differently than local variables in a procedure. They are fully
evaluated, which may require more processing than one-level evaluation of local variables.
For more information about local variables, see Local Variables (page 228).
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For more information about the ditto operators, refer to the ditto help page.

Names

A name in Maple is a sequence of one or more characters that uniquely identifies a command,
file, variable, or other entity.

The simplest instance of a name consists of a letter followed by a sequence of letters, digits,
and underscores.

My_Name_1;>

(2.5)

If you need to create a name that includes blank spaces or international characters, use left
single quotes (`).

`A quoted name`;>

(2.6)

`1. A silly name`;>

(2.7)

In general any name that can be formed without left single quotes is identical to the same
name with quotes. For example, x and `x` refer to the same name x. Left single quotes are
similar to double quotes in that double quotes are used to build strings while left single
quotes are used to build names.

Note that the reverse is not true, some names can be formed with left single quotes that are
not identical to expressions typed in without quotes. One example is the name `2`. By putting
quotes around the 2 here, a name is formed instead of a number. Another example is a
quoted keyword, like `module`. To test if an expression is of type module, check type(ex-
pr,`module`). Without the quotes, the Maple parser determines that this is the start of a
module definition and the parser will flag a syntax error.

Characters in Maple are case-sensitive. Therefore, for example, the nameApple is different
from the name apple.

Apple := 4;>

(2.8)

apple := 5;>

(2.9)
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Apple + apple;>

(2.10)

Other Maple names are used for

• mathematical functions such as sin and cos

• Maple commands such as expand or simplify

• type names such as integer or list

• symbols, for example, x and y in the expression x+y

• variables, or names with assigned values

For example, in the first statement below, y is a name that does not have a value. In the
second statement, the variable x has the value 3.

2*y - 1;>

(2.11)

x := 3; x^2 + 1;>

(2.12)

You can create an empty name, which has no characters in its spelling.

type( ``, 'name' );>

(2.13)

Early versions of Maple did not have separate types for names and strings. As a result, many
commands for string processing will also accept names and process their characters the
same way. It is generally better to use strings for such processing as strings can never have
assigned values.

For more more information about names, see Names (page 44).

2.4 Natural Integers
A natural integer is a sequence of one or more decimal digits.

00003141592653589793238462643;>

(2.14)

For more information about integers, see Integers (page 55) and Numeric Types in
Maple (page 279).
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2.5 Strings
A string is a sequence of characters that evaluates to itself. To create a string, enclose any
sequence of characters in double quotes.

"This is a string";>

(2.15)

You cannot assign a value to a string.

"hello" := 5;>

In the following sections, strings and string operations are described. For information on
the StringTools package, refer to the StringTools help page.

Length of a String

Use the length command to determine the number of bytes in a string.

length("What is the length of this string?");>

(2.16)

All of the characters between, but excluding, the double quotes are counted. Each blank
space is counted as one character. Non-ASCII characters may be counted as more than one
byte.

The maximum string length is system-dependent and ranges from about 268 million bytes
on 32-bit systems to more than 34 billion bytes on 64-bit systems.

Substrings

You can extract a substring of a string by using a subscripted integer range (also called a
selection operation).

S := "This is a string";>

(2.17)

S[6];>

(2.18)

S[6..9];>

(2.19)
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Negative numbers in the range count backwards from the end of the string. -2 is the second
last character in the string. Either range endpoint can also be left off to indicate from the
beginning, or to the end.

S[-6..-1];>

(2.20)

S[11..];>

(2.21)

Searching a String

To perform case-sensitive and case-insensitive string searching, use the SearchText and
searchtext commands, respectively.

SearchText( pattern, exprString, range );

searchtext( pattern, exprString, range );

The SearchText command searches for exact matches of pattern in exprString. The
searchtext command performs the same search, but it is case-insensitive. If pattern is found,
Maple returns an integer indicating the position of the first character in pattern in ex-
prString. If the pattern is not found in exprString, 0 is returned.

SearchText("my s", "This is my string.");>

(2.22)

searchtext("My S", "This is my string.");>

(2.23)

The optional range restricts the search to the specified range. It is equivalent to performing
a search on a substring, and it is useful when the pattern occurs more than once in the string.

SearchText("is", "This is my string.", 4..-1);>

(2.24)

String Concatenation

Strings can be formed through concatenation by using the cat command.

cat( sequence )

Here, the sequence parameter can contain any number of expressions that are separated by
commas.
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The cat command is commonly used to concatenate strings with names and integers, and
the result returned has the type (name or string) of the first argument to cat.

Another related command, String, is similar to cat except that it always returns a string
regardless of the type of the first argument, and it also interprets one-dimensional Arrays
of one-byte integers as characters to be concatenated. For more information, refer to the
String help page.

i := 5;>

(2.25)

cat( "The value of i is ", i, "." );>

(2.26)

filename := cat( kernelopts(mapledir), kernelopts(dirsep), "lib"
);

>

(2.27)

Mutability of Strings

Strings are not mutable objects in Maple. This means that appending text to a string is not
done in-place, but involves allocating new storage for the result and copying the original
text, plus the appended text, into that new space. This is typically not an issue unless you
are incrementally processing large amounts of text. In the latter case, the StringBuffer
command may be useful.

with(StringTools):>

s := StringBuffer();>

(2.28)

s:-append("The quick brown fox"):>

s:-newline():>

s:-append("jumped over the lazy dog"):>

s:-value();>

(2.29)

For more information, refer to the StringBuffer help page.
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Special Characters in Strings

To display the double quote character in a string, enter a backslash character (\) followed
by a double quote (") where you want the double quote character to appear. For more in-
formation, refer to the backslash help page.

"a\"b";>

(2.30)

Similarly, to display a backslash character as one of the characters in a string, enter two
consecutive backslash characters, \\. You must escape the backslash in this manner because
backslash is itself a special character. For more information, see Blank Spaces, New Lines,
Comments, and Continuation (page 27).

"a\\b";>

(2.31)

The special backslash character mentioned above counts as only one character, as demon-
strated by using the length command.

length((2.31));>

(2.32)

Doubling up backslashes is most notable when entering full path names in Maple. For this
situation it is easier to use forward slash instead. Forward slash is recognized as a directory
separator on all platforms including Windows.

Parsing Strings

The parse command accepts any Maple string and parses the string into a Maple expression
as if it had been entered or read from a file.

parse( exprString, option );

The parse command is especially useful when you want to interpret commands typed into
text components inside your Maple document. For more information, see Using the
GetProperty Command to Retrieve Properties (page 467).

Without specifying extra options, the string should contain exactly one Maple expression.
The expression is parsed and returned unevaluated.

parse("a+b");>

(2.33)
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parse("a+b;");>

(2.34)

If the string is syntactically incorrect, the parse command displays an error message of the
form incorrect syntax in parse: ... (number).

The number indicates the offset in characters, counted from the beginning of the string, at
which the syntax error was detected.

parse("a++b");>
Error, incorrect syntax in parse: missing operator or `;` (near 4th
character of parsed string)

If the option statement is specified, the string is parsed and evaluated, and then the result
is returned.

parse("sin(Pi)");>

(2.35)

parse("sin(Pi)", 'statement');>

(2.36)

Partial statements or incomplete expressions cannot be parsed. Multiple statements or ex-
pressions can be interpreted via multiple calls to parse using the lastread and offset options.

For more information, refer to the parse help page.

Converting Expressions to Strings

To convert an expression to a string, use the convert command.

Maple can convert a variety of expressions. For more information about expressions, see
Maple Expressions (page 43). For more information about conversions in Maple, refer to
the convert help page.

convert(a, 'string');>

(2.37)

convert(a+b-c*d/e, 'string');>

(2.38)

convert(42, 'string');>

(2.39)
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2.6 Using Special Characters
Token Separators

You can separate tokens by using white space characters or punctuation marks. The separ-
ator indicates the end of one token and the beginning of the next.

Blank Spaces, New Lines, Comments, and Continuation

The white space characters are space, tab, return, and line-feed. This guide uses the term
new line to refer to a return or line-feed since the Maple system does not distinguish between
these characters. The term blank refers to a space or tab.

The white space characters separate tokens, but are not themselves tokens. White space
characters cannot normally be used within a token.

a: = b;>

However, you can use white space characters between tokens.

a * x + x*y;>

(2.40)

White space characters can be part of a token in a name or string formed by enclosing a
sequence of characters in left single quotes or double quotes respectively. For more inform-
ation, see White Space Characters within a Token (page 39).

Except in a string, all characters that follow a pound sign "#" on a line are part of a comment.

For information about adding comments in Maple procedures, see Adding Comments to a
Procedure (page 7).

a := 1 + x + x^2; #This is a comment>

(2.41)

Since white space and new line characters are functionally identical, you can continue
statements from line to line, as described in Entering a Procedure Definition (page 4).

a:= 1 + x +
x^2;

>

(2.42)

Note: Press Shift+Enter to continue typing on the next line without evaluating the ex-
pression.
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To enter a long number or string on multiple lines, use the backslash character (\) as a line
continuation character.

Line continuation functions as follows: if a backslash \ immediately precedes a new line
character, the Maple parser ignores both the backslash and the new line. If a backslash is
in the middle of a line, Maple usually ignores it. For more information about the backslash
character and exceptions to this rule, refer to the backslash help page.

You can use the backslash character to break up a long sequence of digits into groups of
smaller sequences to enhance readability.

"The input should be either a list of \
variables or a set of variables";

>

G:= 0.57721566490153286060\
6512090082402\43104215933593992;

>

(2.43)

You can also enter long strings by using a continuation character. Maple automatically
concatenates string constants that are on separate lines, so another way to enter a long string
is to close one set of double quotes at the end of a line and enter a new double quote at the
beginning of the next line.

S:= "This is the start of a long string "
"and this is part of the same string with no line in between";

>

(2.44)

Punctuation Marks

The punctuation marks that act as token separators are listed in Table 2.6.

Table 2.6: Token Separators

left parenthesis(semicolon;
right parenthesis)colon:
left bracket[left single quote`
right bracket]right single quote'
left brace{vertical bar|
right brace}left angle bracket<
comma,right angle bracket>
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Semicolon (;) and Colon (:)

Use the semicolon and the colon to separate statements. During an interactive session, a
semicolon displays the result of the statement while a colon prevents the result of the
statement from displaying.

f:=x->x^2;>

(2.45)

p:=plot(f(x), x=0..10):>

Right Single Quotes (')

Enclosing an expression, or part of an expression, in right single quotes (or apostrophes)
delays the evaluation of an expression (subexpression) by one level. This is often used to
ensure that procedure options are passed correctly as unevaluated names even when they
have a value. For more information, see Unevaluated Expressions (page 48).

'sin'(Pi), sin(Pi);>

(2.46)

right := 42;>

(2.47)

limit(1/x, x=0, 'right');>

(2.48)

Left Single Quotes (`)

To form a name, enclose an expression in left single quotes.

`My Var` := 4;>

(2.49)

Basic names do not need to be enclosed in left single quotes. For information on when left
single quotes are necessary, see Names (page 20).

Parentheses

The left and right parentheses group terms in an expression, arguments in a function call,
and parameters in a procedure definition.

(a+b)*c; cos(Pi);
proc( x, y, z )

>
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x+y+z;
end proc:

(2.50)

The left and right parentheses are also used to select components from certain data structures
(programmer indexing).

Square Brackets

Use the left and right square brackets to form indexed (subscripted) names and to select
components from data structures such as Arrays, tables, and lists. For more information on
selection, see Indexed Expressions (page 64). For more information on mathematical index-
ing and programmer indexing, see Basic Data Access (page 149).

a[1]; L:=[2,3,5,7]; L[3];>

(2.51)

Square Brackets and Braces

Use the left and right square brackets ([]) to form lists, and the left and right braces ({}) to
form sets. For more information on sets and lists, see Immutable Data Structures (page 129).

L:=[2,3,5,2]; S:={2,3,5,2};>

(2.52)

Angle Brackets

The left and right angle brackets (<>) in conjunction with the the comma, semicolon, and/or
vertical bar (|) can be used to create Matrices and Vectors. For more information, refer to
the Matrix and MVshortcut help pages.

<1,2,3; 4,5,6>;>

(2.53)
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<1,2,3| 4,5,6>;>

(2.54)

Comma

Use the comma to form an expression sequence. Expression sequences are used to specify
the arguments of a function call or the elements of a list or set.

sin(Pi), 0, limit(cos(xi)/xi, xi=infinity);>

(2.55)

Escape Characters

An escape character indicates that the character that follows the escape character must be
handled in a special manner. The escape characters in Maple are ?, !, #, and \.

? - The question mark character, if it appears as the first non-blank character on a line,
opens the Maple help system. The words following ? on the same line determine the
terms used to display a help page. Use either "," or "/" to separate the words that follow
the question mark character. For more information, refer to the help help page.

! - The exclamation mark character, if it appears as the first non-blank character on a line,
passes the remainder of the line as a command to the host operating system. For more
information, refer to the system and escape help pages.

# and (*, *) - The pound sign character indicates that the characters that follow it on the
line are a comment. The multiline comment characters, (*, and *) indicate the beginning
and end of a comment. For more information, see Adding Comments to a
Procedure (page 7) or refer to the comment help page.

\ - The backslash character is used to continue lines, to group characters in a token, and
introduce control characters. For more information, refer to the backslash help page.

2.7 Types and Operands
In most programming languages, data is divided into different classes of information called
data types. In Maple, there is a logical or mathematical notion of type that is related to, but
distinct from, the underlying data structure.
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DAGs

All data in Maple is stored as a directed acyclic graph (DAG). An identifying tag for each
DAG indicates what type of data it stores and how it is stored. Names, strings, lists, and
positive and negative integers are examples of some DAG types. For a list of DAG types
and how they are stored in memory, see Internal Representation (page 611). The op command
(short for operand) can often be used to determine the DAG type of the underlying data by
returning the zeroth operand. This only applies to certain data structures where op(0,e),
where e is an expression, is defined as a special case. For more information, see the partic-
ular data structure help page.

op(0, [1,2,3]);>

(2.56)

op(0, "some text");>

(2.57)

op(0, `some name`);>

(2.58)

op(0, 123456);>

(2.59)

However, the correspondence is not exact. A notable exception to this is function calls
where the zeroth operand is the function name.

op(0, f(x));>

(2.60)

op(0, op(0, f(x)));>

(2.61)

When names are assigned to data, they act as pointers in other languages. However, for
most purposes, the Maple evaluation rules are such that you can think of them as variables.
If you want to manipulate an assigned name rather than the data assigned to it, you can use
right single quotes (also called unevaluation quotes), which are described in more detail
in Unevaluated Expressions (page 48).

Assigned names that are pointers do not require type declarations as in low-level program-
ming languages. This means that a name a may be assigned an integer and then later assigned
a list without discretion. This system of weak typingmeans that, when writing robust code,
you must verify types since variables may be assigned any value.
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Maple Types

The type facility in Maple is accessed by using the type command. It is a mathematical type
facility; however, some basic types such as integer or list map directly to the type of DAG.
Some types, such as numeric, encapsulate a group of many different kinds of structures
and structured types, such as name^integer, can match a very specific value.

Type checking is important in Maple to decide whether an expression is valid input for
procedure calls and Maple commands. You can use the the type command or the :: operator
for type checking. The operator form is primarily used to declare the type of a procedure
parameter. For more information on :: see The Double Colon Operator (page 113). For in-
formation on declaring the type of a procedure parameter, see Procedures (page 205). The
type command has the following syntax.

type( expression, typeName );

If the expression is of type typeName, the type command returns a value of true. Otherwise,
a value of false is returned.

type([1,2,3], 'list');>

(2.62)

type("string", 'list');>

(2.63)

type(123456, 'integer');>

(2.64)

type(f(x), 'function');>

(2.65)

The type of any integer is integer. The type command can also interpret many subtypes of
integers, some of which are listed in Table 2.7.

Table 2.7: Subtype

MeaningSubtype
64-bit sized integerinteger[8]
32-bit sized integerinteger[4]
negative integernegint
positive integerposint
non-negative integernonnegint
non-positive integernonposint
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MeaningSubtype
even integereven
odd integerodd
prime numberprime

For more information, refer to the type help page, which also contains a complete list of
types in Maple.

The type facility can also interpret compound or structured types such as list(integer) for a
list of integers or list({negint,prime}) for a list of negative or prime integers.

type([-1, 2, 11], 'list({negint,prime})');>

(2.66)

type([0, 2, 11], 'list({negint,prime})');>

(2.67)

For more information about structured types, see type,structure.

Operands and op

In addition to providing information about the underlying type, the op command can provide
information about the other operands or parts of a data structure. Most data structures in
Maple can be divided into components. For example, an equation of the form x=y+x can
be divided as follows.

• the operator, =

• the left-hand side, x

• the right-hand side, y+x

To determine the operands and the number of operands in an expression, use the op and
nops commands respectively. These commands have the following basic syntax.

op( i, expression );

nops( expression );

If the optional first argument i to the op command is a positive integer, the ith operand of
expression is returned.

eq := x=y+x:>

nops(eq);>

(2.68)
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op(0, eq);>

(2.69)

op(1, eq);>

(2.70)

op(2, eq);>

(2.71)

op(0, eq)(op(1,eq), op(2,eq));>

(2.72)

The op command can also determine the operands of an expression at various levels of a
structure with the following syntax.

op( [i1, i2, ...], expression );

This syntax is equivalent to and more efficient than a nested call to the op command.

op([2,0], eq);>

(2.73)

op(0,op(2, eq));>

(2.74)

This hierarchical structure of expressions explains the name DAG. The internal representation
of looks like an infix expression tree. See Figure 2.1
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Figure 2.1: Expression Tree

For efficiency, Maple does not store multiple copies of identical objects, so the two x nodes
in the tree can be represented in a picture like the one in Figure 2.2. In Figure 2.1 you see
two "x" nodes in the tree, implying a copy of each "x". Figure 2.2 shows that the same in-
stance of "x" is referred to in both places.
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Figure 2.2: Expression DAG

The term directed acyclic graph simply refers to this variation of a tree where nodes may
have multiple parents.

The tree form of an expression can be displayed using the dismantle command.

dismantle(eq);>

EQUATION(3)
NAME(4): x
SUM(5)

NAME(4): y
INTPOS(2): 1
NAME(4): x
INTPOS(2): 1

This model is not exactly what is used in practice but the principle of uniqueness, with respect
to nodes, still applies. Maple uses a more sophisticated internal representation for sums as
described in Internal Representation (page 611). The real structure of the DAG shown in
Figure 2.3.
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Figure 2.3: Actual Expression DAG

The next three chapters introduce many of the other types in Maple and describe how to
create and use them in programs.

2.8 Avoiding Common Problems
This section provides you with a list of common mistakes, examples, and hints that will
help you understand and avoid common errors. Use this section to study the errors that you
may encounter when entering the examples from this chapter in a Maple session.

Attempting to Assign to a Protected Name

An exception is raised if you attempt to assign a value to a protected name. To resolve this
error, specify a different name.

For more information about protected names, see Protected Names (page 47) or refer to
the protect help page.

int := 10;>
Error, attempting to assign to `int` which is protected. Try declaring
`local int`; see ?protect for details.
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Invalid Left-Hand Assignment

An exception is raised if you attempt to assign a value to a string.

For more information about strings, see Strings (page 22) or refer to the string help page.

"my string" := 10;>

Use only valid names on the left-hand side of an assignment statement.

Incorrect Syntax in Parse

The parse command accepts a string as its argument. An exception is raised if the string is
syntactically incorrect.

For more information, refer to the parse help page.

parse("a^2--b");>
Error, incorrect syntax in parse: missing operator or `;` (near 6th
character of parsed string)

The error message indicates the character number (counted from the left double quote)
where the error was detected. In this case, the 6th character (the second minus sign) caused
the error.

White Space Characters within a Token

An exception is normally raised if a white space character occurs in a token.

evalb(2 < = 3);>

The less-than-or-equal operator <= is a token in Maple. Therefore, it cannot contain a space.

evalb(2 <= 3);>

(2.75)

Incorrect Use of Double and Single Quotes

In Maple, double quotes form a string, left single quotes form a name, and right single
quotes delay evaluation of an expression. Confusing a string with a name, or a name with
delayed evaluation causes errors. Study the following examples to see the different uses of
these quotes.

For more information about using quotes, see Punctuation Marks (page 28) or refer to the
quotes help page.

To form a string, enclose the expression in double quotes.
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"2 + 3";>

(2.76)

type((2.76),'string');>

(2.77)

To form a name, enclose the expression in left single quotes. Unlike a string, which is dis-
played with double quotes around it, names are usually printed without quotes. The name
in this example only looks like an expression.

`2 + 3`;>

(2.78)

type((2.78),'name');>

(2.79)

To delay the evaluation of an expression, enclose it in right single quotes.

x := 2: y := 3: f := 'x + y';>

(2.80)

eval(f);>

(2.81)

Avoid Using Maple Keywords as Names

If you use a Maple keyword in a name, and do not enclose it in left single quotes, an excep-
tion is raised.

1 + end;>

To resolve this issue, select a variable name that is not a Maple keyword.

Note: It is possible to use a Maple keyword as a name by enclosing it in left single quotes.
For example,

`end` := 2;>

(2.82)

1 + `end`;>

(2.83)
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However, this approach is not recommended, since it makes it very likely that errors will
be introduced if, for example, you forget to place back-ticks around keywords. When pos-
sible, avoid using keywords as names.

2.9 Exercises
1. Using Maple operators, do the following:

a Compute the sum of 5434 and 6342.

b Compute the product of 92 and 310.

c Compute the quotient of the result from a) divided by the result from b).

d Create a list containing the numbers from a), b), and c).

e Square each element of the list from d).

2. Create variables named "my quotient" and "my remainder". Use these variables and the
irem command to find the integer quotient and remainder of 12345 divided by 234. Tip:
Because the irem command stores extra results by assigning to the third argument you
will need to make sure the name is passed and not its assigned value. Do this by using
uneval quotes (').

3. Compute 3^(3^98) modulo 7.

4. Concatenate the three strings "int", "(x^2,", and "x)". Parse the resulting string. Evaluate
the parsed string.

5. Determine a random integer between 40 and 100 using the command rand(40..100).
Concatenate this number with the string, "The student's grade is ". Extract the student's
grade from the resulting string.

6. Assign the expressions x^2 and x*x to the names a and b. Find the three operands of a
and b. Compare the results with those returned by using the dismantle command, that
is, dismantle(a) and dismantle(b). The dismantle command displays the internal data
structure used.
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3 Maple Expressions
This chapter introduces Maple expressions associated with scalar data structures.

3.1 In This Chapter
• Introduction: automatic simplification and evaluation; syntax and constructors

• Using names, strings, and numbers in expressions

• Unevaluated expressions

• Expression types: arithmetic, Boolean, relational, and set-theoretic expressions; expressions
for data structures; indexed expressions; function and member selection expressions

• Assigning attributes

• Classifying, examining, and manipulating expressions

3.2 Introduction
Expressions and Statements

Maple language elements can be classified as either expressions or statements. An expression
is a first-class data element in the Maple language. In other words, expressions can be stored
in data structures, passed as arguments to procedures, and manipulated in various ways;
they are often used to represent mathematical objects. Statements, on the other hand, are
not first-class data elements; they generally describe non-mathematical programming con-
structs and are used to affect the state of Maple.

This chapter describes expressions associated with scalar data structures. For information
about non-scalar data structures, see Basic Data Structures (page 129).

For more information about Maple statements, see Maple Statements (page 173).

Automatic Simplification and Evaluation

Maple uses two processes to compute expressions: automatic simplification and evaluation.
Automatic simplification is a process that Maple applies to the input immediately; this
process cannot be controlled. Expression evaluation occurs after an initial round of automatic
simplification; this process can be controlled in certain ways. For each kind of expression
described in this chapter, the rules for both automatic simplification and expression evaluation
are described.

Syntax and Constructors

You can create most expressions by entering the appropriate syntax. However, some expres-
sions, such as expressions that include tables or a series, can only be created by calling a
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constructor. A constructor is a command that can be used as an alternative method of creating
certain expressions.

For example, a sum that would normally be entered using the syntax for addition

a + b + c + d;>

(3.1)

can also be entered using the constructor `+`.

`+`( a, b, c, d );>

(3.2)

With some exceptions (for example, series, lists, sets, and procedures), the name of the
constructor for an expression can be displayed by using the op command with its first argu-
ment equal to 0.

op( 0, a + b + c + d );>

(3.3)

The example above shows that the constructor for the expression a + b + c + d is the com-
mand assigned to the name `+`.

3.3 Names
Names have several purposes in Maple. They can be used to reference algebraic indeterm-
inates, symbols, and variables in your code.

Names (page 20) provided a basic introduction to Maple names. The following section
describes concepts related to names in more detail.

A Maple name can be either global or local, depending on its scope. In this chapter, only
global names are used. A global name is created either by referring to it at the top level of
your program or by declaring it to be global in either a procedure or module definition. For
more information about scope, see Variables in Procedures (page 227).

Two names are the same if they have the same spelling and scope. Maple keeps only one
copy of any name in memory, so in a large expression that includes an indeterminate x,
only one copy of the name x is kept in memory. Each occurrence of x in the expression
refers to the same name x.

The polynomial

x^3 - 3*x^2 + 3*x - 1;>

(3.4)
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contains three occurrences of the name x, but all three point to the same location in memory.

Maple is unique in that names can represent themselves. As a result, you can use names as
algebraic indeterminates, for example, to construct polynomials or other algebraic expres-
sions.

Names can also be used to represent variables in your code. When a name is assigned a
value, that name is associated with another expression and evaluating the name results in
its assigned value being returned. When a name is unassigned, evaluating the name results
in the name itself.

In this example, the name a is assigned to the value 2.

a := 2;>

(3.5)

Before using a name on the left side of an assignment, the name has no assigned value.

b;>

(3.6)

When a value is assigned to a name, subsequent evaluation of the name results in its assigned
value.

a;>

(3.7)

For more information about assigning values, see Assignments (page 174).

Creating Names: Lexical Conventions

When creating names in Maple, you must be aware of certain lexical conventions.

Environment Variables

Names beginning with an underscore character (_) are reserved for use by the Maple library.
You should not create names that begin with an underscore.

As a special case, any name beginning with the four character sequence "_Env" is treated
as an environment variable.

Environment variables are a special kind of variable in that an assignment to one within a
procedure is automatically unassigned when the procedure has finished running. Therefore,
environment variables only affect subprocedures called from that procedure, unless they
are superseded locally.

3.3 Names • 45



The following predefined environment variables do not begin with _Env: Testzero, Use-
HardwareFloats,Rounding,%,%%,%%%,Digits, _ans, index/newtable,mod,Order,
printlevel, Normalizer, NumericEventHandlers.

Environmental Variables Scope

Unlike a local variable, whose scope is restricted to the procedure containing the local
variable itself, an environment variable can be referenced globally by all sub-procedures
called by or deeper than the current procedure, but the environment variable cannot be ref-
erenced by procedures above the current procedure.

For more information about environment variables, refer to the envvar help page. For more
information about procedures, see Procedures (page 205) or refer to the procedure help
page.

Constants

In addition to keywords, as described in Reserved Words (page 16), Maple has several
predefined constants.

You can display a sequence of all the names that represent symbolic constants in Maple by
using the global variable constants.

constants;>

(3.8)

seq(i=evalf(i), i in constants);>

(3.9)

Maple also has several other special constants. Table 3.1 lists some of them. For more in-
formation, refer to the initialconstants help page.

Table 3.1: Initially Known Names

MeaningNameMeaningName
initially known symbolic
constants

constantsthe most recent errorlasterror

number of digits in
floating-point computations

Digitspath of the Maple librarieslibname

cannot determine valueFAILempty expression sequenceNULL
control display of informationprintleveltruncation order for seriesOrder
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MeaningNameMeaningName
undefined numeric quantityundefinedcomplex numberI

For more information about constants in Maple, refer to the type/constant help page.

Protected Names

A protected name has a predefined meaning; you cannot directly assign a value to a protected
name. For example, the names of built-in commands such as sin; utility operations such as
degree; commands such as diff; and type names such as integer and list, are protected
names. An error occurs if you attempt to assign a value to any of these names.

list := [1,2];>
Error, attempting to assign to `list` which is protected. Try
declaring `local list`; see ?protect for details.

The Maple system prevents these names from re-assignment. However, even though it is
not recommended, it is possible to reassign values to these names by first unprotecting them
as illustrated by the following statements.

Note: You can unassign values to Maple system names by entering a restart command or
by ending your Maple session. In general, using the unprotect command to modify Maple
system names is not recommended.

unprotect(sin);>

sin := "a sin indeed";>

(3.10)

As a result, Maple components that rely on the sine function may not work as expected.

plot( sin, 0..2*Pi, coords=polar );>

To check whether a name is protected, use the type command.

type(sin, protected);>

(3.11)

type(sine, protected);>

(3.12)

To prevent values from being assigned to a name, use the protect command.

mysqr := x -> x^2;>

(3.13)
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type(mysqr, protected);>

(3.14)

protect( mysqr );>

mysqr := 9;>
Error, attempting to assign to `mysqr` which is protected. Try
declaring `local mysqr`; see ?protect for details.

3.4 Unevaluated Expressions
In general, Maple evaluates all expressions immediately. In some situations, it is necessary
to delay the evaluation of an expression. An expression enclosed in right single quotes is
called an unevaluated expression. It takes the general form

'expr'

where expr is an arbitrary expression. All of the expressions contained within the right
single quotes are not evaluated.

For example, the sin command normally performs the following computations.

sin( 0.5 );>

(3.15)

sin( Pi / 2 );>

(3.16)

To prevent the evaluation of these computations, you can enclose the expressions in right
single quotes (also called unevaluation quotes) as follows.

'sin( 0.5 )';>

(3.17)

'sin( Pi / 2 )';>

(3.18)

You can enclose expressions of any length or complexity in unevaluation quotes.

'sin( 0.5 )^2 + cos( 0.5 )^2';>

(3.19)
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Also, you can enclose subexpressions in unevaluation quotes to prevent certain parts of an
expression from evaluating.

'sin( 0.5 )'^2 + cos( 0.5 )^2;>

(3.20)

The sections below describe cases in which you may want to delay evaluation.

Protecting Names and Options

Unevaluation quotes can be used to prevent the evaluation of names.

a := x^2 + x + 1;>

(3.21)

a;>

(3.22)

'a';>

(3.23)

This is important when you want to use a variable as a name, regardless of whether it has
an assigned value.

Also, unevaluation quotes can be used to protect options. Names are often used as options
to control the behavior of a command. If the name of that option has been used as a variable,
the command that has been called uses the value of the variable and not the option name as
expected. Unevaluation quotes can be used around option names to protect against this.

symbolic := 4;>

(3.24)

sqrt( -9*x^2*y, 'symbolic' );>

(3.25)

In the next example, an exception is raised because the name of a command option is not
enclosed in unevaluation quotes.

output := 2:>

CodeGeneration:-C( x^2, output = string );>
Error, (in Translate) options [2 = string] not recognized
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In this example, the best way to use the output option is to quote the name, thus preventing
its evaluation in case the name output has an assigned value.

CodeGeneration:-C( x^2, 'output' = 'string' );>

(3.26)

Tip: It is also recommended that you also use unevaluation quotes for the names of types
and conversions. For more information, see Structured Types (page 122).

For more information on types and conversions, refer to the type and convert help pages.

Generic Expressions

Expressions sometimes describe the operation to take place in a generic sense. For example,
B[i] can be used in certain contexts with unevaluation quotes to denote a generic index into
B. If unevaluation quotes are not used, Maple will try to look up the specific ith element of
B.

B := <1,2,3,4>;>

(3.27)

sum(B[i], i = 1..4);>
Error, bad index into Vector

sum('B[i]', i = 1..4);>

(3.28)

Pass by Reference

Some commands accept a name as an argument, with the intent that it will be used to store
a result. Unevaluation quotes ensure that the variable name (and not the value assigned to
the variable) is used in the procedure.

remainder := irem(45,3,'quotient'); quotient;>

(3.29)
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remainder := irem(44,3,'quotient'); quotient;>

(3.30)

If quotient is not enclosed in unevaluation quotes, the second call in the above example
raises an exception because 15, the value of quotient, is not a valid third argument to the
irem command.

Displaying the Original Command

For display purposes, it is sometimes useful to show the original command before a solution
is computed.

v := 'int(x*y^2, [x=0..1, y=0..1] )';>

(3.31)

v;>

(3.32)

Unassigning Names

To reset the value of a name, assign the unevaluated name (its initial value) to the name.
For example,

x := 2+3;>

(3.33)

x := 'x';>

(3.34)

Now, the value of x is reset to x.

Evaluation and Automatic Simplification

It is important to note the differences between computations that occur during the evaluation
process and those that occur during the automatic simplification process. Unevaluation
quotes do not prevent automatic simplifications from occurring. For example, basic numeric
arithmetic is one form of automatic simplification. In the following expression, the unevalu-
ation quotes do not prevent the numeric addition from occurring.
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'2 +3';>

(3.35)

In this example, Maple first simplifies the unevaluated sum '2 + 3' to the expression '5'.
During the evaluation process, Maple "removes" the right single quotes and produces the
numeric result 5.

All unevaluated expressions are of the type uneval. You can use the type command to check
whether an expression is an unevaluated expression.

type( ''x'', 'uneval' );>

(3.36)

In the example above, the first argument to the call to the type command is the name x,
which is enclosed in two sets of unevaluation quotes. The result of evaluating the first argu-
ment is the unevaluated expression 'x' because the evaluation process removes one set of
unevaluation quotes. The resulting expression is therefore of type uneval.

On the other hand, if you enclose the first argument to type in only one set of unevaluation
quotes, the evaluation process removes the only set of unevaluation quotes, leaving the
result as the name x, which is not an unevaluated expression.

type( 'x', 'uneval' );>

(3.37)

In other words, the type command accesses the name x, rather than the unevaluated expres-
sion 'x', since the type command accesses the result of its arguments that have been evaluated.

In the example above quotes were also used around the type name uneval. This provides a
measure of protection just in case the variable name, uneval has an assigned value (which
is unlikely because uneval is protected). During normal function evaluation, each argument,
x and uneval is evaluated. With quotes, 'x' becomes x, and 'uneval' becomes uneval as
seen by the type procedure. Without quotes, x would become the value of x (which may be
the symbol x itself), and uneval would become the value of uneval, which is usually the
symbol uneval itself. Unevaluation quotes make the displayed call robust against cases
where the variable you are using unexpectedly has a value. It is rarely necessary to use this
level of caution in interactive use, but when you write programs, it is a good practice to in-
clude unevaluation quotes to make your code as robust as possible.

Another special case of unevaluation arises in function calls.

'f'(a)

Suppose f is not assigned to anything. Since evaluating f does not call a procedure, Maple
returns the unevaluated function call f(a).
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f(a);>

(3.38)

Similarly, using uneval quotes around a function evaluation will cause Maple to behave as
if the named function had no value.

''sin''(Pi);>

(3.39)

(3.39);>

(3.40)

(3.40);>

(3.41)

You will find this facility useful when writing procedures that need to act on the whole
original expression, not the evaluated result.

For more examples and information on unevaluated expressions, refer to the uneval help
page.

Example: Defining a Procedure That Is Returned Unevaluated

You may need to use unevaluation quotes when you are defining a procedure that is returned
unevaluated. This is necessary, for example, when you are defining a procedure that evaluates
a numeric result for numeric inputs, but does not produce a numeric result otherwise. (The
procedure may perform normalizations and apply symmetries, if appropriate.) It is important
to write procedures using this method so that they can be plotted, optimized, or numerically
integrated, for example.

Consider the following procedure.

f := proc( x )
if x > 2 then

>

x
else
2

end if
end proc:

Using the wrong calling sequence in a call to plot results in an error.
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plot( f( x ), x = -10 .. 10 );>
Error, (in f) cannot determine if this expression is true or false:
2 < x

The correct calling sequence would be either plot( 'f'(x), x=-10..10), which puts uneval
quotes around f, or plot( f, -10..10), which avoids computing f(x) by omitting the variable
altogether. Remember that arguments in a function call are evaluated first before the called
procedure sees them.

Here, the precursor evaluation of f(x) tries to apply f to the unassigned symbol, x.

f( x );>
Error, (in f) cannot determine if this expression is true or false:
2 < x

The procedure could be rewritten so that it returns unevaluated whenever it encounters ar-
guments that cannot be processed. This trick causes f(x) to evaluate to itself when non-nu-
meric input is passed in.

f := proc( x )
if type( x, 'numeric' ) then

>

if x > 0 then
x

else
2

end if
else
'procname( _passed )'

end if
end proc:

The unevaluated expression 'procname( _passed )' returns the full calling sequence unevalu-
ated.

f( x );>

(3.42)

The expression procname( _passed ) must be enclosed in unevaluation quotes to prevent
an infinite loop.
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3.5 Numbers
Maple supports computation with exact numerical quantities, as well as approximate com-
putation to arbitrarily high accuracy with floating-point numbers.

Integers

A natural integer is any sequence of one or more decimal digits.

12345;>

(3.43)

The maximum number of digits is system-dependent. To determine the maximum number
of digits, use the following command.

kernelopts( 'maxdigits' );>

(3.44)

A signed integer is formed by appending + or - before any natural integer.

-42;>

(3.45)

+42;>

(3.46)

An integer is either a natural integer or a signed integer.

You can use the length command to determine the number of digits in an integer.

2^42;>

(3.47)

length( 2^42 );>

(3.48)

Fractions

A rational number (fraction) is the quotient of two integers, where the denominator is always
positive.

Use the division operator (forward slash) / to enter a fraction.

integer / natural
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For example,

2 / 3;>

(3.49)

You can enter a fraction in which the numerator and denominator have a common (integer)
factor, but Maple automatically simplifies this to the lowest terms.

4 / 6;>

(3.50)

In addition, Maple automatically moves a negative sign to the numerator.

2/(-3);>

(3.51)

Fractions are automatically simplified to an integer if the denominator is a divisor of the
numerator.

6/3;>

(3.52)

You can use the numer and denom commands to extract the numerator and denominator,
respectively, of a fraction.

numer( 2/3 );>

(3.53)

denom( 2/3 );>

(3.54)

Fractions can also be created by using the Fraction constructor with the numerator and
denominator as arguments.

Fraction( 2, 3 );>

(3.55)

Floats

Maple supports computation with floating-point numbers to arbitrary precision.
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A float can be input using a period for the decimal.

2.3;>

(3.56)

2.;>

(3.57)

.7;>

(3.58)

-.567;>

(3.59)

Or, using exponent form using a suffix containing the letter "e" or "E" followed by an integer
with no spaces between.

4e3;>

(3.60)

2.3e6;>

(3.61)

.2E3;>

(3.62)

Observe that spaces are significant. The first example is a difference rather than a float in
exponent form.

.2e -3;>

(3.63)

.2e-3;>

(3.64)

Also, the following is invalid.

3.e4;>

Floats represent numbers of the form s*10^e, where the number s is called the significand
ormantissa of the float, and the number e is called the exponent. The significand is a Maple
integer. Therefore, it is restricted to values that have, at most, the number of digits indicated
by the kernelopts( 'maxdigits') command.
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kernelopts( 'maxdigits' );>

(3.65)

The maximum value of the exponent is a platform-dependent quantity whose value may be
queried by using the Maple_floats command.

Maple_floats( 'MAX_EXP' );>

(3.66)

Similarly, the minimum value of the exponent is given by the value

Maple_floats( 'MIN_EXP' );>

(3.67)

returned by the Maple_floats command. For more information, refer to the Maple_floats
help page.

You can also create software floats by using the constructor SFloat. This constructor accepts
the significand and exponent as arguments, and has the general form

SFloat( m, e )

SFloat( 23, -1 );>

(3.68)

To extract the significand and exponent of a software float, use the SFloatMantissa and
SFloatExponent commands.

SFloatMantissa( 2.3 );>

(3.69)

SFloatExponent( 2.3 );>

(3.70)

The significand and exponent are also the operands of a software float.

op( 2.3 );>

(3.71)

Two software floats are equal if they represent the same number. However, equal floats by
themselves do not need to be the same object in memory.

evalb( 2.3 = 2.30 );>

(3.72)
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addressof( 2.3 ); addressof( 2.30 );>

(3.73)

Observe that the significands (and therefore, also, the exponents) differ in this example.

SFloatMantissa( 2.3 );>

(3.74)

SFloatMantissa( 2.30 );>

(3.75)

Note that equal floats with different significands inside of two otherwise identical objects
will require something stronger than evalb for comparison. evalb is the implicit comparison
used when evaluating conditionals in if statements.

evalb( 2.3 + x = 2.30 + x );>

(3.76)

evalb(<2.3,4.5> = <2.30,4.50>);>

(3.77)

Testing the difference of the two expressions, or calling a command to do a deeper compar-
ison may be necessary.

evalb( (2.3 + x) - (2.30 + x) = 0 );>

(3.78)

EqualEntries(<2.3,4.5>, <2.30,4.50>);>

(3.79)

The names of the constructor SFloat and accessors SFloatMantissa and SFloatExponent
all begin with the letter S. The S stands for "software" because these floating-point numbers
are implemented in software. Maple also supports the floating-point numbers supported by
the underlying hardware, called hardware floats or hfloats. You can create a hardware float
by using the hardware float constructor HFloat.

HFloat( 24375, -3 );>

(3.80)
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h := HFloat( 24.375 );>

(3.81)

op( h );>

(3.82)

Note, however, that hfloats are binary floating-point numbers, rather than decimal floating-
point numbers. That means that unlike the example above, there is often round-off error
when decimal numbers are converted into hfloats. For more information, see Hardware
Floating-Point Numbers (page 284).

op( HFloat(2.3) );>

(3.83)

The SFloatMantissa and SFloatExponent commands also accept hardware floats as input.

SFloatMantissa( h );>

(3.84)

SFloatExponent( h );>

(3.85)

For more information on floating-point numbers, see Floating-Point Numbers (page 282).

Complex Numbers

Maple supports arithmetic with complex numbers of the form , where is
the imaginary unit. In Maple, the imaginary unit is normally denoted by I; that is, the upper-
case letter "I" is used rather than the lowercase "i". Therefore, the complex number with
the real part equal to and imaginary part equal to is entered, naturally, as follows.

2 + 3*I;>

(3.86)

In general, a complex number has the form

re + im * I

where re and im are the real and imaginary parts of the complex number, respectively. If
the expressions re and im are of type extended_numeric; the resulting complex number
will be of type complex( extended_numeric ). (It is not necessary that re and im are reals;
they may be arbitrary algebraic expressions. However, in this case, the result of the syntax
above will generally be an algebraic expression that will not be a complex numeric constant.)
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You can also create complex numbers using theComplex constructor. It can be called using
either one or two arguments. The single-argument form has the following syntax.

Complex( expr )

If the argument expr is of type complex, theComplex constructor returns the value of expr.
Otherwise, if expr is of type extended_numeric, the Complex constructor returns expr *
I.

Complex( 2 ), Complex( 0 ), Complex( 0.0 );>

(3.87)

Complex( 2 + 3*I ), Complex( infinity ), Complex( undefined );>

(3.88)

The two-argument form has the following syntax.

Complex( re, im )

The first argument is interpreted as the real part and the second argument is interpreted as
the imaginary part, of the complex number constructed.

Complex( 2, 3 ), Complex( 2.1, 3 ), Complex( 0, 0 );>

(3.89)

Note that if either of the arguments is a float, the real and imaginary parts of the complex
number created are both of type float.

A complex zero with floating-point real and imaginary components can have four sign
combinations.

z1 := 0.0 + 0.0*I; z2 := 0.0 - 0.0*I;
z3 := -0.0 - 0.0*I; z4 := -0.0 + 0.0*I;

>

(3.90)

Similar to 0.0 = -0.0, numerically, these four complex zeros are numerically equivalent.

evalb( z1 = z2 and z2 = z3 and z3 = z4 );>

(3.91)
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If the arguments re and im are not of type extended_numeric, the Complex constructor is
returned unevaluated.

Complex( u, v );>

(3.92)

Except if one of the arguments is complex, in which case, an exception is raised.

Complex( 2 + 3*I, 1 );>
Error, invalid arguments for Complex constructor

It is important to understand that there is a single complex infinity, which is a point on the
Riemann sphere. It can be denoted in different ways:

inf1 := infinity + infinity * I; inf2 := infinity - infinity * I;
inf3 := -infinity - infinity * I; inf4 := -infinity + infinity *
I;

>

(3.93)

However, all of these forms are numerically equivalent.

evalb( inf1 = inf2 and inf2 = inf3 and inf3 = inf4 );>

(3.94)

They are all treated as distinct from the positive and negative real infinities.

To select the real or imaginary part of a complex number, use the Re and Im commands,
respectively.

Re( 2.3 + sqrt(2)*I );>

(3.95)

Im( 2.3 + sqrt(2)*I );>

(3.96)

Note that, for a symbolic expression of the form a + b*I, it is not assumed that a is the real
part and b is the imaginary part. Therefore, the Re and Im commands are not unevaluated
on such input.
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Re( a + b*I );>

(3.97)

Im( a + b*I );>

(3.98)

However, the evalc command uses special rules for processing complex expressions, in
which any unknown symbol is assumed to be real. Therefore, when the evalc is used, these
expressions are returned as follows.

evalc( Re( a + b*I ) );>

(3.99)

evalc( Im( a + b*I ) );>

(3.100)

For more information, refer to the evalc help page.

You can change the default name used to input and display the imaginary unit by using the
interface command.

interface( 'imaginaryunit' = i );>

(3.101)

(The previous value is returned.) After calling the command above, the name i is used to
represent the imaginary unit.

Complex( 2, 3 );>

(3.102)

When this command is used, the name i can no longer be used as a program variable. As
an example, the following statements display error messages.

i := 2;>
Error, illegal use of an object as a name

add( i^2, i = 1 .. 5 );>
Error, illegal use of an object as a name

To restore the default imaginary unit, use the following command.

interface( 'imaginaryunit' = I );>

(3.103)
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3.6 Indexed Expressions
Indexed expressions represent selection operations. The general form of an indexed expres-
sion is

expr [ index ]

where expr is an arbitrary expression and index represents a sequence of expressions. The
following are examples of indexed expressions.

2[ 3, 4 ];>

(3.104)

a[];>

(3.105)

a[ 1 ];>

(3.106)

a[ b ];>

(3.107)

a[ b, c ];>

(3.108)

map[ 2 ];>

(3.109)

[ 1, 2, 3 ][ 2 ..3 ][ 1 ];>

(3.110)

Note that the last example above contains a nested (or iterated) indexed expression.

The constructor for indexed expressions is the name ?[].

`?[]`( S, [ a, b, c ] );>

(3.111)

Note that the indices must be enclosed with square brackets in a list.

All or some of the elements of an index sequence can be extracted by using the op command.
The nops command will tell you how many elements are in the index sequence.
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nops( a[ b, c, d ] );>

(3.112)

op( a[ b, c, d] );>

(3.113)

op( 2, a[ b, c, d ] );>

(3.114)

op( 2..3, a[ b, c, d ] );>

(3.115)

Indexed expressions are often used to perform selection operations. The behavior of a selec-
tion operation depends on the type of expression, expr, and the index sequence given.

If expr is itself a sequence of expressions, the index sequence must evaluate to a positive
integer, an integral range, or the empty sequence. The following are all examples of valid
ways to index a sequence.

expr := (1,2,3,4);>

(3.116)

expr[ 3 ];>

(3.117)

expr[ 1 .. 3 ];>

(3.118)

expr[];>

(3.119)

expr[ 2 .. 1 ];>

The result of evaluating an indexed sequence is a selection of the components of the sequence.
The indexing sequence must represent a valid index or range of indices. Attempting to select
an entry beyond the length of the sequence and will raise an error.

expr[ 88 ];>
Error, invalid subscript selector

Similarly, components of lists, sets, arrays, matrices, and vectors can be selected
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L := [1,2,3,4];>

(3.120)

L[ 3 ];>

(3.121)

L[ 1 .. 3 ];>

(3.122)

L[];>

(3.123)

M := <1,2,3;4,5,6>;>

(3.124)

M[2,3];>

(3.125)

M[1..2,1..2];>

(3.126)

S := { red, blue, green, orange };>

(3.127)

S[ 3 ];>

(3.128)

Note that, because sets are sorted data structures, the order at construction time may not
match the order stored internally. It is not predictable what color will be returned by the
index used to specify the third entry above. (It may not be green.)

A negative number may be used as an index, which selects elements starting from the end
of the list. Positive and negative indices mixed in a range return an empty selection.

L[ -1 ];>

(3.129)
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L[ -3 .. -2 ];>

(3.130)

L[ -3 .. 1 ];>

(3.131)

Lists can be used as an index to pick out specific entries, such as the first and third entries
of a list, or the four corners of a matrix.

L[ [1,3] ];>

(3.132)

M[[1,2],[1,3]];>

(3.133)

Indexing on arrays, matrices and vectors is very flexible. In the case of these data structures,
round-brackets can also be used to index in a way that is useful to programming. For example,
whereM[1]will return the first row of the matrix,M(1)will return the first entry (regardless
of the number of dimensions).

M[1];>

(3.134)

M(1);>

(3.135)

This class of data structures are known as rectangular tables, or "rtables" for short. For more
information on what ways they can be indexed, refer to the rtable_indexing help page.

If expr is a name with no assigned value, the result of evaluating the indexed expression is
an indexed name. In this case, the index can be any sequence of expressions, and if desired,
it is up to your program to define the meaning of the expression.

aName[ x^2 - 3*x, "a string", anotherName[ 2, b ] ];>

(3.136)

A string may be indexed by a positive integer, a positive integral range, or a general sequence.
The indexed string expression evaluates to itself, unless the indexing sequence is an integer
or integral range, in which case, the result is a substring of the indexed string.
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"abcde"[ 3 ];>

(3.137)

"abcde"[ 2 .. 4 ];>

(3.138)

"abcde"[ u, v^2 - s*t ];>

(3.139)

"abcde"[];>

(3.140)

If expr evaluates to a table, and if the index given is found in the table the expression eval-
uates to the corresponding entry. Otherwise, the indexed expression evaluates to itself.

t := table( [ a = 1, b = 2, (c,d) = 3 ] );>

(3.141)

t[ a ];>

(3.142)

t[ c, d ];>

(3.143)

t[ u, v ];>

(3.144)

If expr evaluates to a module, the index must evaluate to the name of an export of the
module, and then the entire indexed expression evaluates to the value of expr:-index.

m := module() export e, f := 2; end module:>

m[ e ];>

(3.145)

evalb( e = m[ e ] );>

(3.146)

m[ f ];>

(3.147)
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For more information about modules, see Programming with Modules (page 317).

3.7 Member Selection
The member selection operator :- is used to select exports of a module, and also to designate
a symbol as a global symbol. Member selection expressions have one of the following
general forms.

modexpr :- expname

:- name

The first form above is used to select a member of a module.

m := module() export e, f:= 2; end module:>

m:-e;>

(3.148)

evalb( e = m:-e );>

(3.149)

m:-f;>

(3.150)

The first operand,modexpr, must evaluate to a module. The second operand, expname, must
be a literal name; it is not evaluated. If expname is not a name, or is not the name of an export
of the module modexpr, an exception is raised. The syntax m:-e is similar to m[e], in that
they both evaluate module m's export e. The difference is that the index selection form will
evaluate e before resolving the export.

In the second form, the operand name must be a literal name. The expression :-name then
evaluates to the global instance of the name name.

The following example defines, and then immediately calls, a procedure which declares a
local variable t. Since this local variable is never assigned, it evaluates to itself. The call to
the evalb command then compares, on the left-hand side of the equation, the local name t
to the global name t resulting from applying the member selection operator to t. The result
is false because the global name t and the name t local to the procedure are different expres-
sions.

proc() local t; evalb( t = :-t ) end proc();>

(3.151)

For more information on modules and member selection, see Programming with
Modules (page 317).
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3.8 Functions
A function expression is a Maple expression of the form

expr( sequence )

that contains zero or more expressions in the sequence within the parentheses. It represents
a function call.

F();>

(3.152)

F( x );>

(3.153)

F( x, y );>

(3.154)

sin( x + y );>

(3.155)

Typically, expr is the name of a procedure or mathematical function. It can be a general
expression.

The zeroth operand of a function expression is expr.

op( 0, F( x, y, z ) );>

(3.156)

The other operands are the arguments,

op( F( x, y, z ) );>

(3.157)

and the number of operands is the number of arguments.

nops( F( x, y, z ) );>

(3.158)

nops( F() );>

(3.159)

Maple supports an algebra of operators, so that complicated expressions such as

70 • 3 Maple Expressions



(f^2 + g@h - 2)( x );>

(3.160)

can be formed. Note that Maple applies such "operator expressions" to the arguments. @
is the composition operator. For more information on composition of functions, see
Composition (page 107).

It is important to know that Maple computes numeric quantities as applicable operators with
constant values. Therefore, for example, the expression

2( x );>

(3.161)

is computed as an application of the constant operator 2 to the argument x, which evaluates
to 2. In fact, numeric "operators" can accept any number of arguments.

2( x, y, 3 );>

(3.162)

Note that an expression such as

'2( 3 )';>

(3.163)

(in which unevaluation quotes are used to delay the evaluation process) appears to be a
product. However, this expression is, in fact, a function expression. When permitted to
evaluate fully, the result is the constant value of the operator.

2( 3 );>

(3.164)

Calls to Procedures

The most important kind of function expression to understand is the case in which the zeroth
operands is a procedure or, more commonly, an expression (typically, as a name) that
evaluates to a procedure.

p( arg1, arg2, ..., argN )

In this case, p is a procedure or an expression, such as a name, that evaluates to a procedure,
and arg1, arg2, ..., argN are zero or more argument expressions.
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For example, the name sin evaluates to a procedure that computes the mathematical sin
function. A function expression of the form

sin( expr )

computes the sin of its argument expr. This is performed as follows: Maple evaluates the
name sin and finds that it is assigned a procedure. The argument expr is evaluated to produce
a result. That result is then passed to the procedure assigned to the name sin and the result
computed by that procedure for the specific input is returned as the overall value of the
function call sin( expr ).

For information on defining functions and procedures, see Functional Operators (page 107)
and Procedures (page 205).

3.9 Arithmetic Expressions
Arithmetic Operators

The arithmetic operators in Maple include + (addition), - (subtraction), * (multiplication),
/ (division), and ^ (exponentiation). These operators are used to create rational expressions,
such as polynomials.

x^2 - 3*x + 1;>

(3.165)

Addition and Subtraction

The addition operator `+` and the subtraction operator `-` are typically used as binary infix
operators, but may also be used as unary prefix operators to indicate a signed expression.

a + b + 3;>

(3.166)

u - v;>

(3.167)

+7;>

(3.168)

-42;>

(3.169)

A sum resulting from the evaluation of either an addition or subtraction operation is an ex-
pression of type `+`.
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type( u - v, '`+`' );>

(3.170)

The expression u-v has the operands u and -v; that is, it is a sum of the summands u and -
v.

op( u - v );>

(3.171)

Note that subtraction is not an associative operator.

( 1 - 2 ) - 3 <> 1 - ( 2 - 3 );>

(3.172)

However, addition is both associative and commutative:

b + a + c = a + b + c;>

(3.173)

Although sums are formed by using the binary operator `+`, they are actually expressions
of arbitrarily large arity (greater than unity). Since addition is associative, Maple "flattens"
all sums of more than two summands during the automatic simplification process. Therefore,
an expression of type `+` can have many operands.

nops( a + b + c + d + e );>

(3.174)

You can use the name `+` as a constructor to form a sum.

`+`( a, b, c );>

(3.175)

Since Maple performs automatic simplification, the number of operands of a sum may not
be apparent from the input.

nops( a + 2 + b + 3 + c + 4 );>

(3.176)

In this example, Maple combines the integer terms in the sum.

a + 2 + b + 3 + c + 4;>

(3.177)
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To see that this occurs during the automatic simplification process, enclose the input in
unevaluation quotes to delay evaluation.

'a + 2 + b + 3 + c + 4';>

(3.178)

In a sum such as

'2 + 3';>

(3.179)

the addition is performed, as indicated, during the automatic simplification process. The
same sum can be computed in another way:

u := 3:>

'2 + u';>

(3.180)

In this example, the arithmetic is not performed because the value of the variable u does
not replace the name u during the automatic simplification process. If the unevaluation
quotes are removed to allow the full evaluation of the expression, numeric addition is per-
formed.

2 + u;>

(3.181)

Since addition is commutative, the order of summands in an expression of type `+` is arbit-
rary. It is fixed within a Maple session, but may vary from one session to another. Therefore,
you must not rely on the operands of a sum occurring in any specific order.

Operands of a sum are automatically simplified, recursively.

'2/3 + sin( 5*Pi/6 - 2*Pi/3 )';>

(3.182)

Since procedures are not called during the automatic simplification process, the example
above does not fully simplify to the result

2/3 + sin( 5*Pi/6 - 2*Pi/3 );>

(3.183)
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during the automatic simplification process. However, the argument to the sin command is

computed to the simpler form , just as it would if it had been entered by itself.

'5*Pi/6 - 2*Pi/3';>

(3.184)

If any numeric literal in a sum is a float, all the numeric operands are converted to floats
and their sum is computed as a float. For more information, see Floating-Point
Contagion (page 291).

'a + 2 + b + 3.7 + c + Pi';>

(3.185)

Arithmetic computed during the automatic simplification process includes arithmetic with
values of infinity, undefined values, and signed (floating-point) zeroes.

'2.3 + undefined';>

(3.186)

'2.3 + infinity';>

(3.187)

'-0.0 + 0';>

(3.188)

'infinity - infinity';>

(3.189)

'infinity - Float(infinity)';>

(3.190)

Sums of non-algebraic summands can be formed. A sum of lists of the same length returns
the corresponding list of sums. This occurs during the automatic simplification process.

'[ a, b, c ] + [ x, y, z ]';>

(3.191)

Sums of arrays, matrices, and vectors occur during the regular evaluation process.
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<1,2;3,4> + <5,6;7,8>;>

(3.192)

Attempting to add lists or matrices of different sizes results in an error.

[ 1, 2 ] + [ 1, 2, 3 ];>
Error, adding lists of different length

<1,2;3,4> + <1,2>;>
Error, (in `rtable/Sum`) invalid input: dimensions do not match:
Matrix(1 .. 2,1 .. 2) cannot be added to Vector[column](1 .. 2)

Since the addition of sets (which are not ordered) is not well-defined, a sum formed with a
set is returned unevaluated.

{ 1, 2 } + { 3, 4 };
{ 1, 2 } + [ 3, 4 ];

>

(3.193)

Multiplication and Division

Products are formed by using the `*` and `/` operators. The result of evaluating either a
multiplication or division operation is an expression of type `*`.

type( a * b, '`*`' );
type( a / b, '`*`' );

>

(3.194)

You can use the dismantle command to print a representation of the internal structure of
any Maple expression.

dismantle( a / b );>

PROD(5)
NAME(4): a
INTPOS(2): 1
NAME(4): b
INTNEG(2): -1
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The output shows that the quotient is actually stored as a product of two factors: one con-
sisting of the expression a with a power of and the other consisting of the expression b

with a power of : .

Similar to sums, products are commutative and associative. Also, products are flattened due
to associativity, even though the `*` operator is binary. Automatic simplification is applied
to products, so as with sums, numeric factors are automatically combined.

'2 * 3 * x * y';>

(3.195)

Also like sums, the order of factors in an expression of type `*` is arbitrary, and may vary
between Maple sessions.

'y * x * 3 * 2';>

(3.196)

The number of operands reflects the number of factors remaining after automatic simplific-
ation has taken place.

nops( 2 * 3 * x * y );>

(3.197)

op( 2 * 3 * x * y );>

(3.198)

The name `*` can be used as a constructor to form products.

`*`( a, b, c );>

(3.199)

If any numeric constant in a product is a float, the result of gathering all of the constants
into a single factor is a float.

'3.1 * a / 2 / b * 4';>

(3.200)

'2.3 * ( 5*Pi/6 - 2*Pi/3 )';>

(3.201)

This effect does not extend into function calls.
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'2.3 * sin( 5*Pi/6 - 2*Pi/3 )';>

(3.202)

You can multiply a list by a number and the product is applied to all of the list elements
during the automatic simplification process.

'2 * [ 2, 3 ]';>

(3.203)

Matrix multiplication is done with the `.` operator rather than `*`. Division is not defined
for matrices.

<1,2;3,4> . <5,6;7,8>;>

(3.204)

<1,2;3,4> . LinearAlgebra:-MatrixInverse( <5,6;7,8>);>

(3.205)

Multiplying or dividing two arrays of the same size will perform paired element-wise oper-
ations on the individual entries. The element-wise operators *~ and /~ can be used on both
arrays and matrices to achieve the same result.

Array([[1,2],[3,4]]) * Array([[5,6],[7,8]]);>

(3.206)

Array([[1,2],[3,4]]) / Array([[5,6],[7,8]]);>

(3.207)
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<1,2;3,4> /~ <5,6;7,8>;>

(3.208)

<1,2;3,4> *~ <5,6;7,8>;>

(3.209)

For more information on element-wise operators, see Programming-Language
Operators (page 17).

Exponentiation

Powers are formed by using the `^` operator.

a^b;>

(3.210)

It is strictly a binary operator; nested powers must be written with parentheses.

(a^b)^c;>

(3.211)

a^(b^c);>

(3.212)

The following input results in a syntax error.

a^b^c;>

Rational number powers are used to represent roots. Exact roots are left uncomputed, while
floating-point roots are computed during the automatic simplification process.

4^(1/2);>

(3.213)

'(2.1)^(1/3)';>

(3.214)
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Expressions to a power of 0 are reduced to unity during the automatic simplification process.
The type of the resulting 1 depends on the type of the zero power, unless the base of the
expression is a float, in which case the result is a float.

'a ^ 0';>

(3.215)

'a ^ 0.0';>

(3.216)

'(x^2 - 1 + 3)^0';>

(3.217)

There are some exceptions when infinity and undefined values are raised to a float zero
power.

'Float( undefined ) ^ 0.0';>

(3.218)

'Float( infinity ) ^ 0.0';>

(3.219)

'Float( -infinity ) ^ (-0.0)';>

(3.220)

Note the distinction between Float( -infinity ) ^ (-0.0) and -Float( infinity ) ^ (-0.0): the
latter is first automatically simplified to - Float(undefined) and then to Float(undefined).

In Maple, the indeterminate form 0^0 with an exact base is interpreted as .

0^0;>

(3.221)

0.0 ^ 0;>

(3.222)

0 ^ 0.0;>

(3.223)

Although a complex floating-point zero does not automatically simplify to a real zero, ex-
pressions raised to a complex zero are simplified automatically to an exact or floating-point
unity.
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a^(0.0 + 0.0*I);>

(3.224)

Powering of matrices is done in the mathematical sense achieving repeated matrix products.
Powering of arrays is done element-wise.

<1,2;3,4> ^3;>

(3.225)

Array([[1,2],[3,4]]) ^3;>

(3.226)

Rational Expressions

Using sums and products, more complicated expressions can be formed.

expr := ( a + a*b ) / ( a*b - b );>

(3.227)

Conceptually, Maple creates the following structure.
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Figure 3.1: expr DAG

Here, expr is a product of two operands

nops( expr );>

(3.228)

op( expr );>

(3.229)

and each operand is itself an expression with two operands.

e1, e2 := op( expr );>

(3.230)

nops( e1 ); nops( e2 );>

(3.231)
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Maple does not automatically simplify the following expression. To perform such simplific-
ations, use the normal command.

expr := (x - 1)/(x^2 - 1);>

(3.232)

normal( expr );>

(3.233)

The normal command only performs normalization of rational expressions with rational
coefficients.

expr := ( (sin(t)^2 + cos(t)^2)*(x - 1)/(x^2 - 1));>

(3.234)

normal( expr );>

(3.235)

Note: Use the simplify command to apply more powerful simplifications.

Maple also does not automatically expand the products of sums.

(a + b) * (c + d);>

(3.236)

Use the expand command (or the normal command, with the expanded option) to perform
such expansions.

expr := (a + b) * (c + d);>

(3.237)

expand( expr );>

(3.238)

normal( expr, 'expanded' );>

(3.239)

Similarly, you must use the normal command to simplify the following rational expression.
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expr2 := expand( expr ) / (a + b);>

(3.240)

normal( expr2 );>

(3.241)

Noncommutative Multiplication

Noncommutative multiplication is represented by the dot operator (.), which is used mainly
in linear algebra computations for multiplication of matrices and vectors. It may also be
used to represent the noncommutative product of other types of mathematical expressions.

A . B;

If A and B are of type constant, then A . B = A * B during the evaluation process (but not
during the automatic simplification process). However, if one of A and B is a Matrix or a
Vector, and the other is a Matrix, Vector, or constant, the product is interpreted as a matrix
or vector product. If A or B is an Array (and the other is not a Matrix or Vector), then A .
B is interpreted as element-wise multiplication. For arguments that are not of type Matrix,
Vector, or constant,A . B remains unevaluated, but more importantly, it is not automatically
simplified to or interpreted as being equal to B . A.

7 . 6;>

(3.242)

'7 . 6';>

(3.243)

A.B <> B.A;>

(3.244)

M:=<<1,0,2>|<0,1,2>|<0,0,2>>;>

(3.245)
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V:=<10,0,0>;>

(3.246)

M . V;>

(3.247)

lambda . M . V;>

(3.248)

A := Array([[1,2],[3,4]]);>

(3.249)

B := Array([[a,b,c],[d,e,f]]);>

(3.250)

A . B;>

(3.251)

3 . B;>

(3.252)

The dot character has three meanings in Maple:

- as a decimal point in a floating-point number (for example, 2.3),

- as part of a range (for example, x..y), or
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- as the noncommutative multiplication operator. To distinguish between these three
cases, Maple uses the following rule: any dot with spaces before and/or after it that
is not part of a number is interpreted as the noncommutative multiplication operator.

For example, 2.3 is a number, 2 . 3 and 2 .3 return 6, and 2. 3 displays an error.

2.3, 2 . 3, 2 .3;>

(3.253)

2. 3;>

Factorials

The unary, postfix factorial operator ! is used to represent the mathematical factorial opera-
tion.

5!;>

(3.254)

Maple can compute large factorials quickly.

length( 1000000! );>

(3.255)

If the argument of the ! operator is symbolic, it is returned unevaluated.

(a + b)!;>

(3.256)

The argument of the ! operator is subject to automatic simplification, but factorials are not
computed during the automatic simplification process.

'(2+3)!';>

(3.257)

If the argument of the ! operator is a float, the expression is computed using the GAMMA
function.

2.3! = GAMMA( 3.3 );>

(3.258)

If the argument is a non-negative integer, Maple computes the factorial. If the argument is
a negative integer, a numeric event is triggered.
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(-3)!;>
Error, numeric exception: division by zero

However, if the argument is a negative integer float, the complex number Float(-infinity) -
Float(infinity)*I is returned.

(-3.0)!;>

(3.259)

For other arguments, the factorial operator is returned unevaluated after first evaluating its
argument.

sin( Pi / 6 )!;>

(3.260)

The command factorial is the same as the ! operator.

factorial( 5 );>

(3.261)

Forming Sums and Products

Since creating structures within loops may be inefficient, Maple provides commands for
creating sums and products efficiently.

add( expression, i=m .. n);

mul( expression, i=m .. n);

where i is a name,m and n are numeric values, and expression is an expression that depends
on i.

The add command is semantically equivalent to the following loop:

S := 0;
old := i;

>

for i from m to n do
S := S+expression;

end do;
i := old;
S; # the result

The add command is more efficient since it does not build each of the many intermediate
sums. The semantics of mul are similar with the exception that if , the result is 1,
rather than 0.
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mul(a+i, i=1..4);>

(3.262)

add(a||i, i=0..3);>

(3.263)

In the loop example shown above, each of the expressions , , and
are constructed, stored in memory, and then removed by the garbage col-

lector. That overhead is part of what makes the loop less efficient than the add command
in this case.

For more information on the add and mul commands, refer to the add help page. For more
information on the concatenation operator, ||, see The Concatenation Operator (page 112).

Note: The add and mul commands differ from sum and product in that the former are
straightforward construction commands while the latter are commands for computing closed
forms for symbolic sums and products.

3.10 Boolean and Relational Expressions
Boolean Constants

The Boolean constants in Maple are the names true, false and FAIL. These are otherwise
ordinary names, but have a special meaning in a Boolean context.

When you call the Boolean evaluator evalb, the expression passed as its argument is inter-
preted as a Boolean-valued expression if possible, and evaluated as such.

FAIL is used to mean an unknown or undetermined value. For more information on the
constant FAIL, refer to the FAIL help page.

Boolean Operators

Maple supports several operators for the Boolean combination of expressions: not, and,
or, xor, and implies.

The not Operator

The not operator represents logical negation. It has the following general syntax.

not expr

When applied to a Boolean-valued expression, it returns a value according to the following
table.
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not exprexpr
falsetrue
truefalse
FAILFAIL

For example,

not true;>

(3.264)

not false;>

(3.265)

not FAIL;>

(3.266)

The and Operator

The and operator represents logical conjunction. It is a binary operator of the form

expr1 and expr2

If both operands evaluate to a truth value, the entire expression is evaluated according to
the following truth table.

expr1 and
expr2

expr2expr1

truetruetrue
falsefalsetrue
FAILFAILtrue
falsetruefalse
falsefalsefalse
falseFAILfalse
FAILtrueFAIL
falsefalseFAIL
FAILFAILFAIL

If a truth value cannot be determined, the expression is returned unevaluated.

x and y;>

(3.267)

However, some automatic simplifications are applied to and expressions.
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true and x;>

(3.268)

The or Operator

The or operator represents logical disjunction. It is a binary operator of the form

expr1 or expr2

If both operands evaluate to a truth value, the entire expression is evaluated according to
the following truth table.

expr1 or
expr2

expr2expr1

truetruetrue
truefalsetrue
trueFAILtrue
truetruefalse
falsefalsefalse
FAILFAILfalse
truetrueFAIL
FAILfalseFAIL
FAILFAILFAIL

If a truth value cannot be determined, the expression is returned unevaluated.

x or y;>

(3.269)

However, some automatic simplifications are applied to or expressions.

false or x;>

(3.270)

The xor Operator

The xor operator represents logical exclusive disjunction. It is a binary operator of the form

expr1 xor expr2

If both of its operands evaluate to truth values, the entire expression is evaluated according
to the following truth table.
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expr1 xor
expr2

expr2expr1

falsetruetrue
truefalsetrue
FAILFAILtrue
truetruefalse
falsefalsefalse
FAILFAILfalse
FAILtrueFAIL
FAILfalseFAIL
FAILFAILFAIL

The implies Operator

The implies operator represents logical implication. It is a binary operator of the form

expr1 implies expr2

If both of its operands evaluate to truth values, the entire expression is evaluated according
to the following truth table.

expr1 implies
expr2

expr2expr1

truetruetrue
falsefalsetrue
FAILFAILtrue
truetruefalse
truefalsefalse
trueFAILfalse
truetrueFAIL
FAILfalseFAIL
FAILFAILFAIL

If a truth value cannot be determined, the expression is returned unevaluated.

x implies y;>

(3.271)

Some automatic simplifications are applied to implies expressions.

false implies x;>

(3.272)
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x implies true;>

(3.273)

Relational Operators

Relational operators are used to form comparisons to be evaluated in a Boolean context.
The relational operators in Maple are =, <>, <, <=, and in. Each is a binary operator that
accepts two operands. When evaluated in a Boolean context, each of these operators determ-
ines whether its two operands have a certain relationship.

An equation is formed by using the = operator.

x = y;>

(3.274)

This has the general form

expr1 = expr2

It represents an equation with expr1 as the left-hand side and expr2 as the right-hand side.
When evaluated in a Boolean context, it returns a value of true if its operands are equal,
and returns a value of false otherwise.

evalb( 1 = 2 );>

(3.275)

evalb( 2 = 2 );>

(3.276)

Note that comparing distinct unassigned names returns a value of false.

evalb( x = y );>

(3.277)

The names x and y are distinct and unequal names in Maple and, when they are unassigned,
they are considered different expressions in a Boolean comparison. If the names x and y
have assigned values, those values are first substituted into the comparison, and the equality
computation is performed on the assigned values, rather than the names themselves.

In general, expressions are compared for equality according to their memory address. That
is, two expressions are considered equal in a Boolean context if they have the same address
in memory. However, for certain expressions, a more mathematical test for equality is used.
For example, the floating-point numbers 2.0000 and 2.0 are considered numerically equal,
even though they are distinct objects in memory.
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evalb( 2.0000 = 2.0 );>

(3.278)

addressof( 2.0000 );>

(3.279)

addressof( 2.0 );>

(3.280)

In fact, when the floating-point number 2.0 is compared to the integer 2, they are considered
equal.

evalb( 2.0 = 2 );>

(3.281)

Determining whether two procedures are semantically equivalent is an undecidable problem
in Computer Science. However, procedures which are detectably equivalent by simple
transformations are considered to be equal. For example, it is clear that the name of a pro-
cedure parameter is not normally important, so the following two simple procedures are
considered equal, although they are distinct expressions in memory.

evalb( proc(x) 2*x end proc = proc(y) 2*y end proc );>

(3.282)

An inequation can be formed by using the <> operator. The general form is

expr1 <> expr2

This expression represents non-equality and returns a value of true if its operands are un-
equal, and false if its operands are equal.

x <> y;>

(3.283)

evalb( 1 <> 2 );>

(3.284)

evalb( 2 <> 2 );>

(3.285)

Testing for inequality is performed similarly to testing for equality. Comparing two distinct
unassigned names using the <> operator computes the equality of the names. The expression
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evalb( x <> y );>

(3.286)

returns a value of true because the names x and y are distinct as names.

A strict inequality is created by using the < operator. This has the general form

expr1 < expr2

and can also be constructed using the form

expr1 > expr2

For example,

x < y;>

(3.287)

You can also use the > operator.

y > x;>

(3.288)

Maple automatically converts this to the same expression as results from the first form.

When evaluated in a Boolean context, Maple performs the indicated mathematical compar-
ison, or returns the inequality as unevaluated if the operands do not evaluate to comparable
expressions. If the operands are comparable, the inequality evaluates to the value true if
the first operand is less than, but not equal to, the second operand, and evaluates to false
otherwise. If the operands are not comparable, the inequality evaluates to itself.

A non-strict inequality is formed using the <= operator. This has the general form

expr1 <= expr2

It can also be constructed using the form

expr1 >= expr2

For example,

x <= y;>

(3.289)

When evaluated in a Boolean context, and when the operands are comparable, it returns a
value of either true or false according to whether the first operand is less than, or equal to,
the second operand.
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Membership is represented by the in operator. It is used in the general form

expr1 in expr2

When evaluated in a Boolean context, it evaluates to the value true if its first operand expr1
is a member of its second operand expr2. If expr1 does not belong to expr2, the expression
evaluates to false. Maple can determine a truth value if the second operand expr2 is a con-
tainer object; that is, either a set or list, or an unevaluated function call of the form SetOf(
T ), where T is a Maple type. An expression of the form

expr in SetOf( T )

where T is a Maple type is equivalent to the expression type( expr, T ).

evalb( 1 in { 1, 2, 3 } );>

(3.290)

evalb( 5 in { 1, 2, 3 } );>

(3.291)

evalb( x in X );>

(3.292)

evalb( 2 in SetOf( integer ) );>

(3.293)

evalb( 2/3 in SetOf( integer ) );>

(3.294)

Note the simplification applied to the statement with the evalb command in the following
example.

x in A union B;>

(3.295)

evalb( x in A union B );>

(3.296)

If the second operand is not an explicit container object, the expression remains an unevalu-
ated in expression. However, some automatic simplifications may be applied.

Efficient Boolean Iteration

In the same way the commands add andmul can be used to efficiently form + and * expres-
sions, conjunctions and disjunctions can be evaluated efficiently using the andmap and
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ormap commands, which are similar to the map command described in Maple
Statements (page 173).

andmap( procedure, expression, ... )

ormap( procedure, expression, ... )

The following example considers type(element,name) for each element of the list. ormap
determines whether this statement is true for at least one element of the list. andmap de-
termines whether this statement is true for all the elements of the list.

ormap(type, [1, "a", `a`, a()], name);>

(3.297)

andmap(type, [1, "a", `a`, a()], name);>

(3.298)

The main difference between these commands and map is that andmap and ormap have
short-circuit ("McCarthy") semantics, which means that an answer is returned as soon as it
can be determined.

andmap(proc(x) print(x); x<2 end proc, [1,2,3,4]);>

(3.299)

3.11 Expressions for Data Structures
This section describes basic concepts related to data structure expressions. For more inform-
ation on programming with data structures, see Basic Data Structures (page 129).

Sequences

The most basic aggregate expression type in Maple is the sequence. Sequences are formed
by using the `,` (comma) operator.

a, 2/3, sin( x ), 5.1;>

(3.300)

A sequence consists of zero or more other expressions, called elements or members. A se-
quence with exactly one member is automatically simplified to its unique member. The
empty sequence, containing zero members, is the value of the name NULL, and may be
written as ().
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evalb( () = NULL );>

(3.301)

Sequences occur in many other data structures as a (principal) component, within which
they acquire additional semantics. Some examples include lists, sets, and function calls.

Automatic simplification of sequences is affected by recursively simplifying the component
expressions.

'2 + 3, 1 - 7, 0^0, sin( Pi / 6 )';>

(3.302)

Nested sequences are also flattened during the automatic simplification process.

'( 1, 2 ), 3, ( 4, 5 )';>

(3.303)

Because sequences are used to pass multiple arguments to procedures, it is not normally
possible to operate on a sequence as such (the list type described below is designed for ex-
actly for that reason). For example, you cannot pass a (nontrivial) sequence to the type
command to check its type. Therefore, there is no Maple type for sequences. However, the
whattype command returns the name exprseq when it is passed either zero or more than
one argument.

whattype();>

(3.304)

whattype( 1, 2 );>

(3.305)

Note that the name exprseq is not the name of any valid type in Maple.

Similarly, you cannot query the zeroth operand of a sequence. For example, the following
results in an error.

op( 0, ( 1, 2, 3 ) );>
Error, invalid input: op expects 1 or 2 arguments, but received 4

This is because the sequence 0, ( 1, 2, 3 ) is flattened to the sequence 0, 1, 2, 3 during
automatic simplification of the function call before the op command is actually called.
Therefore, the op command is passed four arguments instead of only the two that are appar-
ently intended.
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There is no constructor for sequences, but there is a built-in command for creating sequences,
called seq. The basic syntax of seq is below. It accepts many other types of arguments as
well.

seq(expression, i = integer1..integer2)

seq( i^2, i = 1 .. 5 );>

(3.306)

seq( 2 .. 14 );>

(3.307)

seq( i, i = 0.4 .. 1.1, 0.3 );>

(3.308)

For more information on the seq command, refer to the seq help page.

Another way to create sequences is to use the dollar sign ($) operator.

expression $ i = integer1 .. integer2

i^2 $ i = 1 .. 5;>

(3.309)

The dollar sign operator is a binary operator that performs a similar function to the seq
command, but behaves slightly differently: the $ operator evaluates the expression argument
once before any substitutions, while the command does not evaluate until after each substi-
tution of i.

cat(a,x) $ x= 1..2;>

(3.310)

seq(cat(a,x), x= 1..2);>

(3.311)

In general, it is recommended that you use the seq command instead of the dollar sign op-
erator.

Lists

Lists are created by enclosing a sequence of expressions between square brackets. Lists are
essentially sequences, which are designated as a single unit for other operations.

[ sequence ]
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[ 1, 2, 3 ];>

(3.312)

Unlike sequences, lists can form properly nested structures.

[ 1, 2, [ 3, 4 ] ];>

(3.313)

Use the numelems command to determine the number of members in the enclosed sequence.
Note that lists can contain sublists. These are still counted as a single entry.

numelems( [ 1, 2, 3 ] );>

(3.314)

numelems( [ 1, 2, [ 3, 4 ] ] );>

(3.315)

To access the -th operand of a list, use an index to the list expression.

L := [ a, b, c, d ];>

(3.316)

L[ 3 ];>

(3.317)

To access the sequence of all elements in a list, use the op command. Converting back and
forth between lists and sequences can be a common operation, and is very efficient.

Lseq := op(L);>

(3.318)

L2 := [ op(L), op(L) ];>

(3.319)

It is common to create a list by using the seq command to create the enclosed sequence.

[ seq( i^2, i = 1 .. 5 ) ];>

(3.320)

Lists are ordered; two lists with the same members in a different order are distinct.

evalb( [ 1, 2, 3 ] = [ 2, 1, 3 ] );>

(3.321)
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Lists are immutable; you cannot change the elements of a list once it has been created. You
can, however, create a new list using members of an existing list or lists.

In the next example, we create a new list with second entry d.

L := [ a, b, c ];>

(3.322)

L2 := [ L[ 1 ], d, L[ 3 ] ];>

(3.323)

You can also use the subsop command for this purpose.

L3 := subsop( 2 = d, L );>

(3.324)

evalb( L2 = L3 );>

(3.325)

The example above creates a new list using the original list L by substituting its second
operand for the expression d. If you need to change elements frequently it is usually better
to use an array. Arrays can be changed in-place avoiding the need for a copy. For more in-
formation on the subsop command, refer to the subsop help page.

For more information about lists, see Lists (page 130).

Sets

Sets, similar to lists, are created from a sequence of expressions. However, sets use braces
({}) to enclose the sequence.

{ sequence }

{3, 2, 1};>

(3.326)

In addition to the syntactical differences, sets differ from lists in that they are unordered
and do not have duplicate entries. These two properties are enforced during the automatic
simplification process.

'{3, -1, 0}';>

(3.327)
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'{1, 1, 1, 1}';>

(3.328)

Note that the sets' ordering in the output may not match the input sets' ordering.

In Maple 11 and earlier, the ordering of sets was unpredictable as it was based on the posi-
tions of the elements in memory. In Maple 12 and later, set ordering is deterministic, session
independent, and based on properties of the contents. This just means that the same set will
now appear in the same order even after restarting Maple. For more information on the or-
dering of sets, refer to the set help page.

For more information on how to use sets in programming, see Sets (page 136). More inform-
ation on Maple expressions related to sets will be described later in this chapter.

Tables

Tables are mutable data structures that associate an index with an entry. Both the index and
entry can be arbitrary expressions. The underlying structure is sparse (a hash table), and
expands as more entries are inserted.

T := table();>

(3.329)

T[color] := "red";>

(3.330)

T[color];>

(3.331)

T[1,2,3] := x^2+4;>

(3.332)

Assigning values to indexed names is further described in Indexed Expressions (page 64).

Tables can be initially populated by providing a list of equations as an argument to the table
constructor.

T := table([a=1, b=2, c=3, d=4]);>

(3.333)

T[a] + T[c];>

(3.334)
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For names with tables assigned to them, last name evaluation rules apply. Last name evalu-
ation is explained in more detail in Evaluation Rules for Tables (page 145). The most visible
effect of last name evaluation is that the name of the table is displayed by default rather
than all of its entries.

T;>

(3.335)

eval(T);>

(3.336)

Rectangular Tables

Rectangular tables, or rtables, are mutable data structures that associate a numeric index
sequence with an arbitrary entry. The bounds of the index are predefined and directly cor-
respond to the amount of memory reserved to hold entries.

The same rtable data structure is used to implement arrays, matrices, and vectors.

A := Array(0..5,i->2*i);>

(3.337)

A[0];>

(3.338)

A[5];>

(3.339)

V := Vector([1,2,3]);>

(3.340)

V[1];>

(3.341)
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M := Matrix(3,3,shape=identity);>

(3.342)

M[2,2];>

(3.343)

Rectangular tables are very flexible and offer a rich set of features. For a more in-depth
discussion of them, see Arrays (page 148).

3.12 Set-Theoretic Expressions
Maple includes a full set of set-theoretic operators for membership relation, set inclusion,
and other operations.

Membership

In Maple, the set membership relation is expressed by using the in operator. It has the fol-
lowing syntax.

a in b

where a and b can be arbitrary expressions.

Normally, a membership expression is returned unevaluated.

a in b;>

(3.344)

1 in { 1, 2, 3 };>

(3.345)

However, when evaluated in a Boolean context, one of the values true and false is returned
if the expression b evaluates to a set or list and Maple can determine whether the expression
a belongs to the expression b. For more information on Boolean evaluation of membership
expressions, see Boolean and Relational Expressions (page 88).

Use the rhs and lhs commands to extract the right or left hand side of the an in operator.

lhs( a in b );>

(3.346)
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rhs( a in b );>

(3.347)

Set Inclusion

Set inclusion (the subset relation) is represented in Maple by the binary subset operator. It
has the following syntax.

a subset b

where a and b are arbitrary expressions that can evaluate to sets.

a subset b;>

(3.348)

{ 1, 2 } subset {2, 3, 5 };>

(3.349)

{} subset T;>

(3.350)

T subset {};>

(3.351)

If Maple can determine whether the expressed relation is true or false, the expression eval-
uates to true or false. Otherwise, the expression is returned unevaluated.

An unevaluated set inclusion expression has two operands a and b.

nops( a subset b );>

(3.352)

op( a subset b );>

(3.353)

The individual operands can be accessed by using the lhs and rhs commands.

lhs( a subset b );>

(3.354)

rhs( a subset b );>

(3.355)
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Other Binary Operators for Sets

You can create new sets from existing sets by using any of the binary set-theoretic operators.

The union of two sets is created by using the union operator, which has the following syntax.

a union b

where a and b are expressions that can evaluate to a set.

a union b;>

(3.356)

{ 1, 2 } union { 2, 3, 4 };>

(3.357)

{ 1, 2 } union T;>

(3.358)

The following expression displays an error message, since the second operand cannot
evaluate to a set.

{ a, b, c } union "a string";>
Error, invalid input: `union` received a string, which is not valid
for its 2nd argument

A union expression may be returned unevaluated, and the operands of an unevaluated union
expression a union b are the expressions a and b.

nops( a union b );>

(3.359)

op( a union b );>

(3.360)

Note that the union operation is commutative.

a union b;>

(3.361)

b union a;>

(3.362)

The union operation is also associative. A union of three or more operands returns an une-
valuated function call.
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a union b union c;>

(3.363)

The union operation performs certain normalizations.

a union a;>

(3.364)

{} union a;>

(3.365)

Intersections of sets are represented using the intersect operator, which has the general
syntax.

a intersect b

The operands a and b are expressions that can evaluate to a set.

a intersect b;>

(3.366)

{ 1, 2, 3 } intersect { 3, 4, 5 };>

(3.367)

{} intersect T;>

(3.368)

Note that although union and intersection are mutually distributive, neither distributes
automatically over the other in a symbolic expression. However, the expand command can
distribute intersections over unions.

expand( a intersect (b union c) );>

(3.369)

Maple takes the canonical form of a set-theoretic expression to be a union of intersections,
so the expand command does not distribute symbolic unions over intersections.

expand( a union (b intersect c) );>

(3.370)
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3.13 Other Expressions
Functional Operators

The operator -> (arrow) can be used as a short-hand form to create procedures inline in
commands which take procedures as arguments such as Array constructors and the map
command.

( vars ) -> result

The following two procedures are identical except in how they are displayed:

x -> x^2;>

(3.371)

proc(x) x^2 end proc;>

(3.372)

as are these two:

(x,y,z) -> sqrt(x^2+y^2+z^2);>

(3.373)

proc(x,y,z) sqrt(x^2+y^2+z^2) end proc;>

(3.374)

For more information on the arrow operator, refer to the operators/functional help page.
For more information on procedures, see Procedures (page 205).

Composition

Use the operators @ and @@ to represent the composition (of functions). The operator @
denotes the composition of functions and takes the general form

f @ g

where each of f and g can be an arbitrary expression.

(f@g)(x);>

(3.375)
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Note that @ has lower precedence than function application, so that the parentheses sur-
rounding f@g above are necessary:

f@g(x);>

(3.376)

The@ operator performs numerous simplifications and normalizations, and is (left) associ-
ative.

(exp @ ln)( s );>

(3.377)

a @ b @ c @ d;>

(3.378)

Repeated composition is represented by the operator @@. It has the general form

f @@ n

This denotes the -fold composition of a function .

expand( (f@@3)( x ) );>

(3.379)

Note that the iterated composition is not automatically expanded in the example above. It
is necessary to apply the expand command.

It is important to distinguish repeated composition of an expression from the arithmetic
power. The former is represented in Maple using the @@ operator, while the latter is rep-
resented using the ^ operator.

expand( (f@@2)( x ) );>

(3.380)

(f^2)( x );>

(3.381)

The first example above denotes the -fold composition of with itself, while the second
denotes the arithmetic square of . In particular, although the inverses of the circular
functions are commonly denoted by a power-like notation in written mathematics, in Maple,
for example, sin^(-1) denotes the reciprocal of the function, while sin@@(-1) denotes
the arcsine (arcsin).

108 • 3 Maple Expressions



sin@@(-1);>

(3.382)

(sin@arcsin)( x );>

(3.383)

sin^(-1);>

(3.384)

(sin^(-1))( x );>

(3.385)

Neutral Operators

Neutral operators are constructions that are treated as operators by Maple, but that have no
predefined meaning so that they can be customized.

A neutral operator symbol is formed by the ampersand character (&) followed either by a
valid Maple name not containing ?, or by a sequence of one or more special characters. For
more information, refer to the neutral help page.

a &name b

expr := a &your_operator_name_here b;>

(3.386)

A commonly used neutral operator is &* which is often used for representing a non-com-
mutative multiplication. Unlike dot (.), it does not automatically combine scalar constants.

1 &* 2;>

(3.387)

1 . 2;>

(3.388)

Ranges

The .. operator is used to construct ranges, and usually has the following syntax.

a .. b

in which the endpoints a and b can be arbitrary expressions.
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It is important to distinguish between a range expression, such as 3 .. 7, with explicit numeric
endpoints, and the corresponding sequence 3, 4, 5, 6, 7. The seq command can be used to
produce the latter from the former.

Often, a range is used in an expression of the form i = a .. b, as an argument to a command
(such as add), and denotes the range over which an index such as i is to vary.

add( i^2, i = 1 .. 5 );>

(3.389)

A consecutive sequence of two or more dots (.) is parsed as a range operator. For example,

2 ......... 7;>

(3.390)

If the left-hand endpoint of a range is a float ending with a decimal point, or if the right-
hand endpoint is a float beginning with a decimal point, it is therefore necessary to separate
the endpoint from the range operator with one or more space characters.

2....3;>

(3.391)

2. .. .3;>

(3.392)

The number of operands of a range expression is equal to .

nops( a .. b );>

(3.393)

The operands are the left and right-hand endpoints.

op( a .. b );>

(3.394)

Use the lhs and rhs commands to extract the individual operands of a range expression.

lhs( a .. b );>

(3.395)

rhs( a .. b );>

(3.396)

The type of a range expression is range or the equivalent form `..`.
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type( a .. b, 'range' );>

(3.397)

type( a .. b, '`..`' );>

(3.398)

Ranges can be used to index complex data structures as well as strings and sequences.

[ 1, 2, 3, 4, 5 ][ 2 .. 3 ];>

(3.399)

{ 1, 2, 3, 4, 5 }[ 2 .. 3 ];>

(3.400)

"abcde"[ 2 .. 3 ];>

(3.401)

( 1, 2, 3, 4, 5 )[ 2 .. 3 ];>

(3.402)

There is a special form of input syntax for ranges in which one or both endpoints is missing.

..;>

(3.403)

In the example above, each endpoint is the empty sequence () (or NULL). It is valid to omit
just one of the endpoints.

a ..;>

(3.404)

.. b;>

(3.405)

When used in this way to index a data structure, a missing endpoint denotes the end of the
valid range of indices.

[ 1, 2, 3, 4, 5 ][ 3 .. ];>

(3.406)

[ 1, 2, 3, 4, 5 ][ .. 4 ];>

(3.407)
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[ 1, 2, 3, 4, 5 ][ .. ];>

(3.408)

Note the distinction between the third example above and the following example

[ 1, 2, 3, 4, 5 ][];>

(3.409)

in which the index is empty.

The Concatenation Operator

The operator || denotes the concatenation of names and strings. It takes the general form

a || b

in which the first operand a can be either a name or a string, and the second operand b can
be a name, a string, an integer, an integral range, a character range, or an expression sequence
of names, strings, and integers. If the second operand b is another kind of expression, an
unevaluated || expression is returned.

"foo" || "bar";>

(3.410)

foo || bar;>

(3.411)

foo || "bar";>

(3.412)

"foo" || bar;>

(3.413)

x || 1;>

(3.414)

x || (1..3);>

(3.415)

"x" || (1,2,3);>

(3.416)
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x || ("a" .. "f");>

(3.417)

x || ("s", "t", "w" );>

(3.418)

f( y ) || t;>

(3.419)

The type of the result, if not an unevaluated || expression, is determined by the type of the
first operand. If the first operand a is a string, the type of the result (or results, in the case
of a sequence) is a string. If the first operand is a name, the type of the result, or results, is
a name.

The first operand of the || operator is not evaluated, but the second operand is.

u := 2: v := 3:>

u || v;>

(3.420)

The symbol `||`, which must be enclosed in left single quotes when not used as an infix op-
erator, is a type name.

type( f( y ) || t, '`||`' );>

(3.421)

If a concatenation expression is returned unevaluated, it has two operands.

nops( f( s ) || t );>

(3.422)

op( f( s ) || t );>

(3.423)

For most applications, the cat command is more appropriate, as it evaluates all of its argu-
ments. For more information, refer to the cat help page.

The Double Colon Operator

The :: (double colon) operator is used to represent a type test, and takes two operands in
the following form.
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expr :: t

where expr is an arbitrary expression, and t is a type expression. When evaluated in a
Boolean context, it is equivalent to type( expr, t ).

evalb( [ 1, 2, 3 ] :: list );>

(3.424)

[ 1, 2 ] :: list and 2 > 3;>

(3.425)

In addition to its use as a general Boolean expression, it is used to introduce type annotations
on parameters and type assertions for local variables and procedure return types. For more
information, see Procedures (page 205).

Outside of a Boolean context, the :: operator is essentially inert, and returns an expression
of type :: with two operands.

type( a :: b, '`::`' );>

(3.426)

nops( a :: b );>

(3.427)

op( a :: b );>

(3.428)

You can use the lhs and rhs commands to access the operands of a :: expression.

lhs( a :: b );>

(3.429)

rhs( a :: b );>

(3.430)

Series

Maple supports generalized power series expansions using a series data structure. This is
a basic symbolic data structure that is used in many fundamental algorithms, such as the
computation of symbolic limits and symbolic integration. There is no syntax for the input
of series; a series structure is created by calling the series constructor, which has the general
forms
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series( expr, eqn, ord )

series( expr, name, ord )

where expr is an algebraic expression, eqn is an equation of the form

name = pt

where name is a name and pt is the point of series expansion. The optional argument ord
specifies the order of truncation of the series. This is, by default, equal to the value of the
environment variable Order, whose default value is . If the second form using name is
used, the expansion point is taken to be .

series( exp( x ), x );>

(3.431)

series( exp( x ), x, 10 );>

(3.432)

series( exp( x ), x = 0 );>

(3.433)

series( exp( x ), x = 1 );>

(3.434)

In general, a truncated power series expansion to order ord of expr, about the point pt is
computed. If the expansion point pt is infinity, then an asymptotic expansion is computed.

In general, the series expansion is not exact, so there will be an order term of the form

O( pt^ord )

present as the last term in the series. This is not always present, however. For example, a
series expansion of a low-degree polynomial is exact.
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series( x^2 + x + 1, x );>

(3.435)

The presence of an order term depends also on the truncation order.

series( x^20 + x + 1, x );>

(3.436)

series( x^20 + x + 1, x, 30 );>

(3.437)

A series data structure prints very much like a polynomial, but it is a distinct data structure.
In certain cases, a polynomial (sum of product) data structure is returned. This happens
when the generalized series expansion requires fractional exponents.

s := series( sqrt( sin( x ) ), x );>

(3.438)

type( s, 'series' );>

(3.439)

The operands of a series expression are as follows.

The th operand is an expression of the form , where is the variable of expansion,
and is the expansion point. Odd operands are the coefficients of the series, while positive
even operands are the exponents. In general, for a series expression s, op(2*i-1,s) evaluates
to the th coefficient of s, while op(2*i,s) evaluates to the th exponent.

op( 0, series( F( x ), x = a ) );>

(3.440)

op( series( exp( x^2 ), x ) );>

(3.441)

Note that the series data structure is sparse in the sense that terms with coefficient are
not part of the data structure.

A series structure can be converted to a polynomial by using the convert command with
the name polynom as the second argument.
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s := series( exp( x ), x );>

(3.442)

type( s, 'series' );>

(3.443)

p := convert( s, 'polynom' );>

(3.444)

type( p, 'polynom' );>

(3.445)

3.14 Attributes
In addition to their operands, certain types of expressions can have other information asso-
ciated with them in the form of attributes. As described earlier in this chapter, protected
names are a type of attribute. If an expression has attributes, they can be examined by using
the attributes command.

attributes(sin);>

(3.446)

Attributes can be assigned to expressions of the following types: name, string, list, set, Array,
Matrix, Vector, equation, procedure, unevaluated function call, or float using the setattribute
command.

setattribute(expression, attributes)

The setattribute command returns a copy of the expression with the attributes assigned. If
the expression is a symbol or string, it is modified in-place. For other data types, the original
expression is left unchanged.

x := 1.0;>

(3.447)

setattribute('x', "blue");>

(3.448)

attributes('x');>

(3.449)
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myname := "Johanessphere":>

setattribute(myname, "Great Name", "Not a Real Name");>

(3.450)

attributes("Johanessphere");>

(3.451)

y := setattribute('f(z)',"common");>

(3.452)

attributes(y);>

(3.453)

attributes('f(z)');>

All Maple expressions are valid attributes, including expression sequences.

You can check whether an expression has attributes by using the attributed type. For more
information, refer to the type,attributed help page.

type(`just a name`, 'attributed');>

(3.454)

type(sin, 'attributed');>

(3.455)

3.15 Using Expressions
Evaluating and Simplifying Expressions

Example 1

To understand how Maple evaluates and simplifies expressions, consider the following ex-
ample.

x := Pi/6:>

sin(x) + 2*cos(x)^2*sin(x) + 3;>

(3.456)

Maple first reads and parses the input. As the input is parsed, Maple builds an expression
tree to represent the value.
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Maple simplifies the expression tree and then evaluates the result. The evaluation process
substitutes values for variables and invokes any commands or procedures. In this case, x

evaluates to . Therefore, with these substitutions, the expression is

When the sin and cos commands are called, Maple obtains a new "expression tree,"

Maple simplifies this result to obtain the fraction 17/4.

Example 2

Alternatively, consider the next example: evaluation occurs, but no simplification is possible.

x := 1;>

(3.457)

sin(x) + 2*cos(x)^2*sin(x) + 3;>

(3.458)

Substituting Subexpressions

The simplest method of substitution in Maple is to use the subsop command. This is an
operation on the expression tree. It creates a new expression by replacing an operand in the
original expression with the given value.

subsop( n=value, expr);

subsop( list=value, expr);

L := [a, b, [c,d,e]]:>

M := subsop(1=A, L):>

L, M;>

(3.459)
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subsop([3,1]=C, L);>

(3.460)

Note that most operations in Maple do not alter expressions in-place but, in fact, create new
expressions from old ones. For a list of exceptions, seeMutable Data Structures (page 141).

Also, note that the subsop command acts on the expression tree by changing an arrow in
the DAG, and not by changing the value of a node which would change all identical instances.
That is, in the following example only one instance of a is changed, not all. See Figure 3.2.

expr := (a+a*b)/(a*b-b);>

(3.461)

subsop([1,1]=2*c, expr);>

(3.462)

Figure 3.2: subsop Example DAGs

The subsop command is powerful, but generally useful only in very specific programming
applications. The most generally useful command for substitution is the two-argument
version of the eval command.

The eval command has the following syntax, where s is an equation, list, or set of equations.

eval( expr, s );

expr := x^3 + 3*x + 1;>

(3.463)

eval( expr, x=y );>

(3.464)
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eval( expr, x=2 );>

(3.465)

eval( sin(x) + x^2, x=0 );>

(3.466)

The eval command performs substitution on the expression considered as a DAG rather
than a tree, so it can be quite efficient for large expressions with many repeated subexpres-
sions.

An alternative to the eval command is the subs command, which performs syntactic substi-
tution. It computes the expression as a tree and replaces subexpressions in an expression
with a new value. The subexpressions must be operands, as identified by the op command.
Using the subs command is equivalent to performing a subsop operation for each occurrence
of the subexpressions to be replaced.

The subs command has the following syntax, where s is an equation, list, or set of equations.

subs( s, expr );

f := x*y^2;>

(3.467)

subs( {y=z, x=y, z=w}, f );>

(3.468)

The other difference between the eval and subs commands is demonstrated in the following
example.

subs( x=0, cos(x) + x^2 );>

(3.469)

eval( cos(x) + x^2, x=0 );>

(3.470)

In the preceding subs command, Maple substitutes 0 (zero) for x and simplifies the result.
Maple simplifies cos(0) + 0^2 to cos(0). By using the eval command, Maple evaluates
cos(0) to 1 (one).

During the substitution process, operands are compared in the expression tree of expr with
the left-hand side of an equation.
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eval( a*b*c, a*b=d );>

(3.471)

The substitution does not result in d*c because the operands of the product a*b*c are a, b,
c. That is, the products a*b, b*c, and a*c do not appear specifically as operands in the ex-
pression a*b*c. The easiest way to make such substitutions is to solve the equation for one
unknown and substitute for that unknown.

eval( a*b*c, a=d/b );>

(3.472)

You cannot always use this method; for certain expressions, it may not produce the expected
results. The algsubs command provides a more powerful substitution facility.

algsubs( a*b=d, a*b*c );>

(3.473)

Two more useful substitution commands are subsindets and evalindets. These commands
perform substitution on all subexpressions of a given type; the former uses the subs func-
tionality and the latter uses the eval functionality.

subsindets( expr, atype, transformer, rest )

evalindets( expr, atype, transformer, rest )

evalindets([1,2,3,4,5], prime, x->(x+1)^2);>

(3.474)

evalindets((x+1)^2+x^4-1, {`*`,`^`}, expand);>

(3.475)

Structured Types

A simple type check may not always provide sufficient information. For example, the
command

type( x^2, `^` );>

(3.476)

verifies that x^2 is an exponentiation, but does not indicate whether the exponent is, for
example, an integer. To do so, you must use structured types. Consider the following ex-
ample.
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type( x^2, 'name^integer' );>

(3.477)

Because x is a name and 2 is an integer, the command returns a value of true.

To learn more about structured types, study the following examples. The square root of x
does not have the structured type name^integer.

type( x^(1/2), 'name^integer' );>

(3.478)

The expression (x+1)^2 does not have type name^integer, because x+1 is not a name.

type( (x+1)^2, 'name^integer' );>

(3.479)

The type anything matches any expression.

type( (x+1)^2, 'anything^integer' );>

(3.480)

An expression matches a set of types if the expression matches one of the types in the set.

type( 1, '{integer, name}' );>

(3.481)

type( x, '{integer, name}' );>

(3.482)

The type set(type) matches a set of elements of type type.

type( {1,2,3,4}, 'set(integer)' );>

(3.483)

type( {x,2,3,y}, 'set({integer, name})' );>

(3.484)

Similarly, the type list(type) matches a list of elements of type type.

type( [ 2..3, 5..7 ], 'list(range)' );>

(3.485)

Note that is not of type anything^2.

3.15 Using Expressions • 123



exp(2);>

(3.486)

type( (3.486), 'anything^2' );>

(3.487)

Because is the typeset version of exp(2), it does not match the type anything^2.

type( exp(2), 'exp'(integer) );>

(3.488)

The next example illustrates why you should use unevaluation quotes (') to delay evaluation
when including Maple commands in type expressions.

type( int(f(x), x), int(anything, anything) );>
Error, testing against an invalid type

An error occurs because Maple evaluates int(anything, anything).

int(anything, anything);>

(3.489)

This is not a valid type. If you enclose the int command in unevaluation quotes, the type
checking works as intended.

type( int(f(x), x), 'int'(anything, anything) );>

(3.490)

The type specfunc(type, f) matches the function f with zero or more arguments of type
type.

type( exp(x), 'specfunc(name, exp)' );>

(3.491)

type( f(), 'specfunc(name, f)' );>

(3.492)

The type function(type) matches any function with zero or more arguments of type type.

type( f(1,2,3), 'function(integer)' );>

(3.493)
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type( f(1,x,Pi), 'function( {integer, name} )' );>

(3.494)

In addition to testing the type of arguments, you can test the number of arguments. The type
anyfunc(t1, ..., tn) matches any function with n arguments of the listed types in the correct
order.

type( f(1,x), 'anyfunc(integer, name)' );>

(3.495)

type( f(x,1), 'anyfunc(integer, name)' );>

(3.496)

type( f(x), 'anyfunc(integer, name)' );>

(3.497)

Another useful variation is to use theAnd, Or, and Not type constructors to create Boolean
combinations of types. Note that these are different from the and, or, and not logical oper-
ators.

type(Pi, 'And( constant, numeric)');>

(3.498)

Pi is of type symbol, not of type numeric.

type(Pi, 'And( constant, Not(numeric))');>

(3.499)

For more information on structured types, refer to the type,structured help page. For more
information on how to define your own types, refer to the type,defn help page.

The indets command is useful for extracting a set of all the subexpressions of a given type.

indets( expr, atype)

indets(z-exp(x^2-1)+1, 'name');>

(3.500)

indets(Pi+3^(1/2)+4.1, 'integer');>

(3.501)

3.15 Using Expressions • 125



indets(Pi+3^(1/2)+4.1, 'numeric');>

(3.502)

indets(Pi+3^(1/2)+4.1, 'constant');>

(3.503)

Note that the indets command analyzes the entire expression so that the base of the exponent

is recognized as an integer. If you want to select only subexpressions from the top
level, use the command select described in The select, remove, and selectremove
Commands (page 193).

If you want to test whether that an expression has a subexpression of a given type, use the
hastype command rather than the indets command since it avoids building a potentially
large set of expressions.

hastype([1,2,3.,5.,6.,7.], 'float');>

(3.504)

3.16 Exercises
1. Find the numerator and denominator of the irreducible form of 4057114691 divided by

4404825097799.

2. Construct floating-point numbers using the floating-point number constructor. Construct
the number 917.3366 using a positive exponent, and then using a negative exponent.
Construct a floating-point approximation of 1/3.

3. Without using theDigits environmental variable, find the difference between estimated
to 20 digits and 10 digits.

4. Calculate the negative complex root of -1369, and then sum 3 and the root. Find the in-
verse of this complex sum. Find the inverse of (a*b)/c+((a-d)/(b*e))*I) in standard form,
where a, b, c, d, and e are real.

5. The Fibonacci numbers are a sequence of numbers. The first two numbers in the sequence
are zero (0) and one (1). For n greater than two, the th number in the sequence is the
sum of the two preceding numbers. Assign values to indexed names representing the
first, second, and general Fibonacci numbers.

6. Using the time command, determine the time required to multiply two ten-by-ten matrices.

7. Use Maple to verify de Morgan's laws.
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8. Contrast the behavior of functions and expressions by performing the following com-
mands.

a Define a function f equal to . Define an expression g equal to .

b Evaluate f and g at 2.

c Evaluate f and g at y.

d Assign the value 2 to x. Evaluate f and g.

9. Swap the values of two variables using one statement.

10. Sum the smallest 100 prime integers.

Hint: Use the ithprime or nextprime function.
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4 Basic Data Structures
The appropriate use of data structures is an important part of writing efficient programs.
Maple provides various data structures that can be used to help make your programs efficient.

4.1 In This Chapter
• Defining and manipulating sets, lists, tables, Arrays, records, stacks, and queues

• Converting between data structures

• Mathematical versus programmer indexing for Arrays

• Performance comparisons of data structures

4.2 Introduction
Maple provides various data structures that you can use for programming and interacting
with Maple functions. This chapter focuses on the use of data structures in programming.
However, the sections Lists (page 130) and Sets (page 136)may be useful for users who want
to construct arguments for Maple functions.

Maple has many data structures that provide similar functionality, but certain data structures
are better suited for certain types of operations. Therefore, when choosing which data
structures to use, it is important to select a structure that performs well on the operations
used in your code.

Many aspects affect the performance of data structures. However, in Maple, the provided
data structures can be divided into two basic classes: mutable and immutable. The mutable
data structures can be modified, that is, the values they store can change. The immutable
data structures cannot be changed after they are created. Instead, copies of these structures
can be made with different contents. This difference in behavior can have significant impact
on the performance of code that uses these structures.

4.3 Immutable Data Structures
Immutable data structures can be useful when storing a fixed collection of elements. Also,
because immutable structures are more compact than mutable data structures, especially
when storing a small number of elements, they are more memory efficient.

Immutable structures are created with their contents fixed. This means that they cannot be
modified in-place. When you change an immutable data structure, a new copy is created
with the modified contents and stored as a distinct object in memory. Thus, immutable
structures may not be the correct choice if you want to modify the contents of a structure.

In Maple, there are two basic immutable data structures: lists and sets.
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Lists

A list stores an ordered sequence of expressions. The ordering of the elements in a list is
fixed when the list is created. Lists, in contrast to sets, will maintain duplicate elements.

Creating Lists

The easiest way to create a list is to enclose a sequence of expressions in square brackets
([]). A sequence of expressions is a series of comma-separated expressions.

[ sequence ]

This creates a list that contains the elements of sequence in the specified order. In the case
where sequence is empty, [] represents an empty list. Compare the results of these examples
to those in the Sets (page 136) section.

[x, y, y];>

(4.1)

[a, 1, b, 2];>

(4.2)

[y[1], x, x[1], y[1]];>

(4.3)

The elements of a list can be any expressions, even other lists.

L := [[1], [2, a], [X, Y, Z]];>

(4.4)

In Maple, nested lists whose inner lists have the same number of elements have a special
name, listlist.

M := [[a,b], [1,2], [3, 4]];>

(4.5)

type(M, list);>

(4.6)

type(L, listlist);>

(4.7)

type(M, listlist);>

(4.8)

130 • 4 Basic Data Structures



Many Maple functions return sequences. Thus, enclosing a call to one of those functions
in square brackets [] creates a list. For example, the seq command generates sequences.

[ seq( x^j, j=1..3) ];>

(4.9)

The op command can be used to extract the sequence of elements in a list.

L := [1,2,3];>

(4.10)

op(L);>

(4.11)

Thus op can be used to create new lists based on existing lists. For example, you can create
a new list with an additional element added to the start of the list.

L2 := [ 0, op(L) ];>

(4.12)

A list with another element added to the end of the list can be created in a similar way.

L3 := [ op(L2), 4 ];>

(4.13)

Multiple lists can also be combined into a single list.

L4 := [ op(L), op(L2), op(L3) ];>

(4.14)

Accessing Data Stored in a List

The selection operation, [], can be used to read an element from a list.

L := [1,2,3];>

(4.15)

L[1];>

(4.16)

L[2];>

(4.17)
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L[3];>

(4.18)

You can also specify a range in the selection operation to extract a sublist containing the
elements that are indexed by that range.

L := [ seq( i^2, i=1..10 ) ];>

(4.19)

L[3..6];>

(4.20)

L[5..8];>

(4.21)

While it is possible to make an assignment to a list index, this operation can be inefficient
since it creates a new list. In fact, assignment to a large list is not permitted in Maple and
will produce an error. Assigning a list element is a common error, so if you find yourself
wanting to do this, consider using a mutable data structure instead. For more information,
see Mutable Data Structures (page 141).

L := [1,2,3]:>

L[1] := 3;>

(4.22)

L;>

(4.23)

L is now a new list with a different element at index 1. Thus, assigning to a single element
of a list causes the entire list to be copied in the same way as using the subsop command.
In fact, the previous example is equivalent to the following except in how the result is dis-
played.

L := [1,2,3]:>

L := subsop(1=3, L);>

(4.24)

If you attempt to assign to an index to a large list, an error will occur. Therefore, if you need
to make a copy of a list with one changed element, it is recommended that you use the
subsop command instead.
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LL := [ seq( i, i=1..200 ) ]:>

LL[1] := -1;>
Error, assigning to a long list, please use Arrays

subsop(1=-1, LL);>

(4.25)

Determining If an Element Is in a List

To test if an expression is contained in a list, use the member function.

member( 1, [ 1,2,3 ] );>

(4.26)

member( 1, [ 2,3,4 ] );>

(4.27)

You can also use the in operator.

evalb( 1 in [1,2,3] );>

(4.28)
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evalb( 1 in [2,3,4] );>

(4.29)

Getting the Number of Elements in a List

To find the length of a list, use the numelems command.

numelems( [ 1,2,3 ] );>

(4.30)

numelems( [ 1,2,3,4,5 ] );>

(4.31)

numelems( [ seq( i, i=1..127 ) ] );>

(4.32)

This can be useful for many tasks, for example, using lists in a loop. For more information
on selectremove, see Filtering Data Structure Elements (page 157).

L := [seq( i, i=2..100)]:>

divisor := 2:>

while ( numelems( L ) > 0 )
do

>

divisible, L := selectremove( i->(i mod divisor = 0), L ):
n := numelems( divisible );
if ( n > 0 ) then

printf( "%d integer%s whose smallest prime divisor is %d\n",

n, `if`( n > 1, "s", "" ), divisor ):
end if;
divisor := nextprime( divisor );

end do:
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50 integers whose smallest prime divisor is 2
17 integers whose smallest prime divisor is 3
7 integers whose smallest prime divisor is 5
4 integers whose smallest prime divisor is 7
1 integer whose smallest prime divisor is 11
1 integer whose smallest prime divisor is 13
1 integer whose smallest prime divisor is 17
1 integer whose smallest prime divisor is 19
1 integer whose smallest prime divisor is 23
1 integer whose smallest prime divisor is 29
1 integer whose smallest prime divisor is 31
1 integer whose smallest prime divisor is 37
1 integer whose smallest prime divisor is 41
1 integer whose smallest prime divisor is 43
1 integer whose smallest prime divisor is 47
1 integer whose smallest prime divisor is 53
1 integer whose smallest prime divisor is 59
1 integer whose smallest prime divisor is 61
1 integer whose smallest prime divisor is 67
1 integer whose smallest prime divisor is 71
1 integer whose smallest prime divisor is 73
1 integer whose smallest prime divisor is 79
1 integer whose smallest prime divisor is 83
1 integer whose smallest prime divisor is 89
1 integer whose smallest prime divisor is 97

Sorting a List

The sort command can create a new list with sorted elements from any given list. By default,
sort arranges elements in ascending order.

sort( [ 4,2,3 ] );>

(4.33)

The sort command can also accept a second argument that specifies the ordering to use
when sorting the elements.

sort( [4,2,3], `>` );>

(4.34)

Applying a Function to the Contents of a List

It is often useful to be able to apply a function to all the elements of a list. The map command
performs this operation in Maple.
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L := [ seq( Pi*i/4, i=0..3 ) ]:>

map( sin, L );>

(4.35)

map( cos, L );>

(4.36)

Maple provides other operations that can work with the members of a list, such as add and
mul.

add( i, i in [ seq( j, j=1..100 ) ] );>

(4.37)

mul( i^2, i in [ 1,2,3,4,5,6,7,8,9,10 ] );>

(4.38)

Finally, a for loop can be combined with the in operator to loop over the contents of a list.

for i in [1,2,3,4]
do

>

print( i^2 );
end do;

(4.39)

Sets

A set is an unordered sequence of unique expressions. When a set is created, Maple reorders
the expressions to remove duplicate values and to make certain operations faster.

Creating Sets

The easiest way to create a set is to enclose a sequence of expressions in braces ({}).

{ sequence }
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When Maple creates the set, it performs automatic simplification. This process creates a set
that contains the elements of sequence; however, during the automatic simplification process,
any duplicate elements are removed and the remaining elements are reordered.

Compare the results of these examples to those in the Lists (page 130) section.

{x, y, y};>

(4.40)

{a, 1, b, 2};>

(4.41)

{y[1],x,x[1],y[1]};>

(4.42)

Similar to lists, sets can be created using functions such as seq that return sequences.

{ seq( i mod 3, i=1..10 ) };>

(4.43)

Again, similar to lists, the op command can be used to extract the sequence of elements in
a set.

S := {1,2,3};>

(4.44)

op(S);>

(4.45)

However, unlike lists, Maple provides operations for set arithmetic, so for sets op is some-
what less important.

Set Arithmetic

Maple provides operators for mathematical set manipulations: union, minus, intersect, and
subset. These operators allow you to perform set arithmetic in Maple.

s := {x,y,z};>

(4.46)

t := {y,z,w};>

(4.47)
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s union t;>

(4.48)

s minus t;>

(4.49)

s intersect t;>

(4.50)

s subset t;>

(4.51)

s subset {w,x,y,z};>

(4.52)

Accessing Data Stored in a Set

The selection operation, [], can be used to read an element from a set. However, unlike lists,
the order in which the elements are specified when creating the set may not correspond to
the order they are accessed by indexing.

S := {3,2,1}:>

S[1];>

(4.53)

S[2];>

(4.54)

S[3];>

(4.55)

Unlike lists, you cannot use the selection operation to create new sets.

S[1] := 4;>
Error, cannot reassign the entries in a set

You can specify a range in the selection operation to extract the elements indexed by the
range.

S2 := { seq( i^2, i=1..10 ) };>

(4.56)
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S2[3..6];>

(4.57)

S2[5..8];>

(4.58)

Determining If an Element Is in a Set

To test if an element is contained in a set, use the member function.

member( 1, {1,2,3} );>

(4.59)

member( 1, {2,3,4} );>

(4.60)

You can also use the in operator.

evalb( 1 in {1,2,3} );>

(4.61)

evalb( 1 in {2,3,4} );>

(4.62)

Getting the Number of Elements in a Set

To find the number of elements in a set, use the numelems command.

numelems( {1,2,3} );>

(4.63)

numelems( {1,2,3,4,5} );>

(4.64)

numelems( {seq( i, i=1..127 )} );>

(4.65)

In this example, the features of sets are used to test Collatz's conjecture on the first million
integers. Collatz's conjecture states that given any integer, i, if the following function is
applied repeatedly, the result will eventually be 1.

collatz := proc( i )
if ( i = 1 ) then

>
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1;
elif ( type( i, even ) ) then

i/2;
else

3*i+1;
end if;

end proc:

Begin with a set S that consists of the integers from 1 to 1 million. Under repeated application
of collatz, as numbers converge to 1, the set automatically removes duplicate values, until
eventually there is only 1 element left. For more information on the use ofmap, see Applying
a Function to the Contents of a Set (page 140).

S := {seq( i, i=1..1000000)}:>

while ( numelems( S ) > 1 )
do

>

S := map( collatz, S ):
end do:

S;>

(4.66)

Applying a Function to the Contents of a Set

As with lists, it can be useful to apply a function to all of the elements of a set. The map
command works on sets, as it does with lists.

S := { seq( Pi*i/4, i=0..3 ) }:>

map( sin, S );>

(4.67)

map( cos, S );>

(4.68)

Notice that when applying a function to a set, the output is also a set, which means the ele-
ments are reordered and duplicate elements are removed.

Maple provides other operations that can work with the members of a list, such as add and
mul.
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add( i, i in { seq( j, j=1..100 ) } );>

(4.69)

mul( i^2, i in { 1,2,3,4,5,6,7,8,9,10 } );>

(4.70)

Finally a for loop can be combined with the in operator to loop over the contents of a set.
Note that the set has been reordered.

for i in {1,4,3,2}
do

>

print( i^2 );
end do;

(4.71)

4.4 Mutable Data Structures
Mutable data structures are structures whose contents can be changed.

The most flexible mutable data structure provided by Maple is the table.

Tables

A table stores a collection of index/entry pairs. For a given index, the table contains a par-
ticular value, called an entry. Index/entry pairs can be created or removed, or the value as-
sociated with an index can be modified.

Creating Tables

A new table can be created by calling the table function.

t := table();>

(4.72)

With no arguments, table creates a new empty table. To create a table that contains certain
index/entry pairs, specify the pairs as a list of equations. The left-hand side of an equation
is the index and the right-hand side is the entry.
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t := table( [ 1=2, a=b, f(x)=y ] );>

(4.73)

If the given list contains one or more expressions that are not equations, the list is treated
as a list of entries and the indices are the positions of the entries in the list (1, 2, 3, ...).

t := table( [ a, b, c=d ] );>

(4.74)

Note that c=d is treated as a entry and not an index/entry pair.

Tables are also created implicitly when you assign to an indexed name.

t2[new] := 10;>

(4.75)

eval(t2);>

(4.76)

Accessing Stored Values

Table indexing is performed using the selection operation, []. To extract data from a table,
specify an index in square brackets. The corresponding entry is returned.

t := table( [1=2,a=b,f(x)=y] );>

(4.77)

t[1];>

(4.78)

t[a];>

(4.79)

t[f(x)];>

(4.80)

If the table does not contain a entry associated with the index, an unevaluated table reference
is returned.

t[2];>

(4.81)

The selection operation can also be used to add new index/entry pairs to the table.
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t[2] := 3;>

(4.82)

t[c] := d;>

(4.83)

t[sin(x)] := 1;>

(4.84)

t[2];>

(4.85)

t[c];>

(4.86)

t[sin(x)];>

(4.87)

Removing an Element

The best way to remove an element from a table is to call the unassign function.

t[1] := x;>

(4.88)

t[sin(x)] := y;>

(4.89)

unassign( 't[1]' );>

t[1];>

(4.90)

unassign( 't[sin(x)]' );>

t[sin(x)];>

(4.91)

The selection operation can also be used to remove an index/entry pair from a table. By
assigning the unevaluated table entry to its name, that element is removed from the table.
This can be done by using unevaluation quotes ( ' ) or the evaln command.
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t[1] := x;>

(4.92)

t[1] := 't[1]';>

(4.93)

t[1];>

(4.94)

t[sin(x)] := y;>

(4.95)

t[sin(x)] := evaln(t[sin(x)]);>

(4.96)

t[sin(x)];>

(4.97)

Getting the Number of Elements Stored in a Table

The numelems function returns the number of elements stored in a table.

numelems( table( [1] ) );>

(4.98)

numelems( table( [1,2,3,4,5] ) );>

(4.99)

numelems( table( [seq( i, i=1..127)] ) );>

(4.100)

Checking If an Index Is Used

It is often useful to know if a particular index has a value in a table. Use the assigned function
to check if a table index has an associated entry.

t := table( [1=1] ):>

assigned( t[1] );>

(4.101)
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assigned( t[2] );>

(4.102)

Evaluation Rules for Tables

Tables, like procedures, use last name evaluation. If a name is assigned a table, the result
of evaluating that name is the name and not the table assigned to the name. For more inform-
ation about last name evaluation, refer to the last_name_eval help page.

t := table([1,2,3,4]);>

(4.103)

t;>

(4.104)

To get the assigned value (the table), use the eval command.

eval(t);>

(4.105)

Extracting Data

Tables are often used as simple containers for data. Sometimes, it is useful to have a list of
the indices used in the table. Maple provides the indices function for this purpose.

t := table( [a=1, b=2, c=3, d=4] );>

(4.106)

indices( t );>

(4.107)

You may not expect to see that indices returns a sequence of lists, where each list contains
the index. This is because Maple allows sequences to be used as indices in tables.

t2 := table( [ a=1, b=2, (a,b,c)=3 ] );>

(4.108)

indices( t2 );>

(4.109)

If the indices were not wrapped in a list, it would be impossible to determine if an index is
a single expression or a sequence of expressions. Since using sequences as indices is uncom-
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mon, indices accepts a nolist option, for which indices returns a simple sequence and does
not wrap each index in a list.

indices( t, 'nolist' );>

(4.110)

Note that, with the nolist option, indices that are sequences are not returned properly.

indices( t2, 'nolist' );>

(4.111)

You can also use the entries function to get all the values stored in the table.

entries( t );>

(4.112)

entries( t, 'nolist' );>

(4.113)

To extract the index/entry pairs as a sequence of equations, use the pairs option to either
of the indices or entries commands.

entries( t, 'pairs' );>

(4.114)

Copying Tables

If you assign a table to multiple names, all the names reference the same table. Thus, changes
to the table using one name are visible from the other names.

t := table( [a=1,b=2,c=3] );>

(4.115)

t1 := eval( t );>

(4.116)

t[d] := 4;>

(4.117)

eval( t );>

(4.118)
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eval( t1 );>

(4.119)

If you want to create a copy of a table, use the copy function so that the tables can be mod-
ified independently.

t1 := copy( t );>

(4.120)

t[e] := 5;>

(4.121)

eval( t );>

(4.122)

eval( t1 );>

(4.123)

Applying a Function to the Contents of a Table

The map function works with tables as it does with lists and sets. When executing a map
on a table, the mapped function is given the value associated with an index. In the returned
table, the result is the entry associated with the index.

t := table( [ x, x^2+2, x^3-x+1, 1/x^2 ] );>

(4.124)

map( diff, t, x );>

(4.125)

You can use the indices and entries functions to produce a list that can be mapped over or
used in a for-in loop. You can also use this technique to modify the original table.

for i in entries(t,'pairs')
do

>

t[lhs(i)] := int( rhs(i), x );
end do;

(4.126)
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eval(t);>

(4.127)

Arrays

In Maple, an Array stores data as an n-dimensional rectangular block (rtable), that is, an
Array has 1 or more dimensions and each dimension has an range of integer indices. By
specifying one integer from each range, an element of the Array can be indexed.

Because Arrays are mutable, the values stored in an Array can change.

Creating Arrays

To create an Array in Maple, use the Array command and specify the ranges for the dimen-
sions. This creates a new Array with each entry initialized to 0. For Arrays, the ranges do
not need to start at 1.

Array( 1..3 ); # 1 dimensional Array>

(4.128)

Array( 1..3, 1..4 ); # 2 dimensional Array>

(4.129)

Array( 1..3, 2..5, -1..1 ); # 3 dimensional Array>

(4.130)

When creating an Array, you can also specify a generator function to populate the Array
with data. The generator function takes an index as an argument and returns a value for the
corresponding entry.
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Array( 1..3, x->x+1 );>

(4.131)

Array( 1..3, 1..4, (x,y)->(x+y) );>

(4.132)

You can also provide the data for the Array by specifying the data as a list or nested lists.

Array( [1,2,3] );>

(4.133)

Array( [[1,2],[3,4],[5,6]] );>

(4.134)

Basic Data Access

Arrays are implemented in Maple as a type of rtable, a structure also used for Matrices and
Vectors. This means that Arrays have two different indexing mechanisms: mathematical
indexing and programmer indexing. Mathematical indexing is intended for use when the
Array is viewed as a mathematical object. Programmer indexing provides functionality that
is more convenient when using Arrays as a programming tool.

The basic indexing operator, [], provides mathematical indexing. Programmer indexing is
accessed by using round brackets, (). For Arrays whose dimension ranges all start at 1, the
two indices behave similarly.

A := Array( 1..2, 1..3 ):>

A[1,1] := 1;>

(4.135)

A(2,1) := 2;>

(4.136)
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A(1,1);>

(4.137)

A[2,1];>

(4.138)

You may notice that the assignment that uses programmer indexing is displayed differently
than the assignment that uses mathematical indexing. This is because the result of an assign-
ment to a programmer indexed Array is the entire array. This can be important when
working with large sub-Arrays.

When the ranges do not start at 1, mathematical and programmer indexing are different.
Mathematical indexing requires that the indices match the specified ranges, but programming
indexing always normalizes the ranges to start at 1.

A := Array( 3..4, 5..6, (x,y)->x+y ):>

A[3,5];>

(4.139)

A(3,5);>
Error, index out of bounds

A(1,1);>

(4.140)

This means that programmer indexing can always take advantage of negative indexing,
which normally only works when the ranges start at 1. Negative indexing counts backwards
from the end of the range.

A[3,-1];>
Error, Array index out of range

A[3,6];>

(4.141)

A(1,-1);>

(4.142)

Sub-Array Access

A sub-Array of an Array can be accessed by specifying a subrange in place of the indices.
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A := Array( 1..5, 1..5, (x,y)->x+y );>

(4.143)

A[1..2,1..3];>

(4.144)

A(2..4,2..3);>

(4.145)

Sub-Array indexing can also be used to assign to the specified sub-Array.

A[2..4,2..3] := Array( [[a,a],[a,a],[a,a]] );>

(4.146)

A(4..5,4..5) := Array( [[b,b],[b,b]] );>

(4.147)

Note that the commands perform the same operation, but display the result differently. This
is the consequence of an important difference in how the modification is performed. This
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can be important when working with large sub-Arrays. Compare the time to perform the
assignment in the following examples:

N := 4000:>

A := Array( 1..N, 1..N, (x,y)->rand() ):>

B := Array( 1..N, 1..N ):>

t := time():>

B[1001..4000,1001..4000]:=A[1..3000,1..3000]:>

time()-t;>

(4.148)

t := time():>

B(1001..4000,1001..4000):=A(1..3000,1..3000):>

time()-t;>

(4.149)

The difference in running time of these copies is due to the difference in the result of an
assignment to an Array index. For mathematical indexing, a new 3000 by 3000 Array must
be created as the result. With programmer indexing, the result is the Array being assigned
to in its entirety - an object that already exists.

Automatic Resizing

One of the most important differences between mathematical and programmer indexing is
automatic resizing. When reading from or writing to an entry using mathematical indexing,
an index that is outside the bounds of the Array will raise an exception.

A := Array( [[1,2,3],[4,5,6]] );>

(4.150)

A[1,4];>
Error, Array index out of range

A[1,4] := a;>
Error, Array index out of range

However, programmer indexing allows you to write to an entry that is outside the bounds
of the current Array. Instead of raising an exception, the Array are automatically resized so
that the element can be stored. Reading from an out-of-bounds index will still raise an ex-
ception.
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A(1,4) := a;>

(4.151)

A(3,5);>
Error, index out of bounds

A(3,5) := b;>

(4.152)

More Array Indexing

There are more features of, and differences between, mathematical and programmer indexing.
For more information on Array indexing, refer to the rtable_indexing help page.

Getting the Number of Elements in an Array

The numelems function returns the number of elements defined by the bounds of an Array.

numelems( Array( [1,2,3,4,5] ) );>

(4.153)

numelems( Array( [[1,2,3],[4,5,6]] ) );>

(4.154)

Getting the Bounds of an Array

As Array bounds may not start at , it is important that procedures that accept Arrays be
aware of this possibility. The upperbound and lowerbound functions can be used to get
the bounds on the ranges of an Array.

printer := proc( A )
local lower, upper, i, j;

>

lower := lowerbound( A );
upper := upperbound( A );
for i from lower[1] to upper[1]
do

for j from lower[2] to upper[2]
do

printf( "%a ", A[i,j] );
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end do;
printf( "\n" );

end do;
end proc:

printer( Array( [[1,2],[3,4]] ) ):>
1 2
3 4

printer( Array( 2..5, 5..7, (x,y)->(x+y) ) ):>
7 8 9
8 9 10
9 10 11
10 11 12

Copying an Array

As with tables, having multiple variables referencing the same Array does not create new
copies of the Array. You can use copy to copy the Array.

A := Array( 1..2, 1..2 ):>

B := A;>

(4.155)

A[1,1] := 1:>

B;>

(4.156)

B := copy(A):>

A[1,2] := 2:>

A;>

(4.157)

B;>

(4.158)
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Testing If Two Arrays Are Equal

For Arrays, there are two notions of equality: do two references point to the same Array,
or are they different Arrays that store the same values. To determine if two references refer
to the same Array, use = and evalb. To test if two Arrays contain the same elements, use
the EqualEntries command.

CompareArray := proc( A, B )
if A = B then

>

print("two names for one array");
elif EqualEntries(A,B) then

print("same elements");
else

print("at least one element is different");
end if;

end proc:

A := Array( [[1,2],[3,4]] );>

(4.159)

AC := copy(A);>

(4.160)

CompareArray(A,AC);>

(4.161)

AR := A;>

(4.162)

CompareArray(A,AR);>

(4.163)

B := Array( [[1,2],[3,5]] );>

(4.164)
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CompareArray(A,B);>

(4.165)

There are some other advanced notions of equality such as whether or not arrays with un-
defined entries should be treated as having equal entries, and whether a Matrix and Array
with identical entries should be considered the same. The IsEqual command in the Ar-
rayTools package allows for different solutions for these two issues compared to
EqualEntries. The ArrayTools package contains a variety of functions for working with
Arrays. For more information, refer to the ArrayTools help page.

Applying a Function to the Contents of an Array

map can be used with an Array as you would expect

map( x->(x/2), Array( [[1,2,3],[4,5,6]] ) );>

(4.166)

indices, entries, and the in operator work with Arrays, so you can use Arrays in add, mul,
and for loops. entries(A,pairs) can also be used to obtain a list of index/value pairs in the
same way that it does for tables.

A := Array( [x,x^3,sin(x)] ):>

for entry in entries(A,'pairs')
do

>

A[lhs(entry)] := diff( rhs(entry), x ):
end do:

A;>

(4.167)

Better Performance with Numeric Arrays

When creating an Array, you can specify a datatype for the Array elements. The given
datatype can be either a Maple type or a hardware datatype specifier: integer[n], float[n],
complex[n]. n refers to the number of bytes of data for each element. For integer[n], n can
be 1, 2, 4, or 8. For float[n] or complex[n], n can be 4 or 8. The datatype integer[4] uses
4-bytes, or 32-bits per integer, and integer[8] uses 8-bytes, or 64-bits. The 64-bit version
has a wider range of signed values, but uses more memory.
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When assigning values into the Array, Maple will raise an exception if the given value does
not match the specified type.

A := Array( [1,2,3,4], datatype=float[8] );>

(4.168)

A[1];>

(4.169)

A[1] := 1.5;>

(4.170)

A[2] := x^2;>
Error, unable to store 'x^2' when datatype=float[8]

If you are working with numeric values that can be stored in these hardware types, it can
be much faster to use an Array with a hardware type. For more information on numerical
programming in Maple, see Numerical Programming in Maple (page 279).

Deprecated: array

The array data structure is an older implementation of Arrays. Its use has been deprecated;
use Array instead.

4.5 Other Data Structure Operations
Filtering Data Structure Elements

The select, remove, and selectremove functions provide ways to filter the elements of data
structures.

select( f, x )

remove( f, x )

selectremove( f, x )

The parameter f must be a Boolean-valued function. This function is applied to each of the
elements of the data structure x. select returns the a data structure containing those elements
for which f returns true. remove returns a data structure containing those elements for which
f returns false. selectremove returns two structures, the first consisting of the elements for
which f returned true and the second consisting of the elements for which f returns false.

The type of the return value of these functions matches the type of the argument x.
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x := [seq(i,i=1..10)];>

(4.171)

select( isprime, x );>

(4.172)

remove( isprime, x );>

(4.173)

selectremove( isprime, x );>

(4.174)

Calling selectremove is more efficient than calling select and remove separately.

Converting Data Structures

Maple provides the convert function, which allows various expressions to be converted
from one form to another.

convert( x, t )

convert attempts to convert the expression x into the form t. In particular, Maple supports
conversions between the list, set, table, and Array types.

x := [1,2,3,4];>

(4.175)

convert( x, 'set' );>

(4.176)

convert( x, 'table' );>

(4.177)

convert( x, 'Array' );>

(4.178)
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4.6 Other Data Structures
Records

In Maple, a record is a structured data type. It allows you to create a fixed-size structure
with user-defined fields. You can use records to create customized structures that can make
Maple code easier to read and write.

Create a Record

To create a new record, use the Record command. Record accepts a sequence of names as
parameters. Each name becomes a field in the returned record.

r := Record( 'expression', 'variable' );>

(4.179)

r:-expression := x^2;>

(4.180)

r:-variable := x;>

(4.181)

int( r:-expression, r:-variable );>

(4.182)

If Record is passed a single record as an argument, a copy of that record is returned.

r2 := Record( eval(r,1) );>

(4.183)

r2:-expression := sin(x^2);>

(4.184)

int( r2:-expression, r2:-variable );>

(4.185)

Note that you must call eval on r before passing it into Record. This is because records use
last name evaluation rules, similar to tables.
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Record Equality

As with Arrays, two references to Records are considered equal if they reference the same
structure. Two different structures that have the same fields and values are not considered
equal.

r := Record( 'a'=1, 'b'=2, 'c'=3 ):>

rc := r:>

r2 := Record( 'a'=1, 'b'=2, 'c'=3 ):>

evalb( r = rc );>

(4.186)

evalb( r = r2 );>

(4.187)

To compare two different records, you can use the verify command with the record argument.
verify/record returns true if the two records have the same set of fields with equal values
assigned to them.

r3 := Record( 'a'=1, 'b'=2, 'c'=3, 'd'=4 ):>

r4 := Record( 'a'=1, 'b'=2, 'c'=4 ):>

verify( r, r2, 'record' );>

(4.188)

verify( r, r3, 'record' );>

(4.189)

verify( r, r4, 'record' );>

(4.190)

Packed Records

TheRecord constructor function can also be called with the indexed nameRecord[packed],
to produce a packed record.

Unlike a regular record, a packed record does not create a unique instance of each field
name for each record instance. When working with thousands of similar records each with
many fields, this can save a significant amount of memory.

Fields of packed records do not exhibit last name evaluation. That is, the expression r:-a
always produces a value, even if that value is a procedure, table, Matrix, Vector, or another
record.
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Similarly, it is not possible for a packed record field to not have a value. The assigned
function will always return true, and unassigning a packed record field will set its value to
NULL instead.

Stacks

A stack is an abstract data type that provides two main operations: push and pop. A push
places a new value onto the top of the stack and pushes the existing elements down. A pop
removes the element from the top of the stack, moving the elements below up. This creates
a element access order referred to as last in first out (LIFO).

Stacks are useful for many operations. A typical use of a stack is to turn a recursive algorithm
into an iterative one. Instead of recursing on elements, those elements get pushed onto a
stack. When the current element has been handled, the element on top of the stack is removed
and handled next. By using a stack, the recently discovered elements are handled before
elements that were already in the stack, which is similar to how a recursive algorithm works.

Creating a Stack

In Maple, you can create a stack by calling stack:-new. If you do not specify any arguments,
stack:-new creates an empty stack. Maple stacks are implemented on top of tables.

s := stack:-new():>

stack:-push( 1, s );>

(4.191)

stack:-push( 2, s );>

(4.192)

stack:-pop( s );>

(4.193)

stack:-pop( s );>

(4.194)

You can also pass values into stack:-new that populate the stack. These elements are pushed
in the order specified.

s := stack:-new(1,2,3,4,5):>

stack:-pop( s );>

(4.195)
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stack:-pop( s );>

(4.196)

Pushing and Popping

To push and pop elements onto the stack, use the stack:-push and stack:-pop functions.

s := stack:-new():>

stack:-push( 1, s ):>

stack:-push( 2, s ):>

stack:-pop( s );>

(4.197)

stack:-push( 3, s ):>

stack:-pop( s );>

(4.198)

stack:-pop( s );>

(4.199)

More Stack Functions

To get the number of elements stored in the stack, call stack:-depth.

s := stack:-new(a,b,c):>

while stack:-depth( s ) > 0
do

>

print( stack:-pop( s ) );
end do;

(4.200)

To test if a stack is empty, call stack:-empty.

s := stack:-new(c,b,a):>

while not stack:-empty( s )
do

>

print( stack:-pop( s ) );
end do;
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(4.201)

You can examine the element on the top of a stack, without removing it, by calling stack:-
top.

s := stack:-new(x,x^2,sin(x)):>

stack:-depth(s);>

(4.202)

stack:-top(s);>

(4.203)

stack:-pop(s);>

(4.204)

stack:-depth(s);>

(4.205)

stack:-top(s);>

(4.206)

stack:-pop(s);>

(4.207)

stack:-depth(s);>

(4.208)

stack:-top(s);>

(4.209)

Queues

The queue is an abstract data type similar to a stack; however, instead of the most recently
added element being returned first, the oldest element in the queue is returned first. Elements
in a queue are analogous to people waiting in a line. The main operations provided by a
queue are enqueue, which adds an element to the queue, and dequeue, which removes an
element from the queue. The access order used by a queue is called first in first out, or FIFO.
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A queue is used when you want to handle elements in the order that they are discovered. A
typical example of using a queue is a breadth-first search of a graph. You dequeue a node
and then enqueue any unvisited nodes that are neighbors of the current node. By using a
queue, the order in which the nodes are visited is breadth-first.

Create a Queue

To create a queue in Maple, use the queue:-new command.

q := queue:-new():>

queue:-enqueue( q, 1 );>

(4.210)

queue:-enqueue( q, 2 );>

(4.211)

queue:-dequeue( q );>

(4.212)

queue:-dequeue( q );>

(4.213)

You can also pass values into queue:-new to populate the new queue. The elements are en-
queued in the order they are specified.

q := queue:-new( 1,2,3 ):>

queue:-dequeue( q );>

(4.214)

queue:-dequeue( q );>

(4.215)

queue:-dequeue( q );>

(4.216)

Enqueue and Dequeue

You can insert a new element into a queue using queue:-enqueue and remove an element
from the queue using queue:-dequeue.

q := queue:-new():>

queue:-enqueue( q, 1 ):>
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queue:-enqueue( q, 2 ):>

queue:-dequeue( q );>

(4.217)

queue:-enqueue( q, 3 ):>

queue:-dequeue( q );>

(4.218)

queue:-dequeue( q );>

(4.219)

More Queue Functions

You can get the number of elements stored in the queue by calling queue:-length.

q := queue:-new(a,b,c):>

while queue:-length( q ) > 0
do

>

print( queue:-dequeue( q ) );
end do;

(4.220)

You can test if a queue is empty by calling queue:-empty.

q := queue:-new(c,b,a):>

while not queue:-empty( q )
do

>

print( queue:-dequeue( q ) );
end do;

(4.221)

You can examine the front element of a queue, without removing it, by calling queue:-front.

q := queue:-new(x,x^2,sin(x)):>
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queue:-length(q);>

(4.222)

queue:-front(q);>

(4.223)

queue:-dequeue(q);>

(4.224)

queue:-length(q);>

(4.225)

queue:-front(q);>

(4.226)

queue:-dequeue(q);>

(4.227)

queue:-length(q);>

(4.228)

queue:-front(q);>

(4.229)

4.7 Data Coercion
Data Coercion refers to the ability to take one data type and automatically convert it into a
different data type. This is particularly useful for arguments passed into a procedure, where
the expected data type for the procedure is explicitly declared. For more information on
data coercion in Maple, see the coercion help page.

Maple provides two methods for enabling data coercion. For more information see The
coercion Modifiers (page 217).

4.8 Data Structure Performance Comparisons
Maple provides many different data structures, many of which can be used together to per-
form specific tasks. However, the different performance characteristics of the data structures
means that some are better than others in certain situations.
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Indexing

The time to perform an indexed look-up into a list, set, table, and Array are all constant
time operations. This means that the time needed to find the element does not vary based
on the number of elements stored in the structure. Time to perform a look-up into a list or
set is relatively similar and is faster than Arrays, which is faster than a table.

Similarly, writing into a table or Array is also a constant time operation, with Array look-
ups being slightly faster than table look-ups.

Membership

The member function determines if a particular element is stored in a structure. For lists,
this requires a linear search of the data in the list. Therefore, the time is proportional to the
total length of the list. A set is sorted, so searches of the list can be performed more quickly.
Searching within a set takes time proportional to the log[2] of the number of elements in
the set.

You can use a table for very fast membership testing. Use the table key as objects you want
to test for, and anything you want for the value. You can then call the assigned command
to test if the element exists in the table. A table index is a constant time operation, so this
membership test is also constant time.

N := 2*10^5:>

memtest := proc( D, N )
local i;

>

for i from 1 to N
do

member( i, D ):
end do:

end proc:

L := [seq( i, i=1..N )]:>

time(memtest(L,N));>

(4.230)

S := {seq( i, i=1..N )}:>

time(memtest(S,N));>

(4.231)

t := table( [seq( i=1, i=1..N ) ] ):>
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start := time():
for i from 1 to N

>

do
assigned( t[i] ):

end do:
time()-start;

(4.232)

Note that to benchmark the list and set membership functions, the call to member is within
a function. This is because of the Maple evaluation rules. If the call to themember command
is at the top level, the list or set is fully evaluated, which requires inspecting each element
of the list or set for each call to member. The overhead required for these full evaluations
would distort the results.

For more information on the Maple evaluation rules, seeUnevaluated Expressions (page 48).

Building a Collection of Data

It is often necessary to build a collection of data when you do not know how many elements
you are going to have. You should use a table, Array (using programmer indexing), stack,
or queue. All of these mutable structures support adding elements in constant time. Using
an immutable data structure is slower; the use of a list or a set is not recommended in this
situation.

N := 5*10^4:>

A := Array( [] ):
start := time():

>

for i from 1 to N
do

A( i ) := 1:
end do:
time()-start;

(4.233)

t := table():
start:=time():

>

for i from 1 to N
do

t[i] := 1:
end do:
time()-start;

(4.234)
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l := []: # using a list is quite slow
start := time():

>

for i from 1 to N
do

l := [ op(l), i ]:
end do:
time()-start;

(4.235)

4.9 Avoiding Common Problems
When working with data structures, there are a few common problems that you may en-
counter. This section describes some of these problems to help you avoid making these
mistakes yourself.

Passing Sequences into Functions

When a sequence is passed into a procedure, each element of the sequence is treated as a
separate argument. This can lead to errors if the procedure is unable to handle the multiple
arguments, for example, with the op command.

s := a,b,c;>

(4.236)

op( 2, s );>
Error, invalid input: op expects 1 or 2 arguments, but received 4

Instead, wrap the sequence in a list.

op( 2, [s] );>

(4.237)

Incorrect Index Values

Be careful with the values used for indexing. Specifying values outside valid ranges will
raise exceptions. In particular, in Maple, lists and sets start indexing at 1, not 0.

L := [1,2,3,4,5,6,7,8];>

(4.238)

L[0];>
Error, invalid subscript selector

4.9 Avoiding Common Problems • 169



L[9];>
Error, invalid subscript selector

Further, when specifying the endpoints of a range, make sure that the left-hand side of the
range specifies an element before the element specified by the right-hand side.

L[6..3];>
Error, invalid subscript selector

L[6..-5];>
Error, invalid subscript selector

The only exception to this is if the left-hand side of the range is n, then the right-hand side
can be n-1 and the result of this range is an empty structure (list or set).

L[6..5];>

(4.239)

Similar exceptions happen with using [] for selection from Arrays.

A := Array( [5,6,7,8,9,10] );>

(4.240)

A[7];>
Error, Array index out of range

A[5..3];>
Error, inverted range in Array index

Another type of index error occurs when sum is used instead of add to obtain explicit sums
over all the elements of a list, Array, Matrix, Vector, or similar data structures.

V := Vector(5,{(1)=1,(2)=2,(3)=3,(4)=4,(5)=5}):>

sum(V(n),n=1..5);>
Error, unsupported type of index, n

Array Indices Do Not Always Start at 1

In an Array, the lower bound of the indices may not be 1. If you write a procedure that accepts
an Array, you should be prepared to handle Arrays that have been defined for a range of
indices that does not start at 1. For more information on how to write procedures that can
handle such Arrays, see Getting the Bounds of an Array (page 153).
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Do Not Treat Lists and Sets as Mutable

You can use commands such as op and subsop with lists and sets to create new structures.
It is, therefore, possible to treat lists and sets like mutable structures. However, by doing
so, you can add a significant amount of processing time to your computations. Make sure
that you use actual mutable structures instead.

N := 2*10^4:>

l := [seq( i=i, i=1..N)]:>

t := table( l ):
start:=time():

>

for i from N to 1 by -1
do

t[i] := evaln(t[i]):
end do:
time()-start;

(4.241)

start := time():
for i from N to 1 by -1

>

do
l := subsop( i=NULL, l );

end do:
time()-start;

(4.242)

4.10 Exercises
1. Define a set with elements that are the powers of 13 modulo 100 for exponents ranging

from 1 to 1000. Is 5 a member of the set? Why is it beneficial to use a set instead of a
list?

Hint: You can determine the set by using one statement if you use the seq command.

2. Generate the sums of 4 and the first 100 multiples of 3. Determine the sums that are
square-free composite numbers.

Hint: The NumberTheory package has a function that you need to use.

3. Find floating-point approximations for the sum of the square root and cubic root of each
of the first 15 powers of 2.

Hint: Use map, seq, and zip.
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4. Write a procedure that implements the sieve of Eratosthenes: Count the number of integers
(less than or equal to a given integer) that are prime.
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5 Maple Statements
5.1 In This Chapter
• Introduction

• Expression Statements

• Assignments

• Flow Control

• The use Statement

• Other Statements

5.2 Introduction
A statement is a single complete piece of code that Maple can execute. There are many
types of statements in Maple, including expression statements, assignment statements, se-
lection statements (if ... then), repetition statements (loops), and program instructions (quit,
save, read).

A statement differs from an expression in that it is normally evaluated for effect, rather than
for its value. Most statements that do not consist of a single expression are formed so as to
have a side effect.

5.3 Statement Separators
Statements in Maple must be terminated with a semicolon (;) or a colon (:).

Statements can be run in Maple one at a time, or multiple statements can be run on one line.
If multiple statements are run on one line, the statements must be separated by a statement
separator, either a semicolon (;) or a colon (:).

At the top level, the output of a statement that ends with a colon is hidden.

a:=2: a^2;>

(5.1)

Note: In the standard interface, for input in 2-D math, the semicolon at the end of a
statement can be omitted.
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5.4 Expression Statements
The simplest kind of statement in Maple is the expression statement. It consists of an arbitrary
expression, whose evaluation constitutes the effect of the statement.

Pi;>

(5.2)

sin( Pi - x );>

(5.3)

int( sin( Pi - x ), x );>

(5.4)

5.5 Assignments
Assignment statements allow you to associate a value or expression with a name. The as-
signment statement has the general form

lhs := rhs

Evaluating the assignment associates the value on the right-hand side of the assignment
with the name on the left-hand side. After the assignment has taken effect, the result is the
associated value when the assigned name is evaluated.

Here, the name a has no assigned value, so it evaluates to itself.

a;>

(5.5)

The following assignment statement associates the value 2 / 3 with the name a.

a := 2 / 3;>

(5.6)

Subsequent evaluation of the name a results in the assigned value 2 / 3.

a;>

(5.7)

a + 1 / 3;>

(5.8)
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Associate the symbolic expression Pi / 2 with the name b by executing the following assign-
ment statement.

b := Pi / 2;>

(5.9)

Subsequently, the assigned value of b is used whenever the name b appears in an expression.

sin( b );>

(5.10)

In this expression, the assigned value Pi / 2 of the name b is substituted to yield the expression
sin( Pi / 2 ), and then the value of the procedure sin at this expression is computed, resulting
in the overall value 1 for the expression.

Multiple Assignment

You can perform several assignments in a single statement, known as amultiple assignment.
This has the general form

(lhs1, lhs2, ..., lhsN) := (rhs1, rhs2, ..., rhsN)

The parentheses on the right- and left-hand sides of the assignment are not required, but are
considered good practice.

For example, the multiple assignment statement

(x, y, z) := ( sin( t ), cos( t ), tan( t ) );>

(5.11)

establishes assigned values for all three names x, y, and z.

x;>

(5.12)

y;>

(5.13)

z;>

(5.14)

The number of components on each side of the assignment symbol := must be the same.
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(a, b, c) := (2, 3);>
Error, mismatched multiple assignment of 3 variables on the left side
and 2 values on the right side

A common idiom is to use a multiple (double) assignment to swap the values of two variables
without introducing an additional temporary variable.

(x, y) := (1, 2):>

x;>

(5.15)

y;>

(5.16)

(x, y) := (y, x):>

x;>

(5.17)

y;>

(5.18)

Note that using the swap idiom with unassigned names will lead to an infinite recursion.

(u, v) := (v, u);>

(5.19)

Evaluating u or v (full evaluation) produces an error. If you evaluate one level at a time
using eval(u, i), you can see what happens.

u;>

v;>

seq( eval( u, i ), i = 1 .. 10 );>

(5.20)

seq( eval( v, i ), i = 1 .. 10 );>

(5.21)
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Assignment Expressions

In addition to writing an assignment as a statement, an assignment can also appear almost
anywhere that an expression can appear, including within another expression. This is known
as an assignment expression or inline assignment.

An assignment used as or within an expression must always be enclosed in parentheses,
even when the immediately surrounding context would already be a set of parentheses.

[(a := 1), (b := 2)];>

(5.22)

a, b;>

(5.23)

s := sin((t := Pi/3));>

(5.24)

s^2 + cos(t)^2;>

(5.25)

The result of an inline assignment is the value that was assigned, that is, the evaluated right-
hand side of the assignment. This value can then be used by the enclosing context.

An assignment within an expression takes place only when and if the part of the expression
containing it is evaluated. This can be useful to reuse an expensive-to-compute value in
computed in the middle of a complex condition.

f := unapply( int(1/(x^4+1),x), x ):
x := 3.5;

>

if x > 0 and (t := evalf(f(sqrt(x)))) > 0 and t < 1 then
print(x,sqrt(t))

end if;

(5.26)

Except in the case of logical operators, which follow left-to-right McCarthy (short-circuit)
evaluation rules, it is generally not possible to predict the order in which the parts of an
expression will be evaluated. Therefore, an assigned name should not be used elsewhere in
the same expression with the expectation that the assignment has (or has not) taken place.
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Inline assignment can be used to assign the same value to several variables in a single
statement. Here is an assignment statementwhose right-hand side consists of a pair of nested
assignment expressions:

a := (b := (c := evalf(Pi,10)));>

(5.27)

L := ["one","two","three","infinity"]:
for i from 1 to (last := numelems(L)) do

>

# Print a separator before the last element of the list.
if i = last then print(`...`) end if;
print(i,L[i])

end do:

(5.28)

An inline assignment can often save duplication of code. For example, instead of writing,

line := readline("myfile.txt");
while line <> 0 do

>

# process line ...
line := readline("myfile.txt")

end do;

one can write the more succinct and less error prone:

while (line := readline("myfile.txt")) <> 0 do
# process line ...

end do;

>

Operator Assignments

In addition to assigning an already computed value to a variable, it is possible to combine
an operation and assignment into one using an operator assignment. These are:

.=*=-=+=
,=^=mod=/=
union=minus=intersect=||=
xor=or=implies=and=
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Each of these performs the same operation that it would if the = were omitted, using the
evaluated left and right hand sides of the assignment operator as its operands. The result is
then assigned to the left hand side name.

The benefit of using an assignment operator is that the left hand side need only be resolved
once. That is, the process of evaluating it to a name (which must be done before evaluating
it to a value) is only done once. Thus, in an operator assignment such as A[veryBigExpres-
sion] += 1, the index veryBigExpression is only evaluated once. If the assignment were
written as A[veryBigExpression] := A[veryBigExpression] + 1, then the index would be
evaluated twice.

Like simple assignments (:=), an operator assignment can be used within an expression by
enclosing it in parentheses. The result of such an embedded assignment is the computed
value that was assigned to the left hand side.

The increment (+=) and decrement (-=) assignment operators each have an even shorter
form that can be used when the right hand side is 1. The expression ++x is equivalent to x
+= 1, and --x is equivalent to x -= 1.

Unlike the longer forms, the short forms are expressions in their own right, and thus can be
used within a larger expression without requiring extra parentheses (except where needed
for disambiguation). The value of such an expression is the incremented or decremented
value.

The short forms can also be written in postfix form (x++ and x--), in which case the effect
on their argument, x, is the same, but the value of the expression is the original value of x.

If an operator assignment involving the same left hand side appears more than once in an
expression, the order in which the assignments are carried out is undefined, so this should
be avoided.

Special Semantics of the ,= Assignment Operator

In most cases, the operator assignment a ,= b is equivalent to a = a,b, forming an expression
sequence from the values of a and b, and assigning it back to variable a.

In the special case where the value of the left hand side is a one dimensional Array, the
Array is expanded and the right hand side appended to the Array in-place. If the right hand
side is an expression sequence (e.g., a ,= b,c,d) each element of the sequence is appended
separately.

If the left hand side is an Array with a hardware datatype, and a right hand side is a one
dimensional Array, then the contents of that Array are appended to the left hand side.
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If the left hand side is an Array with a datatype of integer[1] (i.e., an array of bytes), and
a right hand side is a string, the byte values of the characters in the string are individually
appended to the left hand side.

If the left hand side is an object that implements a `,=` method, then that method is invoked
to perform the operation. For example, the MutableSet object implements this method such
that ms ,= x is equivalent to insert(ms,x) or ms union= MutableSet(x).

In cases other than those above, a right hand side is appended in its entirety as an element
of the left hand side.

If any of the assignments described above are not possible (e.g. the right hand side is a
symbol and the array has datatype float[8]), an exception is raised.

5.6 Flow Control
A number of Maple statements are used to direct the flow of control in a program; that is,
the sequence in which the various statements of the program are run.

Sequencing

The simplest form of a Maple program is a sequence of zero or more statements, separated
either by semicolons or colons. A sequence of statements is run in the order in which they
are entered.

For example, running these three statements

a := 2;>

(5.29)

b := 3;>

(5.30)

sin( a + b );>

(5.31)

executes the assignment to the name a, then the assignment to the name b is executed and,
finally, the value of the expression sin( a + b ) is computed.

The flow of control in a Maple program consisting of a sequence of statements moves from
one statement to the next, in order.

Many Maple statements are compound statements that contain statement sequences as
constituents.
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Branching

The simplest form of flow control is a branching, or if statement. Basically, an if statement
has the syntax

if condition then

statseq

end if

in which condition is a Boolean-valued expression (that is, one which evaluates to one of
the values true, FAIL, or false), and statseq is a (possibly empty) sequence of Maple
statements, often called the body of the if statement.

The effect of an if statement is to divert the flow of control, under the right conditions, to
the body of the statement. If the condition expression evaluates to true, the flow of control
moves into the body of the if statement. Otherwise, if the condition expression evaluates
to FAIL or false, Maple exits the if statement and the flow of control continues at the
statement (if any) following the if statement.

if 2 < 3 then
print( "HELLO" )

end if;

>

(5.32)

if 2 > 3 then
print( "GOODBYE" )

end if;

>

More generally, an if statement has the syntax

if condition then

consequent

else

alternative

end if

Here, consequent and alternative are statement sequences. If the condition expression
evaluates to true, the consequent branch of the if statement is executed. Otherwise, the
alternative branch is executed.

if 2 < 3 then
print( "CONSEQUENT" )

>

else
print( "ALTERNATIVE" )

end if;
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(5.33)

if 2 > 3 then
print( "CONSEQUENT" )

>

else
print( "ALTERNATIVE" )

end if;

(5.34)

The most general form of an if statement can have several conditions, corresponding con-
sequents, and an optional alternative branch. This general form has the syntax:

if condition1 then

consequent1

elif condition2 then

consequent2

....

else

alternative

end if

in which there can be any number of branches preceded by elif. The effect of this general
form of the if statement is to divert the flow of control into the first branch whose conditional
expression evaluates to true. This means that the order of the elif branches can affect the
behavior of the if statement.

The branch introduced by else is optional. If it is present, and none of the earlier condition
expressions evaluates to true, then control flows into the else branch. If it is not present,
and none of the earlier condition expressions evaluates to true, then the flow of execution
continues with the first statement following the entire if statement.

if 2 > 3 then
print( "CONSEQUENT1" )

>

elif 3 > 4 then
print( "CONSEQUENT2" )

elif 1 < 5 then
print( "CONSEQUENT3" )

elif 2 < 5 then
print( "CONSEQUENT4" )

else
print( "ALTERNATIVE" )

end if;
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(5.35)

if 2 > 3 then
print( "CONSEQUENT1" )

>

elif 3 > 4 then
print( "CONSEQUENT2" )

elif 1 > 5 then
print( "CONSEQUENT3" )

elif 2 > 5 then
print( "CONSEQUENT4" )

else
print( "ALTERNATIVE" )

end if;

(5.36)

The else branch, if present, must appear last.

An if statement can appear at the top level, as in the examples shown above, but is most
commonly used within a procedure or module definition.

A typical use of the if statement is to control the flow of execution inside a procedure, de-
pending on information coming from the arguments passed to it.

p := proc( expr )
if type( expr, 'numeric' ) then

>

sin( 2 * expr )
elif type( expr, { '`+`', '`*`' } ) then

map( thisproc, _passed )
else

'procname'( _passed )
end if

end proc:

p( 2 );>

(5.37)

p( x );>

(5.38)

p( x + 1 );>

(5.39)
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In this example, the procedure p uses the type command to examine its argument expr. If
the argument is numeric, then it computes the value as sin( 2 * expr ). Otherwise, if the ar-
gument is either a sum or a product, the procedure maps itself over the operands of the ex-
pression. Otherwise, the procedure returns unevaluated.

Using if Statements in Expressions

In addition to being used as a stand-alone statement, an if statement can be used as an ex-
pression or within an expression.

The value of such an embedded if statement is the value of the last expression computed
within the branch that was executed.

In the example below, an if statement is embedded within a call to the String function. The
value will be one of "st", "nd", "rd", or "th" depending on the value of variable a:

a := 3;>

(5.40)

s := String(a, if a = 1 then "st"
elif a = 2 then "nd"

>

elif a = 3 then "rd"
else "th" end if);

(5.41)

The if Command

There is an older operator form of branching that can be used within an expression. In this
form, if is always called with three arguments. The if operator has the following syntax:

`if`( condition, consequent, alternative )

The first argument condition is a Boolean-valued expression. The second argument con-
sequent is an expression to evaluate if the first argument evaluates to the value true. The
third argument is an expression to evaluate if the first argument evaluates to either false or
FAIL.

`if`( 1 < 2, a, b );>

(5.42)

`if`( 1 > 2, a, b );>

(5.43)

Note that the name if must be enclosed in name (left) quotes in this form.
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The if command evaluates only one of its second and third arguments, determined by the
value of the first argument. The other argument is not evaluated.

a := 2/3:>

sin( `if`( a > 0, Pi / 2, -Pi / 2 ) );>

(5.44)

However, the if command is much more limited than the if statement. The consequent and
alternative must be single expressions, and there is nothing corresponding to the elif parts
of the statement form.

Loops

To cause a statement, or sequence of statements, to be run more than once, use a loop
statement. Maple has a general and flexible loop statement.

The simplest loop has the form do end do. This loop does not perform any tasks.

A loop statement has one of the following general forms.

for var from start to finish by increment while condition do

statseq

end do

for var from start to finish by increment while condition do

statseq

until condition

for var in container while condition do

statseq

end do

for var in container while condition do

statseq

until condition

The first line in each of these forms is called the loop header or, more formally, the loop
control clause. The statseq part of the loop is a (possibly empty) sequence of statements,
referred to as the body of the loop.

Each clause that occurs before the keyword do in the loop header is optional.

Since most of the examples below are infinite loops; you must interrupt the Maple compu-
tation to terminate the loop. For more information, see Interrupting a Maple
Computation (page 11).
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do end do;>

by -14 do end do;>

for i do end do;>

from 42 do end do;>

to 3 do end do;>

while true do end do;>

do until false;>

If more than one of the optional clauses appears in the loop header, they may appear in any
order, except that the for clause, if present, must appear first.

While Loops

One simple kind of terminating loop is the while loop.

while condition do

statseq

end do;

The loop header of a while loop involves only a single termination condition introduced by
the keywordwhile. The loop repeats the statement sequence statseq as long as the Boolean-
valued expression condition holds.

In this example, a loop counts the number of primes whose square is less than 1000.

count := 0:
p := 2:

>

while p^2 < 1000 do
count := 1 + count;
p := nextprime( p )

end do:
count;

(5.45)

This example uses the nextprime command, which returns the least prime greater than its
argument. The name count is given the initial value 0, and the name p, which is used to
store the current prime, is initially set to 2. The loop condition is the expression p^2 < 1000,
appearing after the keyword while and before the keyword do. This condition is evaluated
at the beginning of each iteration of the loop. If the condition evaluates to true, the body
of the loop is executed. If the condition evaluates to false or FAIL, the code continues to
execute at the next statement following the loop statement.
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If the condition expression evaluates to a value other than true, false or FAIL, an exception
is raised.

while 3 do end do;>
Error, invalid boolean expression: 3

while u < v do end do;>
Error, cannot determine if this expression is true or false: u < v

For more information on Boolean expressions, see Boolean and Relational
Expressions (page 88).

Until Loops

Another kind of terminating loop is the until loop.

do

statseq

until condition;

Like a while loop, an until loop has a single terminating condition, introduced by the
keyword until. The until loop differs from the while loop in several respects:

• The until clause appears in place of end do rather than in the loop header.

• The condition is tested at the end of each iteration of the loop, instead of the beginning.
As a consequence, the loop's statseq will always be executed at least once.

• The loop repeats until the condition holds.

• If the condition evaluates to FAIL, an exception is raised.

A benefit of checking the condition at the end of the loop is that the condition may depend
on values only calculated for the first time within the loop.

In this example, an until loop is used to implement the functionality of nextprime, yielding
the next prime number after a given number, even if the given number is already prime.

N := 23;
do

>

N := N + 1
until isprime(N):
N;

(5.46)
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Had this been written as a while loop with condition not isprime(N), the result would have
been 23, not 29.

Counted Loops

You can use a loop to repeatedly execute a sequence of statements a fixed number of times.
These loops use the from and to clauses.

from 1 to 3 do print( "HELLO" ) end do;>

(5.47)

or equivalently

to 3 do print( "HELLO" ) end do;>

(5.48)

If the from clause is omitted, the default value of 1 is used.

Inductive Loops

The most common kind of loop is an inductive loop which is similar to a counted loop, but
uses an induction variable whose value changes at each iteration of the loop. This is a par-
ticular kind of for loop with the general form

for var from start to finish by increment do

statseq

end do;

The default value for start is 1, for finish is infinity, and for increment is 1.

for i to 3 do
print( i )

end do;

>

(5.49)
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This loop performs the following tasks:

• Maple assigns i the (default) value 1 since a starting value was not specified.

• Because 1 is less than 3, Maple executes the statement in the body of the loop, in this
case, printing the value of i.

• Then i is incremented by 1 and tested again.

• The loop executes until i>3. In this case, when the loop terminates, the final value of i is
4.

i;>

(5.50)

In the next example, the increment is a negative number.

for i from 7 to 2 by -2 do
print( i )

end do;

>

(5.51)

Note: Since loops are increasing by default (increment by 1), the statement for i from 7 to
2 do print (i) end do; does not do anything unless you specify the increment as a negative
number. In this case, the loop increment is -2.

Loop control parameters (start, finish, and increment) do not need to be integers.

for i from 0.2 to 0.7 by 0.25 do
print( i )

end do;

>

(5.52)

In addition to iterating over a numeric range, you can iterate over a range of characters. In
this case, you must specify both the initial value start and the final value finish for the in-
duction variable. Furthermore, the value of increment must be an integer.
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for i from "a" to "g" by 2 do
print( i )

end do;

>

(5.53)

Iterating over a Data Structure

An alternative form of the loop statement allows you to iterate over the operands of an ex-
pression (often, a data structure such as a set or list).

for var in expr do

statseq

end do;

The induction variable var takes on, successively, the operands of the expression expr.
There are a few exceptions.

- First, if expr is an expression sequence, it does not have operands as such, but the
induction variable var iterates over the operands of the list [ expr ].

- If expr is a table, the loop iterates over [entries]( expr ). (For more information on
entries, seeExtracting Data (page 145).) The order in which these entries are visited
is not specified and may vary from one session to another.

- Finally, if expr is an rtable, the loop iterates over the entries of expr, but the order
of the iteration is not specified.

for i in [ 1, 2, 3 ] do
print( i )

end do;

>

(5.54)

Note that there is a difference between the loop above and the seemingly equivalent loop
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for i from 1 to 3 do
print( i )

end do;

>

(5.55)

The difference is the value of the induction variable i at the end of the loop. To see this,
evaluate the induction variable i immediately after running the loop to display its value.

for i in [ 1, 2, 3 ] do end do: i;>

(5.56)

for i from 1 to 3 do end do: i;>

(5.57)

It is also possible to specify a pair of variables for var, separated by a comma. In this case,
during each iteration of the loop, the first variable takes as value the index of the operand
in expr, and the second variable takes on the corresponding value as described previously.

M := LinearAlgebra:-RandomMatrix(3,4):>

for ind, val in M do
if val < 0 then

>

M[ind] := -val
end if

end do;

M;>

(5.58)

Using Loops in Expressions

In addition to being used as a stand-alone statement, a loop can also be used as an expression
or within an expression by enclosing it in parentheses. In the case where such a loop is the
only expression within a list, set, or function call, on the right hand side of an assignment,
or the sole argument to a return statement, the parentheses may be omitted.

The value of such an embedded loop statement is a sequence of the last value computed
during each iteration of the loop.
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The example below generates a list of all primes below a specified upper bound. The assign-
ment to i initializes it and also serves to include the number 2 in the result. The i in the body
of the loop adds each new prime in turn to the result.

N := 30:>

[(i := 2), (while (i := nextprime(i)) < N do i end do)];>

(5.59)

Looping Commands

Maple provides commands to create some commonly used types of loops. These commands
are generally meant to build expressions without creating many intermediate expressions.

The map Command

The map command applies a function to every element of an aggregate object. The simplest
form of the map command is

map( f, x )

where f is a function and x is an expression. Themap command replaces each operand elem
of the expression x with f(elem).

For tables and Arrays (or other rtables), the function is applied to each entry.

map( f, [a,b,c] );>

(5.60)

Given a list of integers, you can create a list of their absolute values and of their squares by
using the map command.

L := [ -1, 2, -3, -4, 5 ];>

(5.61)

q:=map(abs, L);>

(5.62)

map(x->x^2, L);>

(5.63)

The general syntax of the map command is

map( f, x, y1, ..., yn )
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where f is a function, x is any expression, and y1, ..., yn are expressions. The action of map
is to replace each operand of x such that the ith operand of x is replaced by f(op(i,x), y1,
..., yn).

map( f, a+b+c, x, y );>

(5.64)

map( (x,y) -> x^2+y, L, 1);>

(5.65)

For more information and examples, see Basic Data Structures (page 129).

The select, remove, and selectremove Commands

The select, remove, and selectremove commands also operate on the operands of an expres-
sion. The select command returns the operands for which the specified Boolean-valued
function returns true. The remove command returns the operands for which the specified
Boolean-valued function returns false. The selectremove command returns two objects: the
operands for which the specified Boolean-valued function returns true and the operands
for which the specified Boolean-valued function returns false. The select, remove, and se-
lectremove commands have the same syntax as the map command.

X := -3*y^4*z - w*y*z^2 + 2*x*y^2 + 2*y^3 + 3*w*z;>

(5.66)

select(has, X, z);>

(5.67)

remove( x -> degree(x)>3, X );>

(5.68)

For more information on these commands, seeOther Data Structure Operations (page 157)
or refer to the select help page.

The zip Command

The zip command merges two lists or Arrays and then applies a binary function. The zip
command has two forms

zip(f, u, v)

zip(f, u, v, d)
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where f is a binary function, u and v are both lists or rtables, and d is any value. The zip
command takes each pair of operands u[i], v[i], and creates a new list or vector from f(u[i],
v[i]).

zip( (x,y) -> x || y, [a,b,c,d,e,f], [1,2,3,4,5,6] );>

(5.69)

If the lists or vectors are not the same length, the length of the result depends on whether
you provide the argument d.

If you do not specify d, the length of the result is the same as the length of the smaller list
or vector.

zip( (x,y) -> x+y, [a,b,c,d,e,f], [1,2,3] );>

(5.70)

If d is specified, the length of the result of the zip command is the same as the length of the
longer list or vector. Maple replaces the missing value(s) with d.

zip( (x,y) -> x+y, [a,b,c,d,e,f], [1,2,3], xi );>

(5.71)

Non-Local Flow Control

There are a couple of statements that are generally used in procedures to control how exe-
cution of the procedure ends: return and error. For more information on these statements,
see Procedures (page 205).

The return Statement

The return statement causes an immediate return to the point where the current procedure
was invoked.

In Command-line Maple, the return statement causes an error if it is run at the top level:
Error, return out of context. In the Standard worksheet interface, return can be used at the
top level in conjunction with DocumentTools:-RunWorksheet.

The error Statement and Exception Handling

The error statement raises an exception and interrupts the execution of the current statement.
If the exception is not caught (see the following section), a message is printed indicating
that an error occurred.

error string
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error string, parameter1, parameter2, ...

In the first case, an error message is given as a string.

error "my error";>
Error, my error

In the second case, string contains several placeholders of the form %n or %-n, where n
is a positive integer, to include the provided parameters in the message.

The placeholder%n is replaced by the nth parameter given. The placeholder%-n is replaced
by the ordinal form of the nth parameter, which should evaluate to an integer. The special
placeholder %0 is replaced with the sequence of all parameters separated by commas and
spaces.

x := a+b: n := 10;>

(5.72)

error "my error in %1 of the %-2 kind", x, n;>
Error, my error in a+b of the 10th kind

Trapping Errors

The try statement is a mechanism for executing procedure statements in a controlled envir-
onment so that if an error occurs, it does not immediately terminate the procedure. The try
statement has the following syntax

try tryStatSeq

catch catchStrings : catchStatSeq

finally finalStatSeq

end try

This statement can include several catch clauses. The finally clause is optional.

If procedure execution enters a try...catch block, the tryStatSeq is executed. If no exceptions
occur during the execution of tryStatSeq, the finalStatSeq in the finally clause (if present)
is executed. Execution then continues with the statement after end try.

If an exception occurs during the execution of tryStatSeq, execution of tryStatSeq termin-
ates immediately. The exception object corresponding to the exception is compared against
each catchString. Any number of catch clauses can be provided, and each can have any
number of catchStrings separated by commas. Alternatively, a catch clause does not need
to have a catch string. Any given catchString (or a catch clause without one) can appear
only once in a try...end try construct.
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If a matching catch clause is found, or the catch clause contains no catchStrings, the
catchStatSeq of that catch clause is executed, and the exception is considered to have been
caught. If no matching catch clause is found, the exception is considered not caught, and
is re-raised outside of the try block.

When Maple searches for a matching catch clause, the following definition of "matching"
is used.

• Neither the exception object nor the catchStrings are evaluated (the exception object
has already been evaluated by the error statement that produced it).

• The catchStrings are considered to be prefixes of the exception object's msgString. If
a catchString has n characters, only the first n characters of themsgString need to match
the catchString. This permits the definition of classes of exceptions.

• A catch clause without a catchString matches any exception.

• The "result" of a try statement (the value that % returns if it is evaluated immediately
after execution of the try statement) is the result of the last statement executed in the try
statement.

A catchStatSeq can contain an error statement with no arguments, which also re-raises the
exception. When an exception is re-raised, a new exception object is created that records
the current procedure name, and the message and parameters from the original exception.

Normally, the finalStatSeq of the finally clause, if there is one, is always executed before
control leaves the try statement. This is true in the case that an exception occurs, independent
of whether it is caught or whether another exception occurs in the catch clause.

This is true even if a catchStatSeq re-raises the exception, raises a new one, or executes a
return, break, or next statement.

Under certain abnormal circumstances, the finalStatSeq is not executed:

• If an exception is caught in an interactive debugger session and you exit the debugger

• If one of the following untrappable exceptions occurs, the exception is not caught, and
finalStatSeq is not executed:

1. A computation timed out. This exception can only be caught by the timelimit command,
which raises a "time expired" exception that can be caught. For more information on the
timelimit command, refer to the timelimit help page.

2. A computation has been interrupted. In other words, you pressed Ctrl+C, Break, or
equivalent.

3. Internal system error. This exception indicates a bug in Maple itself.

4. ASSERT or local variable type assertion failure. Assertion failures cannot be trapped
because they indicate a coding error, not an algorithmic failure.
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5. Stack overflow. If a stack overflow occurs, there is generally not enough stack space to
perform tasks such as running cleanup code.

If an exception occurs during the execution of a catchStatSeq or the finalStatSeq, it is
treated in the same way as if it occurred outside the try...end try statement.

Using try Statements in Expressions

A try statement can be used as an expression or within an expression.

The value of such an embedded try statement is the value of the last expression computed
within the last branch that was executed:

• If there was a non-empty finally clause, the result is that of the last expression computed
in the finalStatSeq.

• If no exception occurred, the result is that of the last expression computed in the
tryCatchSeq.

• If an exception did occur and was caught, the result is that of the last expression computed
in the relevant catchStatSeq.

• If there was an exception and it was not caught, the evaluation of the entire expression
is aborted just as it would be if no exception handling statement were involved.

Example 1

A useful application of the try and error statements is to stop a large computation as quickly
and cleanly as possible. For example, suppose that you are trying to compute an integral by
using one of several methods, and in the middle of the first method, you determine that it
will not succeed. You want to stop that method and try another one. The following code
implements this example.

try
result := MethodA(f,x)

>

catch "FAIL":
result := MethodB(f,x)

end try:

MethodA can stop its computation at any time by executing the statement error "FAIL".
The catch clause catches that exception, and proceeds to try MethodB. If any other error
occurs during the execution of MethodA, or if an error occurs during the execution of
MethodB, it is not caught.
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Example 2

Another useful application of the try statement is to ensure that certain resources are released
when you are done with them, regardless of whether anything went wrong while you were
using them.

Use the following code to access the Maple I/O facilities to read the lines of a file and process
them in some way.

f := fopen("myfile",READ,TEXT):
try

>

line := readline(f);
while line < 0 do

ProcessContentsOfLine(line);
line := readline(f)

end do
finally
fclose(f)

end try:

In this example, if any exception occurs while reading or processing the lines of the file, it
is not caught because there is no catch clause. However, fclose(f) is executed before execution
leaves the try statement, regardless of whether there was an exception.

The next example uses both catch and finally clauses to write to a file instead of reading
from one.

f := fopen("myfile",WRITE,TEXT):
try

>

for i to 100 do
fprintf(f,"Result %d is %q\n",i,ComputeSomething(i))

end do
catch:
fprintf(f,"Something went wrong: %q\n",lastexception);
error

finally
fclose(f)

end try:

If any exception occurs, it is caught with the catch clause having no catchString, and the
exception object is written into the file. The exception is re-raised by executing the error
statement with no msgString. In all cases, the file is closed by executing fclose(f) in the
finally clause.
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5.7 The use Statement
The use statement specifies local bindings of names, module exports, and operator overriding.
It has the following syntax:

use exprseq in

stateseq

end use

where stateseq is a sequence of statements and exprseq is a sequence of expressions.

The expressions can be any of the following.

• equation of the form name = expression

• module member selection m:-e, which is equivalent to the equation e = m:-e

• module expression m, which is equivalent to the equations e = m:-e for all exports e of
m.

For more information about modules and member selection, see Programming with
Modules (page 317).

Running a use statement executes the body of the statement. Each occurrence of a name
that appears on the left side of any of the binding equations is replaced by the right side of
the corresponding equation.

For example,

use f = sin, g = cos in
f( x )^2 + g( x )^2

end use;

>

(5.73)

The following example establishes local bindings for all of the exports of the StringTools
package.

use StringTools in
s := Random( 10, 'lower' );

>

Reverse( s )
end use;

(5.74)

Among these are the names Random and Reverse. Without the use statement enclosing
them, the two statements would have to be written using fully qualified names.
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s := StringTools:-Random( 10, 'lower' );>

(5.75)

StringTools:-Reverse( s );>

(5.76)

You can employ the use statement to establish general name bindings.

use a = 2, b = 3, c = 4 in
a + b + c

end use;

>

(5.77)

(This is useful when the names bound are used many times within the body of the use
statement.)

The use statement is unique in Maple. It is the only Maple statement that is resolved during
the automatic simplification process rather than during the evaluation process. To see this,
consider the following simple procedure.

p := proc( x, y )
use a = x + y, b = x * y in

>

a / b
end use

end proc;

(5.78)

Note that there is no use statement in the procedure after it has been processed, and a and
b in the body have been replaced by the values on the right-hand side of the binding equa-
tions. To see that this processing occurred during automatic simplification (of the procedure
definition), enclose the procedure definition in unevaluation quotes.

p := 'proc( x, y )
use a = x + y, b = x * y in

>

a / b
end use

end proc';

(5.79)

use statements can be nested.

use a = 2, b = 4 in
use x = 3, y = 5 in

>

a * x + b * y
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end use
end use;

(5.80)

If a name is bound in use statements at two different levels of nesting, the innermost binding
visible at the level of an expression is used.

use a = 2 in
a^2;

>

use a = 3 in
a^2

end use
end use;

(5.81)

In the following example, the inner binding of the value 3 to the name a takes precedence,
so the value of the expression a + b (and therefore the entire statement) is the number 6.
The inner binding of 3 to a has an effect only within the body of the inner use statement.
Once the execution has exited the inner use statement, the binding of 2 to a is restored.

use a = 2, b = 3 in
# here a is bound to 2 and b to 3

>

use a = 3 in
# here, b is still bound to 3, but a is bound to 3
a + b

end use;
# binding of a to 2 is restored
a + b

end use;

(5.82)

The use statement also allows you to rebind Maple operators to override their default beha-
vior. The following is an example in which addition and multiplication are replaced by
nonstandard meanings.

use `+` = ((x,y) -> (x+y) mod 3), `*` = ((x,y) -> (x*y) mod 3) in>

1 + 2 * 4
end use;

(5.83)

The following operators can have their default behavior overridden by a use statement.
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Table 5.1: Operators That Can Be Rebound

.%%%%%%@@@

^mod/-*+

insubsetintersectminusunion!

impliesxornotorand$

<|>assuming<=<<>=

~?[]?(){}[]<,>

Notes:

• The following operators cannot be rebound: concatenation operator (||), member selection
operator (:-), type operator (::), range (..), comma (,), functional operator (->), and assign-
ment statement (:=). The relational operators > and >= can be rebound, but not independ-
ently of < and <=, respectively.

• All of the element-wise operators are processed through the element-wise operator (~).

• The operators - and / are treated as unary operators (that represent negation and inversion,
respectively). Subtraction is represented internally in Maple by forming addition and
negation: a - b = a + (-b). Division is formed in a similar way. Therefore, it is not neces-
sary to override the binary infix operators - and /.

Note also that an expression such as a + b + c + d is treated as though it were parenthesized
as ((a + b) + c) + d, so that each + operator is binary. For example,

use `+` = F in
a + b + c + d;

>

a + ( ( b + c ) + d )
end use;

(5.84)

5.8 Other Statements
The quit Statement

The Maple keywords quit, done, and stop perform the same task and, when entered in the
command-line interface, cause the Maple process to terminate.

quit>

done>

stop>
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Note: The quit statement cannot be used in the Maple standard interface. In the standard
interface, use File > Close Document to end your Maple session.

quit, stop, and done are available as command names if quoted using name quotes. These
forms allow you to exit Maple while passing an integer in the range 0 .. 255 as an argument
to be returned to the calling process as exit status.

The save Statement

You can save Maple expressions to a file by using the save statement. It has the general
form

save name1, name2, ..., nameN, file

The names namei are names (that have assigned values) to be saved to the file file.

Normally, the file name file is a string.

For example, make the following three assignments and run the subsequent save statement.

a := proc( x ) sin( x / 2 ) end proc:>

b := 42:>

c := "some text":>

save a, b, c, "myfile.txt";>

The file myfile.txt is created in the current directory (assuming adequate file permissions)
containing the following Maple assignment statements.
a := proc (x) sin(1/2\*x) end proc;
b := 42;
c := "some text";

The read Statement

The read statement takes the following form.

read filename

where filename is a string.

read "myfile.txt";>

(5.85)
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The file named by filenamemust consist of valid Maple language statements. The statements
in the file are executed as they are read, as though they were input into the Maple session
in which the read statement was entered. Maple displays the results of executing each
statement. However, the input statements are not echoed to the interface, by default. To
change this, set the interface variable echo to a value of or higher.

interface( 'echo' = 2 ):>

5.9 Exercises
1. Find the product of the square root of all prime numbers less than 100.

Hint: The function isprime determines the primality of an integer.

2. Find the sum of all odd composite numbers less than 150.

3. Find the sum of the first 30 powers of 2.

4. Write a looping structure that finds the four substrings (of a string assigned to the name
MyString) containing only lowercase letters, uppercase letters, decimal digits, and special
characters.

Hint: You can use relational operators to compare characters.

5. Write a procedure, SPLIT, that, on input of a product f and a variable x, returns a list of
two values. The first item in the list should be the product of the factors in f that are in-
dependent of x, and the second item should be the product of the factors that contain an
x.

Hint: Use the has, select, remove, and selectremove commands.
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6 Procedures
A Maple procedure is a sequence of parameter declarations, variable declarations, and
statements that encapsulates a computation. Once defined, a procedure can be used to perform
the same computation repeatedly for different argument values, from different places in a
program, or both. A procedure in Maple corresponds to a function in languages such as C
or Java, a procedure or function in Pascal, or a subroutine in FORTRAN and modern versions
of BASIC.

Chapter 1 gave a brief introduction to procedures. This chapter describes the syntax and
semantics of procedures in detail, and discusses how to best make use of procedures in your
programs.

6.1 Terminology
Several terms are used frequently when discussing procedures in Maple and other program-
ming languages. Some of these terms are sometimes used interchangeably, but the distinctions
between them are important:

Procedure - In Maple, a procedure is an object that can be invoked by a function call, be
passed arguments, perform some operations, and return a result. A procedure definition
begins with the keyword proc, and ends with end proc.

Function Call - A function call, of the form name(arguments), evaluates the arguments
and then invokes a procedure if name has a value that is a procedure. The value of the
function call is then the value returned by the procedure. If name has no value, then the
value of the function call is just name(evaluatedArguments).

Argument - An argument is one of one or more values explicitly included in a function call.
Note that a default value is not an argument.

Parameter or Formal Parameter - A parameter is a name that is declared in a procedure
definition to receive the value of an argument. The parameter name is used to refer to that
value within the body of the procedure.

Actual Parameter - An actual parameter is neither an argument nor a (formal) parameter.
The term refers to the value that a formal parameter takes during the execution of a procedure.
This value can come from an argument or a default value. The term is defined here for
completeness; it is not further used in this chapter. Instead we will refer to the value of the
parameter.
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6.2 Defining and Executing Procedures
A Maple procedure definition has the following general syntax:

proc( parameterDeclarations ) :: returnType;

description shortDescription;

option optionSequence;

local localVariableDeclarations;

global globalVariableDeclarations;

statementSequence

end proc

A procedure definition is considered to be an expression in Maple, the evaluation of which
produces the procedure itself. The resulting procedure is usually assigned to a name, but it
can also be used in other ways such as passing it as an argument to another procedure, or
invoking it immediately.

The following is a simple procedure definition. It contains two formal parameters, x and y,
and one statement in the procedure body. There is no description, there are no options, and
the procedure does not make use of any local or global variables. In order to be able to use
the procedure later, we'll assign it to a name:

SumOfSquares := proc( x, y )
x^2 + y^2

end proc;

>

(6.1)

This procedure computes the sum of the squares of its two arguments. The procedure can
be called with any two arguments and Maple will attempt to compute the sum of their
squares. Like any computation in Maple, the result can be symbolic. If you want to restrict
the types of arguments that are permitted, it is possible to specify the type for each argument
in the parameter declarations, as described in the next section.

You can invoke (or execute) a procedure by using it in a function call:

procedureName( argumentSequence )

The procedureName is usually the name that the procedure was assigned to, although it
can also be an actual procedure definition, or another expression that evaluates to a procedure.

The argumentSequence is a sequence of expressions that will be evaluated, and then sub-
stituted for the corresponding parameters before the execution of the statements comprising
the body of the procedure. Note that the arguments are evaluated only once before the exe-
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cution of the procedure begins. They are not evaluated again during execution of the pro-
cedure.

The value returned by the procedure is the result of the last statement executed within the
procedure. In the following function call, Maple executes the statements in the body of the
procedure SumOfSquares, replacing the formal parameters x and y with the arguments a
and 3. The result of the last (and in this case, only) statement in the procedure is the returned
value:

SumOfSquares(a,3);>

(6.2)

For more information about return values, seeReturning Values from a Procedure (page 244).

6.3 Parameter Declarations
In the procedure definition, parameterDeclarations is a sequence of parameter declarations.
Procedure parameter declarations can range from very simple to very sophisticated. In its
simplest form, a parameter declaration is just the parameter's name. When you call the
procedure, you can pass any value as an argument for such a parameter, and if you pass no
value at all, the parameter will have no value.

You can extend a parameter declaration by adding a type specification and/or a default
value. A type specification ensures that, when the procedure is called, the value of the
parameter within the procedure will be of the indicated type, and a default value ensures
that a parameter will always have a value even if no corresponding argument was passed.

Maple procedures can also have keyword parameters. When invoking a procedure, the
corresponding arguments are of the form keyword=value, and can appear anywhere in the
argument sequence.

When you call a procedure, the arguments are evaluated and then bound to the parameters.
In the simplest case, there is a one-to-one correspondence between arguments and parameters;
the first argument is bound to the first parameter, the second argument to the second para-
meter, and so on. The presence of default values and keyword parameters can change this
correspondence, as described in this section.

Required Positional Parameters

A required positional parameter is called required because a corresponding argument must
have been passed in the function call that invoked the procedure if the parameter is used
during the execution of the procedure. It is called positional because the argument's position
within argumentSequencemust correspond to the position of the parameter in parameter-
Declarations.
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The syntax to declare a required positional parameter is:

parameterName :: parameterType

The parameterName must be a valid symbol, and is used to refer to the parameter within
the procedure body. The :: parameterType is optional. If it is present and the corresponding
argument does not match the specified type, an exception is raised.

In this example, the procedureAdder is defined with two parameters, a and b. The procedure
returns the sum of its two arguments. For the parameter a, Adder expects an argument of
type integer.

Adder := proc( a::integer, b ) a+b end proc:>

Adder(2,3);>

(6.3)

The next call to Adder raises an exception because the second argument is missing.

Adder(3);>
Error, invalid input: Adder uses a 2nd argument, b, which is missing

This call raises an exception because the supplied first argument does not match the para-
meter's specified type.

Adder(2.5,4);>
Error, invalid input: Adder expects its 1st argument, a, to be of type
integer, but received 2.5

If a procedure has both required and ordered parameters (described below), all of the required
parameters must appear before the ordered parameters.

Optional Ordered Parameters

An optional ordered parameter is declared in the same way as a required positional parameter,
with the addition of a default value:

parameterName :: parameterType := defaultValue

The presence of defaultValue allows the parameter to be optional. If there are no remaining
arguments or the next unused argument does not match the specified parameterType, the
parameter receives the default value. The non-matching argument, if any, remains available
for binding to a later parameter.

As was the case with a required positional parameter, :: parameterType can be omitted.
The parameter will receive its default value only when there are no more available arguments,
since any available argument would have been valid for an untyped parameter.
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Usually, defaultValue will be of the type specified by parameterType, but this need not
be the case. The default value can be a literal value of any other type, orNULL. If the default
value is not a literal value, but is an expression that evaluates to something other than itself,
then the result of that evaluation must conform to parameterType.

This class of parameters is called ordered because the arguments are bound to parameters
in the order they were passed. If the first unused argument is not bound to the current
parameter, it remains as the first available argument for the next parameter.

In this example, the procedure Adder is defined with two optional ordered parameters, a
and b, both of type integer, and returns their sum:

Adder := proc(a::integer := 10, b::integer := 100.1)
a + b

end proc:

>

Adder(3,4);>

(6.4)

Adder(3);>

(6.5)

Adder();>

(6.6)

Adder(3,6.6);>

(6.7)

In the first call to Adder, the arguments 3 and 4 were bound to the parameters a and b, and
their sum returned. In the second call, only a single argument was passed, so b received its
default value. Notice that the default value is not an integer, but since it is a literal value,
is an acceptable default. In the third call, no arguments were passed and both parameters
received their default values.

You may have expected the result of the fourth call to Adder to be 9.6, but this is not the
case. Why? First, parameter a was given the value 3. Next, 6.6 was considered a candidate
for parameter b, but was rejected because it is not of type integer. Instead, b received its
default value.

This illustrates an important aspect of calling procedures in Maple, which is that in general,
it is acceptable to call a procedure with more arguments than it expects. You will see later
how to access these within a procedure, allowing you to write procedures that accept a
variable number of arguments, or how to disallow the passing of extra arguments.
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Expected Ordered Parameters

An expected ordered parameter is similar to an optional ordered parameter, except that the
corresponding argument can be omitted only if all further arguments are also omitted. If
there is an argument available, it must match parameterType or an exception is raised.

The declaration of an expected ordered parameter declaration differs from that of an optional
ordered parameter by enclosing parameterType in expects():

parameterName :: expects( parameterType ) := defaultValue

The procedure below is identical to the one from the previous section, except that parameter
b has been declared as an expected parameter. When it is called with a second argument of
the wrong type, instead of saving that argument for a later parameter, Maple raises an ex-
ception:

Adder := proc(a::integer := 10, b::expects(integer) := 100.1)
a + b

end proc:

>

Adder(3,6.6);>
Error, invalid input: Adder expects its 2nd argument, b, to be of type
integer, but received 6.6

Keyword Parameters

Keyword parameters are not positional and not ordered. A keyword parameter is bound to
a value when an argument of the form keyword=value appears in a procedure invocation.
The left-hand side of such an argument specifies the keyword parameter name, and the
right-hand side specifies the value it will receive. If true is an acceptable value for the
parameter, then an argument of the form keyword is equivalent to keyword=true.

The declaration of a keyword parameter looks very much like that of an optional ordered
parameter, except that all keyword parameter declarations are enclosed in braces, much like
a set is:

{ ... parameterName :: parameterType := defaultValue ... }

The :: parameterType can be omitted, in which case any value can be passed as the right-
hand side of the keyword argument. If parameterType is specified, then the passed value
must be of that type.

As is the case with an ordered parameter, if defaultValue is a literal value, it need not match
parameterType.

A procedure can have multiple keyword parameters, which can be declared within a single
set of braces, or grouped into multiple sets of braces as desired to improve source code
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readability. When a procedure is compiled into Maple's internal form, the keyword parameters
are consolidated into a single set. If you then display that procedure using Maple's print
command, the keyword parameters are displayed as a single set, sorted lexicographically.

The simplest and most frequently encountered form of keyword parameter declaration has
a single Maple symbol for parameterName:

Simple := proc( { simple::integer := 2 } )
sprintf("simple=%d",simple)

end proc:

>

Simple(simple=3);>

(6.8)

Simple();>

(6.9)

Simple(simple=4.5);>
Error, invalid input: Simple expects value for keyword parameter simple
to be of type integer, but received 4.5

It is also possible to declare keyword parameters that can be referred to by indexed names
when the procedure is called. If parameterName is of the form `symbol[symbol]` or
`symbol[integer]`, it matches indexed names.

The indexed parameter names are still symbols because of the enclosing left single quotes,
and are referenced that way within the procedure, but the argument names can be actual
indexed names. For more information on indexed keyword arguments, see Binding of
Arguments to Parameters (page 239).

As a convenience to the user of a procedure, multiple spellings of the keyword are allowed
by specifying a list of the permitted spellings in the declaration:

{ ... [ parameterName1, parameterName2, ... ] :: parameterType :=

defaultValue ... }

Within the procedure's statementSequence, you can refer to the parameter by any of the
declared spellings. If you display the procedure using print, however, only the first spelling
is used.
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Spellings := proc( { [color,colour]::symbol := RED } )
sprintf("color=%a -- colour=%a", color, colour)

end proc;

>

(6.10)

Spellings();>

(6.11)

Spellings(color=BLUE);>

(6.12)

Spellings(colour=GREEN);>

(6.13)

Spellings(color=ORANGE,colour=PURPLE);>

(6.14)

Spellings(colour=YELLOW,color=42);>
Error, invalid input: Spellings expects value for keyword parameter
[color, colour] to be of type symbol, but received 42

If more than one keyword argument matches a keyword parameter, only the last one takes
effect.

Alternate spellings and indexed keywords can be combined by including the indexed keyword
symbols in the list of alternate spellings.

The End-of-Parameters Marker

Recall from earlier that Maple usually allows extra arguments to be passed to a procedure.
This is useful when implementing procedures that can accept a variable number or type of
arguments, but for many procedures, the presence of extra arguments indicates a program-
ming error.

A procedure can be declared to disallow extra arguments (that is, arguments that were not
bound to any declared parameter) by ending the sequence parameterDeclarations with $.
If extra arguments remain at the end of argument processing, Maple raises an exception:

TwoSine := proc( x::float := 0.0, $ ) 2 * sin(x) end proc:>
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TwoSine(2.3);>

(6.15)

TwoSine();>

(6.16)

TwoSine(2.3,-4.5);>
Error, invalid input: too many and/or wrong type of arguments passed
to TwoSine; first unused argument is -4.5

TwoSine(42);>
Error, invalid input: too many and/or wrong type of arguments passed
to TwoSine; first unused argument is 42

Default Value Dependencies

You can express the default value defaultValue of a parameter in terms of other parameters,
as long as the resulting value conforms to the specified type parameterType, if any. The
parameters on which defaultValue depends can appear earlier or later in parameterDeclar-
ations. For example, here is a list extraction function that expects a list, a starting index,
and an ending index. If the ending index is omitted, the length of the list is used:

SubList := proc( s::list, f::integer := 1, t::integer :=
numelems(s) )

>

s[f..t]
end proc:

SubList([a,b,c,d,e],2,3);>

(6.17)

SubList([a,b,c,d,e],2);>

(6.18)

There can be no cyclic dependencies, such as two parameters' default values depending on
each other:

NotGood := proc( s := sin(c), c := cos(s) ) s^2 + c^2 end proc;>
Error, cyclic dependency detected in parameter s := sin(c) in procedure
NotGood

Usually, Maple evaluates the arguments of a function call from left to right. The use of
parameter dependencies in default values will alter this order to ensure that the required
values are available by the time they are needed. This is only of consequence if the evaluation
of one or more arguments has side effects.
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Parameter Modifiers

Parameter modifiers change the way that arguments are evaluated and/or bound to parameters.
Modifiers appear as part of the parameter's declaration, in the form of a function call enclos-
ing the parameter type parameterType.

You have already seen the expects modifier, which changes an optional ordered parameter
into an expected ordered parameter.

The seq Modifier

The seq modifier allows the parameter to match multiple arguments. When a parameter
with a specified type of the form seq(memberType) is encountered, it is bound to an expres-
sion sequence of all arguments (beginning with the next available one) that are of the type
specified by memberType.

parameterName :: seq(memberType)

If no arguments match memberType, the parameter will receive its default value if one
was specified, or NULL if there is no default value.

The seq modifier cannot be used together with the expects modifier, because seq is allowed
to match zero arguments, whereas expects implies that at least one argument must match.
The seq modifier also cannot be used with a keyword parameter.

You must be careful when working with the value of a seq parameter because it might have
just one element in it. Such a value is not considered to be a sequence, thus indexing it will
not select the element. The safest approach is to enclose the parameter in a list, as in this
example:

LargestInteger := proc( x::seq(integer), other::seq(anything) )
local max, n;

>

max := -infinity;
for n in [x] do

if n > max then max := n end if
end do;
max, [other]

end proc:

LargestInteger(4,7,8,2,1);>

(6.19)

LargestInteger(4,7,"not an integer",8,2,1);>

(6.20)
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The depends Modifier

Usually, a parameter's type is predetermined when the procedure is first written. When ar-
guments are matched to parameters, parameterType is not evaluated since this is not ex-
pected to yield anything other than what was written. There are cases where this is too re-
strictive. In that case, use the depends modifier to declare that a parameter's type depends
on something that could change. Such a dependency is usually on another parameter.

The syntax for a parameter declaration with the depends modifier is:

parameterName :: depends( parameterTypeExpression )

where parameterTypeExpression is a type expression that can refer to other parameter
names.

For example, you might want to write a procedure like this to find one root of a polynomial:

OneRoot := proc( p::depends(polynom(integer,v)), v::symbol )
local sols;

>

sols := [ solve(p=0,v) ];
if sols = [] then

error "no solution"
else

sols[1]
end if

end proc:

OneRoot(x^2+3*x+5,x);>

(6.21)

OneRoot(x^2+3*x+5,y);>
Error, invalid input: OneRoot expects its 1st argument, p, to be of
type polynom(integer,y), but received x^2+3*x+5

This procedure expects as an argument for its first parameter, p, a polynomial in the variable
specified by the second parameter, v. If the depends modifier were omitted, the procedure
would only accept polynomials in the global variable v.

The depends modifier can only be used for required parameters. It cannot be used for op-
tional or expected ordered parameters, nor keyword parameters. If the depends modifier is
used together with the seq modifier, it must appear within it. That is, parameterType must
be written in the form seq(depends(memberType)).
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The uneval Modifier

Unlike the other modifiers described so far, the uneval modifier takes no arguments. That
is, it does not enclose another type or modified type. Instead it is used as the parameterType.

parameterName :: uneval

A parameter with the uneval modifier prevents the corresponding argument from being
evaluated when the procedure is called. The effect is the same as if the argument had been
enclosed in unevaluation quotes ('...').

The uneval modifier can only be used for required positional parameters, and cannot be
used in conjunction with any other modifiers. It also cannot be used for any parameter de-
claration after one that uses the seq modifier.

Square := proc( x::uneval ) x^2 end proc:>

(a, b) := (3, 4.5):>

r := Square(a+b);>

(6.22)

eval(r);>

(6.23)

The evaln Modifier

A parameter declared with the evaln modifier expects an argument that can be evaluated to
a name (that is, an assignable object). This modifier can be used in two different forms,
evaln or evaln(valueType). In the second form, the resulting name is expected to have a
value that matches the type valueType.

parameterName :: evaln

parameterName :: evaln(valueType)

In effect, declaring a parameterwith the evaln modifier is equivalent to enclosing the argu-
ment with evaln at procedure invocation time, and allows you to write procedures where
the user of the procedure does not have to remember to do so.

Like uneval, the evaln modifier can only be used for required positional parameters, and
cannot be used for a parameter declaration after one having a seq modifier. The only other
modifier that can be used together with evaln is the depends modifier, in the form de-
pends(evaln(valueType)).

SquareName := proc( x::evaln(integer) ) x^2 end proc:>

(a, b) := (3, 4.5):>
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In the first call, the argument a is evaluated to 'a', which is a name with an integer value.

SquareName(a);>

(6.24)

In the next call, the argument b is evaluated to 'b', which is a name, but not with an integer
value.

SquareName(b);>
Error, invalid input: SquareName expects its 1st argument, x, to be
of type evaln(integer), but received b := 4.5

In the next call, the argument does not evaluate to a name.

SquareName(a+b);>
Error, illegal use of an object as a name

In the next example, the procedure Accumulate accumulates all the values of its second
argument in the variable passed as its first argument. Notice that the first call fails, because
Accumulate expects a name with a numeric value, but total has not been initialized yet.

Accumulate := proc( r::evaln(numeric), n::numeric )
r := eval(r) + n

end proc:

>

Accumulate(total,2);>
Error, invalid input: Accumulate expects its 1st argument, r, to be
of type evaln(numeric), but received total := total

total := 0;>

(6.25)

Accumulate(total,2);>

(6.26)

Accumulate(total,3.5);>

(6.27)

total;>

(6.28)

The coercion Modifiers
parameterName :: (valueType)
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parameterName :: coerce(valueType,coercion procedure)

As stated previously in Procedures (page 205), coercion refers to the ability to pass one type
of data to a procedure and have it receive a different type.

Coercion can be enabled in two ways:

• Coercion Using ~Type: You can use a short form notation to invoke Maple built-in co-
ercion functions. This short form notation is a tilde (~) followed by a data type. For ex-
ample, the command ~Matrix will accept, among other things, a listlist and return a
Matrix. This type of ~ function can be used in place of the data type in a procedure de-
claration. This tells Maple to try testing if the passed parameter is of that type, and if not,
call the ~ function to coerce it into that type.

• Coercion Using coerce(): You can use long form notation to enable data coercion by
using the coerce() modifier. The coerce modifier allows you to specify a sequence of
types and coercion procedures. A coercion procedure is a procedure that accepts a single
typed parameter and converts that parameter into a new expression. When the main pro-
cedure is called, the argument is type checked against the parameter types handled by
the coercion procedure. The first coercion procedure whose parameter's type matches the
type of the argument is called. The return value of the matching coercion procedure is
then used as the parameter's value.

p_string :=proc(s::coerce(string, (s::name)->convert(s,string)))
s;
end proc;

>

(6.29)

p_string("a string");>

(6.30)

p_string(`a name`);>

(6.31)

Procedures without Declared Parameters

You can define a procedure without any declared parameters. Some procedures, such as
one that generates random numbers, might not depend on any arguments. Other procedures
might operate directly on global values, although this is considered poor programming
practice.
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However, just because a procedure has no declared parameters does not mean that it cannot
be passed arguments. Unless a procedure's parameterDeclarations ends with $, it is always
permissible to pass more arguments than there are declared parameters. All of the arguments
are accessible via the special sequence _passed, which has one entry corresponding to each
argument that was passed. The number of entries is given by _npassed. For example, the
following procedure produces the sum of all its arguments:

SumOfArgs := proc( )
add(_passed[i], i=1.._npassed)

end proc:

>

Warning, `i` is implicitly declared local to procedure `SumOfArgs`

SumOfArgs(42,3.14,sin(-2.5));>

(6.32)

For more information on _passed and _npassed as well as other special names for working
with parameters, see Special Sequences for Referring to Parameters and
Arguments (page 233).

6.4 Return Type
The closing parenthesis following a procedure's parameter declarations can be followed by
:: and a returnType assertion. This is optional. Unlike a parameterType specification,
returnType is only an assertion. If kernelopts(assertlevel) is set to 2, the type of the value
returned by the procedure is checked against the type specified by returnType, and if it
does not match, an exception is raised:

ReturnInteger := proc( x ) :: integer;
x^2

end proc:

>

kernelopts(assertlevel=2):>

ReturnInteger(3);>

(6.33)

ReturnInteger(Pi);>

Assertions are useful for identifying programming errors. For more information, see Using
Assertions (page 590).

6.4 Return Type • 219



6.5 The Procedure Body
The body of the procedure is where most of the computation is carried out (although some
computation may already have occurred while resolving the defaultValue for optional
parameters). The procedure body consists of an optional description, option declarations,
local and global variable declarations, and executable statements.

The description, option, local variable, and global variable declaration parts are each intro-
duced by their own keyword, and can appear in any order. There can be only one description
clause and one option clause. There can be any number of variable declaration clauses.

Description

Use the description clause to give a procedure a short description that is displayed when
the procedure is displayed. The description has no effect on the execution of the procedure.
It is only used for documentation purposes.

description string, string, ... ;

The description keyword is followed by one or more string literals, separated by commas.

Average := proc( x::integer, y::integer )
description "Compute the average of two integers.",

>

"Returns a rational.";
(x + y) / 2;

end proc;

(6.34)

Options

A procedure can be tagged with one or more options which alter the behavior or display of
the procedure. Options are specified by the keyword option or options, followed by one or
more option names or equations, separated by commas:

option optionNameOrEquation, ... ;

options optionNameOrEquation, ... ;
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Each optionNameOrEquation is a symbol or an equation of the form optionName=value.
Any symbol is allowed as an option name that you can use to tag procedures for your own
purposes, but there are several options that are known to Maple.

The arrow and operator Options

The arrow option and the operator option have meaning when specified together. These
options cause Maple to print the procedure using arrow notation:

SumOfSquares := proc( x, y )
option operator, arrow;

>

x^2 + y^2;
end proc;

(6.35)

For information on defining a procedure using arrow notation, see Functional Operators:
Mapping Notation (page 263)

The builtin Option

Maple has two classes of procedures: kernel built-in procedures implemented in the C pro-
gramming language, and library procedures written in the Maple programming language.
Because the kernel built-in functions are compiled, you cannot view their procedure defin-
itions. The builtin option identifies a kernel procedure.

This option is shown when you display a purely built-in procedure. Instead of displaying
the procedure statements, only the builtin option is displayed.

For example, the add procedure is built into the kernel:

print(add);>

(6.36)

A procedure can have both the builtin option and a statement sequence. In that case, invoking
the procedure will first invoke the kernel built-in version. If that indicated that it did not
compute a result, the statement sequence is executed instead. This mechanism allows the
kernel to process common cases very quickly, and defer to library code to handle other
cases.

You can use the type function to test if an expression is a built-in procedure. An expression
is of type builtin if it is a procedure with option builtin:

type(add, 'builtin');>

(6.37)
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type(int, 'builtin');>

(6.38)

You cannot create built-in procedures, although there is a mechanism for creating procedures
based on externally compiled code. Such procedures have the call_external option.

The call_external Option

The call_external option appears in procedures generated by the define_external procedure.
This option indicates that the implementation of the procedure resides in a pre-compiled
external library. For more information, see External Calling: Using Compiled Code in
Maple (page 495).

The hfloat Option

The hfloat option forces all floating-point operations within a procedure to be performed
using hardware floating-point values. Depending on the operations performed, this can
significantly speed up execution of the procedure at the cost of floating-point accuracy.
Procedures that perform many floating-point operations or manipulate the contents of Arrays,
Matrices, or Vectors of hardware floating-point values will benefit the most from this option.

The hfloat option causes the following differences in the procedure's definition and execu-
tion:

Any floating-point constants appearing in the procedure body are converted into hardware
floating-point values when the procedure is first created.

Numeric arguments passed to the procedure are converted into hardware floating-point
values when the procedure is invoked.

Extracting values from hardware floating-point Arrays, Matrices, and Vectors does not incur
a conversion to arbitrary precision floating-point form. Instead, the hardware floating-point
values are used directly.

Calls to evalhf made from within the procedure return a hardware floating-point value, and
thus do not incur a conversion to arbitrary precision floating-point form.

These differences, together with the rules for contagion of hardware floating-point values
in expressions, will usually cause arithmetic operations in the procedure to be performed
using hardware floating-point arithmetic.

The use of the hfloat option differs from using evalhf in a few ways:

When a procedure is executed within the evalhf environment, everything is computed using
hardware floats, and the operations available are restricted to those that can be done using
hardware floats. No other basic data types, such as integers or strings, are available.
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The only data structures available within the evalhf environment are Arrays.

Performance of a procedure having option hfloat is generally better than one operating with
arbitrary precision floats, but usually not as good as a procedure operating within evalhf.
But, a procedure with option hfloat has the full power of Maple available to it. All Maple
operations, data types (except arbitrary precision software floating point), and data structures
can be used in such a procedure.

The hfloat option cannot be used in conjunction with the builtin, call_external, or inline
options.

Hardware floating-point numbers and computations are discussed in detail in Numerical
Programming inMaple (page 279). For more information on hardware floating-point conta-
gion, see Floating-Point Contagion (page 291).

The inline Option

Use the inline option to create a procedure that can be expanded inline wherever it is called
from. An inline procedure avoids the overhead of a procedure invocation by executing the
procedure's statements directly as if it were written in-line instead of in a separate procedure.
This can result in improved execution speed and reduced memory usage.

Not all Maple procedures can take advantage of the inline option. Only procedures whose
body consists of a single expression or an expression sequence can be expanded in-line.
The body cannot consist of a statement or statement sequence. For details on further restric-
tions that may apply, refer to the inline help page.

The overload Option

The presence of option overload in a procedure indicates that the procedure will operate
only on arguments matching the declared parameters (as is normally the case), and that if
the arguments do not match the parameters, the next in a sequence of such procedures is
tried.

A sequence of procedures with option overload can be combined into a single procedure
using the overload command. This will produce a new procedure that will, when called, try
each overload procedure in turn until one is encountered that will accept the arguments, or
no procedures remain. In the latter case, an exception will be raised.

The following example uses the overload command and procedures with the overload option
to append an entry to either a list (by creating a new list) or a 1-dimensional Array (in-place):

Append := overload(
[

>

proc( L::list, x::anything ) option overload;
[ op(L), x ]
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end proc,
proc( A::Array(..), x::anything ) option overload;

A(ArrayNumElems(A)+1) := x
end proc

]
):

Append([1,2],3);>

(6.39)

Option overload can also be used to specify that a procedure exported by a package is only
applied to arguments of specific type. If non-matching arguments are passed, the default
behavior occurs instead.

For example, you can define a new implementation of `+` that works only on set arguments.
The system default `+` operator is used for all other cases.

SetOperations := module() option package;
export `+` := proc( a::set, b::set ) option overload;

>

a union b
end proc;

end module:

with(SetOperations);>

(6.40)

{1,2,3} + {4,5};>

(6.41)

123 + 45;>

(6.42)

For more information on packages, see Writing Packages (page 395).

The procname Option

As you will read later, the special name procname used within a procedure refers to the
name by which the procedure was called. Among other things, this name is used to describe
the location that an exception occurred when displaying an error message. It can also be
used to return unevaluated calls to the procedure, and to make recursive calls.

If a procedure has the procname option, then the value of the procname special name
within the procedure is inherited from the procedure that called it. If an error then occurs
within the called procedure, the error is reported as having occurred in the calling procedure.
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This allows you, for example, to break up your procedure into sub-procedures, yet still have
any errors reported as if they occurred in your main procedure.

For more information on the uses of procname, see Returning Unevaluated (page 248) and
Recursion (page 266).

The remember, cache, and system Options

The remember option activates a procedure's remember table. For a procedure with an
active remember table, at the end of each invocation of the procedure, an entry that records
the computed result for the specified arguments is made in the procedure's remember table.
Subsequent calls to the procedure with the same arguments simply retrieve the result from
the remember table instead of invoking the procedure.

The remember option allows writing an inherently recursive algorithm in a natural manner
without loss of efficiency. For example, the Fibonacci numbers can be computed by the
procedure:

Fibonacci := proc( n::nonnegint )
option remember;

>

if n < 2 then
n

else
Fibonacci(n-1) + Fibonacci(n-2)

end if
end proc:

Without the remember option, the time required to compute Fibonacci(n) is exponential
in n. With option remember, the behavior becomes linear. For a comparison of the efficiency
of this procedure with and without option remember, see Profiling a Procedure (page 599).

Entries can be explicitly inserted into a procedure's remember table by writing a function
call on the left-hand side of an assignment. For example, the Fibonacci procedure can be
written:

Fibonacci := proc( n::nonnegint )
option remember;

>

Fibonacci(n-1) + Fibonacci(n-2)
end proc:

Fibonacci(0) := 0:>

Fibonacci(1) := 1:>

A procedure's remember table can grow without bound, and for some procedures, may
eventually contain many entries that will never be needed again. Adding the system option
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to a procedure allows Maple's garbage collector to clear out the remember table whenever
garbage collection occurs. If a discarded result is needed again later, it will be recomputed.

As an alternative to remember tables, Maple also provides the cache option. Unlike a re-
member table, which can grow without bound, a cache has a maximum number of entries.
When the cache becomes full, old entries are removed as new ones are inserted.

The cache option can be specified as just the symbol cache, or with an optional argument,
in the form cache(N) where N is an integer specifying the size of the cache. If (N) is not
specified, the cache is sized to hold 512 entries.

You can explicitly insert permanent entries into a procedure's cache using the Cache:-Ad-
dPermanent function.

When the interface variable verboseproc is 3, displaying a procedure also displays the
contents of its remember table or cache as comments following the procedure definition:

Fibonacci(7);>

(6.43)

interface(verboseproc=3):>

print(Fibonacci);>

(6.44)

The remember and cache options are mutually exclusive, and the system option can only
be used in conjunction with the remember option.

The trace Option

If a procedure is given the trace option, Maple will log each entry to and exit from the
procedure, and the result of any assignment made during the execution of the procedure:

Fibonacci := proc( n::nonnegint )
option remember, trace;

>

Fibonacci(n-1) + Fibonacci(n-2)
end proc:

Fibonacci(0) := 0:>

Fibonacci(1) := 1:>
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Fibonacci(3);>
{--> enter Fibonacci, args = 3
{--> enter Fibonacci, args = 2
value remembered (in Fibonacci): Fibonacci(1) -> 1
value remembered (in Fibonacci): Fibonacci(0) -> 0

1

<-- exit Fibonacci (now in Fibonacci) = 1}
value remembered (in Fibonacci): Fibonacci(1) -> 1

2

<-- exit Fibonacci (now in `mpldoc/process_example`) = 2}

(6.45)

Variables in Procedures

A variable is a name representing an item of data, such as a numerical value, character
string, or list of polynomials. The value of the variable, that is,which data item it represents,
can change during the execution of a procedure (or sequence of Maple commands at the
top-level, outside of any procedure). There are three different classes of variables that can
be used within a procedure: global, local, and lexically scoped.

Global Variables

A global variable has meaning within an entire Maple session. Many procedures may access
a global variable, and all those procedures will refer to the same instance of that variable.
A value assigned to a global variable during one function call will still be there the next
time the procedure is called (if it was not changed by another procedure in the meantime).
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Global variables are introduced by the global keyword, followed by one or more declarations:

global variableName := value, ... ;

The optional := value part is an assignment that is executed at the beginning of procedure
execution. Semantically, it is equivalent to writing a separate assignment statement imme-
diately after all the variable declaration clauses.

A global variable continues to exist and retain its value after the procedure exits, and con-
ceptually, existed (and possibly had a value) before the procedure was executed. Its lifetime
is thus the duration of the entire Maple session.

Local Variables

A local variable has meaning only within a particular procedure. If the same variable name
is referenced outside of the procedure or within a different procedure, it refers to a different
instance of that name, and is therefore a different variable.

The lifetime of a local variable is the time that the procedure is executing. The variable is
created when the procedure is first invoked, and is usually discarded when the procedure
has finished executing. If the same procedure is later executed again, a new instance of the
variable is created. The variable does not retain its value from its previous lifetime.

Local variables are declared using the following syntax:

local variableName :: typeAssertion := initialValue, ... ;

The only required part of the declaration is variableName.

The optional :: typeAssertion assertion specifies that the variable is expected to always
refer to values of the specified type. Since this is an assertion, if kernelopts(assertlevel) is
set to 2, the type is checked every time a new value is assigned to the variable. If the value
is not of the specified type, an exception is raised.

The optional := initialValue ensures that the variable is assigned the specified value before
its first use. The initialValue can be any Maple expression. If the value is a literal expression
sequence, it must be enclosed in parentheses, since otherwise the comma separating the
elements of the sequence is interpreted as the comma separating individual variable declar-
ations.

Lexically Scoped Variables

When one procedure is defined within another procedure (or within a module), variables
in the outer procedure (or module) are visible to the nested procedure. This is called lexical
scoping. Consider the following procedure, which given a list, produces a new list in which
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every element has been divided by the element with the largest magnitude, and then raised
to a specified integer power:

PowerList := proc( L::list, power::integer )
local largest := max(abs~(L));

>

map( proc(x) (x / largest) ^ power end proc, L )
end proc:

PowerList([1,1/2,-3.14],2);>

(6.46)

This example uses an anonymous nested procedure, declared directly within the expression
that uses it. Notice that this inner procedure refers to both of the symbols power and largest.
Because there are no variable or parameter declarations in the inner procedure that declare
these symbols, lexical scoping ensures that they are automatically bound to the corresponding
symbol in the outer procedure. In other words, power in the inner procedure refers to the
parameter power of the outer procedure, and largest in the inner procedure refers to the
local variable largest of the outer procedure.

Scoping Rules

If you want a variable to be local to a procedure or global, you should declare that variable
using a local or global declaration. Declaring the scope of variables makes it easier to debug
your code, and also makes it easier for someone else to understand your procedure.

On the other hand, if a variable is intended to refer to a parameter or local variable declared
in an enclosing procedure, you must not declare it in the enclosed procedure. Doing so
would defeat lexical scoping by making the variable local to the enclosed procedure, and
thus a different variable with no connection to the one in the enclosing procedure.

If an undeclared variable does not correspond to a parameter or declared variable in a sur-
rounding procedure, Maple determines its scope, and either automatically declare the variable
as local or assume that it is global. When the variable is automatically declared local, such
an implicit declaration generates a warning:

ImplicitLocal := proc( x, y )
z := x + y;

>

if z < 0 then z^2 else z^3 end if
end proc:

Warning, `z` is implicitly declared local to procedure `ImplicitLocal`

Whether a variable is implicitly declared local or assumed to be global depends on how it
is used:

If the variable appears on the left-hand side of an assignment statement or as the controlling
variable of a for loop, Maple adds the variable to the procedure's local declarations. This
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means that if an enclosed procedure also refers to the variable (without declaration), lexical
scoping binds it to the implicitly declared variable of the enclosing procedure. If a procedure
in which such an implicit local declaration is displayed using the print function, the variable
appears within the procedure's local declaration clause.

Otherwise, Maple assumes the variable is global. However, the variable is not added to the
procedure's global declaration clause, which means that it is not subject to lexical scoping
if the same name is used within an enclosed procedure.

Here is a summary of how the scope of a variable is determined:

If the variable is declared as a parameter, local, or global variable in the procedure in which
the variable is encountered, the scope is specified by the declaration.

If the variable is not declared and there is a surrounding procedure (or module), the parameter,
local (including implicit local), and global declarations of the surrounding procedure are
examined. If the variable is found there, that binding is used. If it is not found, the search
continues outward through the layers of surrounding procedures.

If the top level (outside of any procedure or module) is reached, the usage of the variable
in the original procedure is examined. If it appears on the left-hand side of an assignment
or as the controlling variable of a for loop, it is added to the procedure's local declarations.
Otherwise it is assumed to be a global variable.

Non-Variable Name Bindings

In addition to the binding of names to parameters, local variables, and global variables, you
can also explicitly bind other names to objects outside of the procedure with the uses clause:

uses bindingSpecification, ...

The uses keyword is followed by one or more bindings, in a form identical to those of the
use statement, introduced in The use Statement (page 199). These bindings are in effect over
the entire body of the procedure, in the same way they would be if the procedure body had
been enclosed in a use statement.

The uses clause must appear at the top of the procedure body, together with the option, de-
scription, and initial local and global declarations. If you want to bind names in a subset of
the procedure body, use a use statement instead.

The Statement Sequence

The statementSequence section of the procedure can contain any number of Maple state-
ments, nested arbitrarily deeply. Other than one level evaluation and references to parameters,
the semantics of statements within a procedure are the same as if those statements were
executed outside of any procedure.
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Referring to Parameters within the Procedure Body

When referring to parameters in the body of a procedure, there are some things to keep in
mind.

Parameters Are Not Variables

Although a parameter declaration has a similar form to a local variable declaration, and
parameters are referred to by name the same way that variables are, parameters are not
variables. In Maple, a parameter always represents the argument that was bound to it.

Consider this example, which tries to use a parameter on the left-hand side of an assignment
statement:

Add2 := proc( x, y )
x := x + y

end proc:

>

Add2(3,4);>
Error, (in Add2) illegal use of a formal parameter

This call to Add2 results in an error because the statement x := x + y is interpreted as 3 :=
3 + 4. This is in contrast to languages such as C or C++, where a parameter is effectively a
local variable that has been initialized to the argument value.

A parameter can be used on the left-hand side of an assignment if the value of the parameter
is a name. The evaln parameter modifier can ensure that this is the case. Here is an example
you saw earlier:

Accumulate := proc( r::evaln(numeric), n::numeric )
r := eval(r) + n

end proc:

>

total := 0;>

(6.47)

Accumulate(total,2);>

(6.48)

Accumulate(total,3.5);>

(6.49)

total;>

(6.50)
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Here, the parameter r evaluates to the name `total`, an assignable object. Although it appears
that an assignment to the parameter r is being made within the procedure, it is really the
value of r, which in this case is the global variable total, that is being assigned to.

Required Parameters

Recall that a required parameter is one for which a corresponding argument must have
been passed if the parameter is used during the execution of the procedure. Failure to pass
an argument for a required parameter only raises an exception if an attempt is made to use
that parameter during the particular invocation of the procedure.

For example, a procedure may determine, based on the value of its first required parameter,
that it does not have to refer to the second required parameter.

Require := proc( x::integer, y::integer )
if x < 0 then x^2 else x * y end if

end proc:

>

Require(-3);>

(6.51)

Require(3,4);>

(6.52)

Require(3);>
Error, invalid input: Require uses a 2nd argument, y (of type integer),
which is missing

Parameters with the seq Modifier

If a required (or optional) parameter was declared with the seq modifier, then the parameter
will always have a value. That value will be a sequence of the specified type, a single item
of that type, or NULL (or the default value for an optional parameter).

To do anything with a seq parameter other than pass it on to another procedure, you should
convert the parameter value to a list and then work with the list:

AddAndMax := proc( x::seq(numeric) )
local a := 0, i;

>

for i in [x] do
a := a + i

end do;
a, max(x)

end proc:
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Without the [] brackets around x, this procedure would produce unexpected results if called
with a single floating-point number. A for var in expr loop iterates over the operands of
expr. If expr is a sequence of two or more numbers, it works as expected, but if expr were
a single float, the loop would iterate over the floats operands (the significand and exponent).
By enclosing x in a list, the loop will always iterate over the arguments bound to x.

Parameters with the uneval or evaln Modifiers

Parameters declared with the uneval or evaln modifiers are used like any other. Because
Maple uses one level evaluation rules inside procedures, these parameters do not evaluate
any further than they did when the arguments were initially evaluated. The eval function
can be used to evaluate such parameters further.

Optional and Expected Ordered Parameters

Both optional and expected ordered parameters are always declared with default values, so
using such a parameter within a procedure always yields a value. If an argument was bound
to the parameter during procedure invocation, the parameter's value is that argument. Oth-
erwise, the value of the parameter is the declared default value.

Keyword Parameters

Keyword parameters also have declared default values, so using the parameter always yields
a value. Unlike ordered parameters, keyword parameters receive their values from arguments
of the form keyword=value. The value of a keyword parameter is the value portion of such
an argument, not the entire argument.

Special Sequences for Referring to Parameters and Arguments

Maple provides a number of special named expression sequences to make it easy to work
with parameters and arguments. These are useful in cases when it would be awkward if they
could only be referred to by name.

The special names _params and _nparams can be used within a procedure to refer to the
current values of the positional and ordered parameters. The _params symbol represents
an expression sequence with _nparams members, one corresponding to each declared
parameter (excluding keyword parameters). For a given procedure, _nparams is constant.

The _params symbol can only be used when immediately followed by an index enclosed
in square brackets, _params[indexExpr]. It cannot be used in any other context. indexExpr
can evaluate to one of the following:

An integer, N, in the range 1 to _nparams, or -_nparams to -1. This is just the selection
operation on the sequence _params. It yields the value of the Nth parameter when N > 0,
or the (_nparams+1+N)th parameter when N < 0 (negative integers index _params from

6.5 The Procedure Body • 233



the end instead of the beginning). If no argument was passed for the requested parameter
and no default was declared, the result is NULL.

A range of such integers. This yields an expression sequence of values, with any NULL
values omitted. A sequence of all the non-NULL positional and ordered parameter values
can be obtained using _params[..]. Note that due to elision of NULLs, this could produce
fewer than _nparams values.

An unevaluated parameter name. The notation _params['parameterName'] is equivalent to
just writing parameterName, except when referring to a required positional parameter that
was not bound to an argument. In that case _params['parameterName'] yields NULL
whereas referring directly to parameterName would raise an exception.

The following example multiplies or divides the last three positional parameters by the first,
depending on the value of the keyword parameter multiply:

MulDiv := proc( a, b, c, d, { multiply := true } )
if multiply then

>

_params[-3..] * a
else

_params[-3..] / a
end if

end proc:
MulDiv(100,1,2,3);
MulDiv(100,1,2,3,multiply=false);

(6.53)

Just as _params and _nparams can be used to work with positional and ordered parameters
in a flexible manner, _options and _noptions provide similar facilities for working with
keyword parameters (often called keyword options).

The _options symbol represents an expression sequence containing _noptions members,
one for each declared keyword parameter. Each member of _options is an equation of the
form keyword=value.

If a keyword parameter was declared with multiple spellings, the corresponding member
of _options uses the first spelling.

Unlike _params, _options can be used directly, not only through the selection of members
of the sequence. Because _options returns a sequence of equations, even a member corres-
ponding to an argument with a NULL value is non-NULL. It is an equation of the form
keyword=NULL.
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When _options is used with an index, the index must evaluate to an integer (or a range of
integers) in the range 1 to _noptions or -(_noptions) to -1, or the unevaluated name of a
keyword parameter.

The order of the equations in _options does not necessarily correspond to the order in which
the keyword parameters were declared. Instead, the equations are in lexicographic order by
keyword (the first spelling for keyword parameters with multiple spellings). This is the
same order in which the keyword parameters are printed when the procedure is displayed
by the print command. As a consequence of this, if a new keyword parameter is added to
the procedure definition, the numeric index of the _options entry corresponding to a partic-
ular keyword parameter could change. Thus, when indexing _options, it is safest to use the
_options['parameterName'] form.

The following example uses _options to pass all the keyword arguments on to another
procedure:

MyRanMat := proc( a::integer, {density::float := 1.0, generator
:= 0..0.5} )

>

LinearAlgebra:-RandomMatrix(a, _options)
end proc:

MyRanMat(2, density=0.75, generator=1..9);>

(6.54)

MyRanMat(3, density=0.88);>

(6.55)

The next example selects specific keyword arguments to pass to another procedure:

MulRanMat := proc( a::integer, {density::float := 1.0, generator
:= 0..0.5, mult := 1.0} )

>

mult * LinearAlgebra:-RandomMatrix(a, _options['density'],
_options['generator'])
end proc:
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MulRanMat(4, density=0.75, generator=1..9, mult=x/2);>

(6.56)

When there are more arguments in a function call than needed to match the called procedure's
parameters, you can access the remaining arguments inside the procedure by using the
special sequence _rest. The number of members in this sequence is given by _nrest.

Because these extra arguments do not correspond to any declared parameters, it is not possible
for such an argument to have a NULL value. Recall that the only way for a parameter to be
NULL is for no argument to have matched a parameter with no declared default value (or
a default value of NULL). Since there is no declared parameter corresponding to any value
in _rest, these conditions cannot hold.

This example uses _rest and _nrest to return the number of entries in a sequence of numbers,
together with the maximum, and optionally the mean:

MaxMean := proc( {mean := false})
if mean then

>

_nrest, max(_rest), Statistics:-Mean([_rest])
else

_nrest, max(_rest)
end if

end proc:

c := MaxMean(6,200,400, mean=true);>

(6.57)

All of the arguments that were passed to a procedure can be accessed using the special se-
quence _passed, having _npassed elements.

Prior to Maple version 10, _passed and _npassed were known as args and nargs. These
older names are still accepted as synonyms for the newer names for backwards compatibility.
Of historical interest, the earliest versions of Maple did not support declared parameters at
all; args and nargs were the only mechanism for processing arguments.
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The _passed sequence can be used to do explicit argument processing within the body of
the procedure, although this is discouraged for two reasons:

Most argument processing requirements can be handled using the mechanisms described
so far in this chapter. Doing so is usually significantly faster (in terms of both execution
time and development time) than performing the same operations using your own custom
argument processing algorithms within the procedure.

When special argument processing requirements do arise, it is often easier to work with
_params, _options, and _rest. In many cases, the provided mechanisms can handle most
of the processing, and it is only necessary to look at _rest to handle additional arguments.

The clearest and most efficient way to write a procedure to find the maximum of an arbitrary
sequence of numbers is to use a single parameter with a seq modifier, and pass that parameter
directly to Maple's built-in max function. However, the following example uses _passed,
_npassed, and a for loop instead for demonstration purposes:

Maximum := proc( )
local max := _passed[1], i;

>

for i from 2 to _npassed do
if _passed[i] > max then

max := _passed[i]
end if

end do;
max

end proc:

Care must be taken when the _options, _rest, or _passed sequences contain only a single
entry and that sequence is assigned to a variable (for example, myOpts := _options). The
variable will receive the value of that single element rather than an expression sequence.
The safest way to use these expression sequences is to transform them into lists (for example,
myOpts := [_options]).

6.6 How Procedures Are Executed
When a procedure definition is entered in Maple or read from a file, Maple does not execute
the procedure. It does however translate the procedure into an internal representation, process
all the parameter and variable declarations, perform lexical scoping and implicit local de-
claration, and simplify the procedure's statementSequence.

Automatic simplification of statementSequence is similar to simplification of expressions
when Maple is used interactively, with a few exceptions. Consider the following procedure:

f := proc(x)
local t := x + 3 + 0/2;

>

if true then

6.6 How Procedures Are Executed • 237



sqrt(x * 2.0 / 3.0)
else

t^2
end if

end proc;

(6.58)

During automatic simplification, the division 0/2 has been removed (because it does not
contribute to the sum). More significantly, the entire if...then...else...end if statement has
been replaced by just the body of the first branch, since the if-condition is true.

Notice that the expression sqrt(x * 2.0 / 3.0) has not been simplified to .8164965809*x^(1/2)
as it would have been if entered at the top level, outside of a procedure. If this simplification
had been performed, then the result produced by the procedure would depend on the setting
of Digits (and other aspects of the floating-point environment) both when the procedure
was simplified, and a possibly different setting ofDigitswhen the procedure is later executed.
By not performing any floating-point arithmetic during procedure simplification, the pro-
cedure will depend only on the state of the floating-point environment at execution time.

A procedure is executed after it has been invoked by a function call. Generally, the process
is:

1. A function call, of the form functionName(functionArguments) is encountered during
evaluation of an expression, either at the interactive level or while executing another
procedure.

2. The functionName is examined to see if has been assigned a procedure.

3. The functionArguments are evaluated, usually from left to right.

4. The evaluated arguments are bound to the parameters of the procedure.

5. All of the procedure's local variables are instantiated. That is, for each local variable, a
unique instance of the variable's name is created, with no prior value.

6. Interpretation of the procedure's statementSequence begins.

Interpretation continues until the last statement has been executed, an exception is raised
(either as the result of an operation, or by an explicit error statement), or a return statement
is encountered.
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Binding of Arguments to Parameters

Argument processing occurs when a function call results in the invocation of a procedure.
First, all the arguments are evaluated (except those corresponding to parameters with the
uneval or evaln modifiers), and then they are matched to the parameters of the procedure.

Binding of Keyword Arguments

Keyword arguments are always matched first unless the procedure has parameters declared
with the uneval or evaln modifiers. Maple makes a pass through the entire sequence of ar-
guments looking for keyword=value equations where the keyword matches a declared
keyword parameter of the procedure.

Whenever a matching keyword parameter is encountered, the right-hand side of the equation
becomes the value for that parameter, and the equation is removed from further consideration
as an argument. If more than one keyword argument matches a keyword parameter, only
the last one takes effect.

Keyword parameter names (the keyword part) are Maple symbols like any other. If that
symbol is in use as a variable, then using it in a keyword argument may not work as expected
since the variable may evaluate to its value. To ensure that this does not happen, it is best
to always use unevaluation quotes around the keyword part of a keyword argument:

f := proc( x::integer, { y::integer := 1 }, $ ) x * y end proc:>

y := sin(z):>

f(3,y=2);>
Error, invalid input: too many and/or wrong type of arguments passed
to f; first unused argument is sin(z) = 2

f(3,'y'=2);>

(6.59)

This is a good practice when calling any function, whether it is a procedure you defined or
a Maple command. See Protecting Names and Options (page 49).

When calling a procedure that accepts a keyword argument from within another procedure
that has a parameter with the same name as the keyword argument, you must use both une-
valuation quotes and the scope resolution operator, :-, to ensure that (the global instance
of) the name itself is used instead of the value of the parameter:

f := proc( x::integer, { y::integer := 1 }, $ ) x * y end proc:>

g := proc( y::rational ) f(numer(y), ':-y'=denom(y)) end proc:>

g(3/2);>

(6.60)
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If a keyword parameter has a declared parameterType for which true is a valid value (for
example, the types truefalse or boolean), the keyword name alone is interpreted as a syn-
onym for keyword=true.

f := proc( x::integer, { square::truefalse := false } )
if square then x^2 else x end if

end proc:

>

[ f(2), f(3,square=true), f(4,square) ];>

(6.61)

If a keyword parameter's keyword is a symbol of the form `symbol[symbol]` or `symbol[in-
teger]`, the parameter is treated specially at during argument processing. Although such a
keyword is still a symbol (because of the enclosing left single quotes), it matches indexed
name keyword arguments. Specifically, if an equation whose left-hand side is an indexed
name of the form symbol[symbol] or symbol[integer] is encountered, it matches the
keyword parameter whose keyword symbol looks like the indexed name. For example, the
keyword argument,

axis_label[1] = "time"

matches the keyword parameter:

`axis_label[1]` :: string := "x"

Keyword arguments with multiple indices are also recognized by attempting to match them
using one index at a time. For example, the keyword argument,

axis_label[1,2] = ""

matches both of the keyword parameters,

`axis_label[1]` :: string := "x", `axis_label[2]` :: string := "y"

and sets them both to the empty string.

The following example illustrates these behaviors:

Indexed := proc( { `name[1]`::string := "hello",
`name[2]`::string := "goodbye" } )

>

sprintf("name[1]=\"%s\" -- name[2]=\"%s\"",`name[1]`,`name[2]`)
end proc:

Indexed(name[1]="hi");>

(6.62)
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Indexed(name[1]="bonjour",name[2]="aurevoir");>

(6.63)

Indexed(name[1,2]="good day");>

(6.64)

Indexed(name[2]=42);>
Error, invalid input: Indexed expects value for keyword parameter
name[2] to be of type string, but received 42

The Special Case of evaln and uneval Modifiers

There is one case in which the first stage of argument processing is not keyword matching.
If the procedure was declared with any parameter(s) having an uneval or evaln modifier,
arguments are first assigned to positional parameters from left to right until the rightmost
uneval or evaln parameter has been bound to an argument or until all the arguments have
been exhausted, whichever happens first. For each argument/parameter pair:

If the parameter has no parameterType, the argument matches trivially, and becomes the
value for that parameter.

If the parameter has a parameterType specification, the argument may or may not match.
If it matches, the argument becomes the value for that parameter. If it does not match, an
exception is raised.

Accumulate := proc( r::evaln(numeric), n::numeric,
{ operation::symbol := `+` } )

>

r := operation(eval(r),n)
end proc:

total := 0:>

Accumulate(total, 2.3);>

(6.65)

Accumulate(total, operation=`*`, 10);>

(6.66)

Accumulate(operation=`*`, total, 100);>
Error, illegal use of an object as a name

In the last call, an exception is raised because the first argument does not evaluate to a name.
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Binding of Arguments to Positional and Ordered Parameters

After all arguments matching keyword parameters have been processed, matching of required
positional and optional or expected ordered parameters is carried out. If any parameter had
an uneval or evaln modifier, all parameters up to the rightmost of these will already have
received arguments, so further matching begins with the next positional or ordered parameter
after that.

Matching is done by traversing the parameter declarations from left to right. As each para-
meter is examined, an attempt is made to match it to the next unused argument as follows:

If the parameter has no parameterType, the argument matches trivially, and becomes the
value for that parameter.

If the parameter has parameterType, but no defaultValue, the argument may or may not
match. If it matches, the argument becomes the value for that parameter. If it does not match,
an exception is raised.

If the parameter has both parameterType and defaultValue, the argument may or may not
match. If it matches, the argument becomes the value for that parameter. If it does not match,
the parameter receives its default value, and the argument remains available for matching
a subsequent parameter.

In last two cases above, if the parameter's type uses the seq modifier, Maple continues to
match additional arguments against the parameter until one is encountered that is not of the
correct type. A seq parameter never results in an exception, because even if no arguments
match, a valid sequence has been produced (the empty sequence).

At the end of this process, if there are any arguments left over, they are either put into the
_rest sequence, or, if the procedure was declared with the end-of-parameters marker, $, an
exception is raised.

Conversely, if all the arguments were bound to parameters, but there are parameters remain-
ing to be assigned values, these receive their default values if they have one. Otherwise,
they have no value, and attempting to use them (by name) within the procedure raises an
exception.

Statement Sequence Interpretation

After all the arguments in a function call have been successfully bound to the procedure's
parameters, Maple begins interpreting the procedure's statement sequence. Each statement
is examined in turn and the necessary actions carried out.

For example, an assignment statement is interpreted by evaluating the right-hand side (the
expression to be assigned), and resolving the left-hand side (the target of the assignment).
The latter involves evaluating any indices if the left-hand side contains indexed names. Fi-
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nally, the value of the right hand side is assigned to the resolved variable on the left-hand
side.

When an if-statement is encountered, Maple evaluates the condition. If it is true, statement
sequence interpretation continues with the first statement within the first branch of the if-
statement. When the statements within that branch have all been executed, interpretation
continues with the first statement after the end if. If if-condition was false, Maple looks for
an elif or else branch and continues in a similar manner.

When there are no further statements remaining, Maple behaves as if a return statement had
been encountered.

Variable Evaluation Rules within Procedures

Maple fully evaluates global variables whenever they are referenced, even within procedures,
but local variables are evaluated in a special way. When a local variable is encountered
during procedure execution, it is evaluated only one level. Consider the following Maple
statements, outside of any procedure:

f := x + y;>

(6.67)

x := z^2 / y;>

(6.68)

z := y^3 + 3;>

(6.69)

Since these statements undergo normal full recursive evaluation, the following result is re-
turned:

f;>

(6.70)

The same sequence of steps within a procedure would yield a different result:

OneLevelEval := proc( )
local f, x, y, z;

>

f := x + y;
x := z^2 / y;
z := y^3 + 3;
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f
end proc:

OneLevelEval();>

(6.71)

The concept of one-level evaluation is unique to symbolic languages like Maple, where the
value of a variable can be, or include, the name of another variable. One-level evaluation
avoids arbitrarily deep computation at every step of a procedure and is thus important for
efficiency. It has very little effect on the behavior of procedures, because most procedures
have a sequential structure. When full evaluation of a local variable is required within a
procedure, use the eval function:

FullEval := proc( )
local f, x, y, z;

>

f := x + y;
x := z^2 / y;
z := y^3 + 3;
eval(f)

end proc:

FullEval();>

(6.72)

In addition to illustrating one level evaluation, this example also introduces the idea of an
escaped local. The expression returned byOneLevelEval is x + y and contains the symbols
x and y. However, these are not the global variables of the same names; they are the local
x and y declared in OneLevelEval. Because these variables have escaped, they continue
to exist beyond their normal lifetime even though the procedure has finished executing.
Usually, an escaped local indicates a programming error such as forgetting to assign a value
to a local variable before using it. There are situations where letting a local escape can be
useful, such as generating unique instances of a name that will be guaranteed never to
evaluate further.

Returning Values from a Procedure

When a procedure has finished executing, a value is returned. If the procedure was invoked
by a function call, possibly within a larger expression, the returned value is used as the value
of that function. At the interactive level, the returned value is displayed (unless the input
was terminated by a colon instead of a semicolon).
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Except when a procedure raises an exception, a value is always returned. In the absence of
an explicit return statement, the returned value is the value of the last statement executed
in the procedure. The value of a statement means:

The value computed by the right-hand side of an assignment statement.

The value of the expression when the statement is an expression.

The value of the last statement executed within the branches of an if statement or within
the body of a loop.

Note that NULL is a valid expression (and thus a valid statement). A procedure that returns
NULL is still returning a value, although at the interactive level, nothing is displayed.

You can use an explicit return statement to end the execution of the procedure and return
a value immediately:

return expression;

Upon encountering a return statement during execution, Maple evaluates the expression,
and then immediately terminates the execution of the procedure, with the result of the
evaluation as the returned value.

This example uses an explicit return statement to immediately return the position i of a
value x in a list when the value is found. If the value is not found, the procedure returns 0:

Position := proc( x::anything, L::list )
local i;

>

for i to numelems(L) do
if x = L[i] then

return i
end if

end do;
0

end proc:

Position(3, [2,3,5,7,1,3,7,9,3,9]);>

(6.73)

Position(4, [2,3,5,7,1,3,7,9,3,9]);>

(6.74)

6.6 How Procedures Are Executed • 245



The following procedure computes the greatest common divisor, g, of two integers a and
b. It returns the expression sequence g, a/g, b/g. The case a = b = 0 is treated separately
because in that case, g is zero:

GCD := proc( a::integer, b::integer, $ )
local g;

>

if a = 0 and b = 0 then
return 0, 0, 0

end if;
g := igcd(a,b);
g, iquo(a,g), iquo(b,g)

end proc:

GCD(0,0);>

(6.75)

div, quo1, quo2 := GCD(12,8);>

(6.76)

This example illustrates that you can return a sequence of values from a procedure, and that
those values can then be assigned to a sequence of names by the caller. Whenever a procedure
returns a sequence of values, the result can be assigned to a sequence of the same number
of names (a multiple assignment). If you assigned the result to a single name, then the value
of that name would be the entire sequence.

Sometimes, it is convenient to write a procedure which will return a different number of
values depending on the context in which it was called. A procedure can use the special
variable _nresults to determine how many results are expected by the caller. Here is a version
of the previous procedure that returns only a single result when called from within an
arithmetic expression (the tests for the case a = b = 0 has been omitted for brevity):

GCD := proc( a::integer, b::integer, $ )
local g := igcd(a,b);

>

if _nresults = 1 or _nresults = undefined then
g

else
g, iquo(a,g), iquo(b,g)

end if
end proc:

div := GCD(12,8);>

(6.77)
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GCD(12,8) ^ 2;>

(6.78)

{ GCD(12,8) };>

(6.79)

div, quo1, quo2 := GCD(12,8);>

(6.80)

The _nresults variable has the value undefined if the procedure was called from within an
expression or within the arguments of another function call. It has an integer value if the
call was from the top level of an expression appearing on the right-hand side of an assign-
ment. The value of _nresults is the number of variables on the left-hand side of the assign-
ment statement.

Do not use _nresults in a procedure with the remember or cache options. Only the first
computed result is stored in the remember table or cache. Subsequent calls with the same
input but a different number of expected results will not return the expected number of
results. (The Cache package can be used to manually implement a simulated remember
table that works correctly in conjunction with _nresults.)

Another alternative for returning more than one value from a procedure is to assign values
to variables whose names were passed in as values. The following procedure determines
whether a list L contains an expression of type T. If found, the procedure returns the index
of the (first matching) expression. If the procedure is called with a third argument, then it
also assigns the expression to that name.

FindType := proc( T::type, L::list, V::evaln, $ )
local i;

>

for i to numelems(L) do
if L[i] :: T then

if _npassed = 3 then
V := L[i]

end if;
return i

end if
end do

end proc:

FindType(string, [2,3/4,"Hello",x+y]);>

(6.81)
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FindType(string, [2,3/4,"Hello",x+y], s);>

(6.82)

s;>

(6.83)

When FindType was called with two arguments, the procedure just returned the index of
the found list element.

When called with three arguments, parameter V received the name, not the value of global
variable s. The evaln declaration ofV ensures thatVwill always refer to a name. Just before
returning, the procedure assigned the found expression to s, as referenced by V.

If, during the execution of the procedure, you need to refer to the value that has been assigned
to a name via an evaln parameter, enclose such references to the parameter within a call to
eval:

Accumulate := proc( r::evaln(numeric), n::numeric )
r := eval(r) + n

end proc:

>

Returning Unevaluated

If a procedure cannot perform a requested computation, it can return the unevaluated form
of the function call that invoked it. For example, the procedure below computes the larger
of two values if it can, or returns unevaluated if it cannot:

Larger := proc( x, y )
if x :: numeric and y :: numeric then

>

if x > y then
x

else
y

end if
else

'Larger'(x,y)
end if

end proc:

Larger(3.2, 2);>

(6.84)

r := Larger(a, 2*b);>

(6.85)
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The unevaluation quotes around Larger within the procedure specify that the function call
expression will be constructed, but no procedure invocation will take place (therefore this
is not a recursive call).

The returned unevaluated function call can later be re-evaluated. If a and b have numeric
values at that time, Larger will return a number, otherwise it will return unevaluated once
again.

a, b := 3, 2;>

(6.86)

r;>

(6.87)

Because of one level evaluation, the last line in the example above would have to be written
as r := eval(r) if r were a local variable in a procedure.

Rather than using the procedure's name to construct an unevaluated function call to return,
you can also use the special name procname. The statement, 'Larger'(x,y) could have been
written 'procname'(x,y). The advantage to using procname is that such unevaluated returns
are immediately apparent to anyone reading the source code of your procedure.

Note that if your procedure was called from within another procedure and has the procname
option, then an unevaluated call of the form 'procname'(x,y) refers to the procedure that in-
voked your procedure.
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By writing procedures to return unevaluated when it is not possible to carry out the compu-
tation, you make it easier for the user of the procedure to use it in contexts where otherwise
it would produce an error:

plot( Larger(x, 1/x), x = 1/2 .. 2 );>

int( Larger(x, 1/x), x = 0.25 .. 2.0 );>

(6.88)

IfLarger had been implemented without the unevaluated return, both of the above commands
would have failed because the first argument to plot and int could not have been evaluated:

LargerNoUneval := proc( x, y )
if x > y then

>

x
else

y
end if

end proc:

plot( LargerNoUneval(x, 1/x), x = 1/4 .. 2 );>
Error, (in LargerNoUneval) cannot determine if this expression is true
or false: 1/x < x
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int( LargerNoUneval(x, 1/x), x = 0.25 .. 2.0 );>
Error, (in LargerNoUneval) cannot determine if this expression is true
or false: 1/x < x

Many Maple functions use the technique of returning unevaluated. For example, the sin
and int functions return a result when they can, or return unevaluated when it is not yet
possible to compute a result.

6.7 Using Data Structures with Procedures
The choice of appropriate data structures to solve a particular problem has already been
discussed in Basic Data Structures (page 129), but it is worth keeping in mind how your
procedure might be used by you or others in the future. If the problem you are solving in-
volves a small amount of data, you may have been tempted to choose a data structure without
regard to efficiency or scalability when writing your procedure. If the procedure is used
later to solve a larger problem, it may not be able to handle the problem in a reasonable
amount of time or memory if you chose a data structure only suitable for small problems.

Passing Data Structures to Procedures

Traditional procedural programming languages such as Pascal or C usually pass arguments
to procedures by value. This means that the procedure receives a copy of the data passed to
it. Such languages also allow values to be passed by reference. Pascal does this by prefixing
the parameter declaration with the var keyword. C requires that the parameter be declared
as a pointer, using the * prefix, and that the caller explicitly pass the address of the argument
using the & prefix (except when passing pointers to arrays).

Passing arguments by value ensures that the procedure cannot modify the passed data as a
side-effect, but requires making a copy of the data. Passing by reference is more efficient
for large data objects, but allows the procedure to (possibly unintentionally) modify the
caller's copy of the data.

In Maple, data is always passed by reference, but the immutability of most data types ensures
that the procedure cannot modify the caller's copy of the data. The exceptions are Maple's
mutable data structures: tables, Arrays, Matrices, Vectors, records, and objects. Modifying
these within a procedure will modify the caller's copy. Fortunately, these larger data structures
are the ones that you would most often want to pass by reference, since copying such data
consumes time and space.

A third argument passing convention seen in some programming languages is passing by
name. In this case, instead of passing the value of a variable, the variable itself is passed.
The called procedure can then assign a new value to the variable, which will remain in effect
when the procedure returns to the caller. Maple allows passing by name via the evaln
parameter declaration modifier, or by explicitly quoting the name when calling the procedure.
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This does not contradict the earlier statement that Maple always passes by reference, because
it is now the variable name that is being passed by reference.

Returning Data Structures from Procedures

Just as values are always passed by reference, they are returned from procedures by reference,
too. Thus, the cost in time and space of returning a large structure such as a list is not any
more than that of a small piece of data like an integer.

When returning a table or procedure from a procedure, care must be taken to ensure that it
is the data structure itself and not the name referring to it that is returned. This is because
tables and procedures use last name evaluation.

IncorrectListToTable := proc( L :: list )
local T := table(), i;

>

for i to numelems(L) do
T[i] := L[i]

end do;
T

end proc:

IncorrectListToTable(["String",123,Pi]);>

(6.89)

The example above returns the local variable T instead of the actual table. Although the
returned value can be used as if it were the actual table, every access to it involves an extra
level of addressing behind the scenes, thus consuming more time.

ListToTable := proc( L :: list )
local T := table(), i;

>

for i to numelems(L) do
T[i] := L[i]

end do;
eval(T)

end proc:

ListToTable(["String",123,Pi]);>

(6.90)
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Example: Computing an Average

A common problem is to write a procedure that computes the average of n data values ,

, ..., according to the following equation:

Before writing the procedure, think about which data structure and Maple functions to use.
You can represent the data for this problem as a list. The numelems function returns the
total number of entries in a list X, while the ith entry of the list is obtained by using X[i]:

X := [1.3, 5.3, 11.2, 2.1, 2.1];>

(6.91)

numelems(X);>

(6.92)

X[2];>

(6.93)

add( i, i=X );>

(6.94)

Using these ideas, write the procedure Average which computes the average of the entries
in a list. It handles empty lists as a special case:

Average := proc( L::list, $ )
local n := numelems(L), i, total;

>

if n = 0 then
error "empty list"

end if;
total := add(i,i=L);
total / n

end proc:

Using this procedure you can find the average of list X defined above:

Average(X);>

(6.95)
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The procedure also works if the list contains symbolic entries:

Average([a, b, c]);>

(6.96)

Calling Average with an empty list raises an exception:

Average([]);>
Error, (in Average) empty list

A list is a good choice for the data in this example because the data is stored and used in a
calculation, but the list itself does not need to be modified.

Example: Binary Search

One of the most basic and well-studied computing problems is that of searching. A typical
problem involves searching a list of words (a dictionary, for example) for a specific word
w. There are many possible methods. One approach is to search the list by comparing each
word in the dictionary with w until either w is found, or the end of the list is reached. Study
the code for procedure LinearSearch (the first attempt at solving this problem):

LinearSearch := proc( D::list(string), w::string )
local x;

>

for x in D do
if x = w then

return true
end if

end do;
false

end proc:

Unfortunately, if the dictionary is large, this approach can take a long time. You can reduce
the execution time required by sorting the dictionary before you search it. If you sort the
dictionary into ascending order, then you can stop searching as soon as you encounter a
word greater than w. On average, it is still necessary to search half the dictionary.

Binary searching provides an even better approach. Check the word in the middle of the
sorted dictionary. Since the dictionary is already sorted, you can determine whether w is in
the first or the second half. Repeat the process with the appropriate half of the dictionary
until w is found, or it is determined not to be in the dictionary.

BinarySearch := proc( D::list(string), w::string )
local low := 1, high := numelems(D), mid;

>

while low <= high do
mid := trunc((low + high) / 2);
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if w < D[mid] then
high := mid - 1

elif w > D[mid] then
low := mid + 1

else
return true

end if
end do;
false

end proc:

Dictionary := [ "induna", "ion", "logarithm", "meld" ];>

(6.97)

BinarySearch( Dictionary, "hedgehogs" );>

(6.98)

BinarySearch( Dictionary, "logarithm" );>

(6.99)

BinarySearch( Dictionary, "melody" );>

(6.100)

Example: Plotting the Roots of a Polynomial

You can construct lists of any type of object, including other lists. A list that contains two
numbers can represent a point in the plane, and a list of such list can represent several such
points. The Maple plot command uses this structure to generate plots of points and lines.
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plot([ [0, 0], [1, 2], [-1, 2] ],
style=point, symbol=point, color=black);

>

You can make use of this to write a procedure that plots the complex roots of a polynomial.

For example, consider the polynomial .

y := x^3-1;>

(6.101)

First, find the roots of this polynomial. You can find the numeric roots of this polynomial
by using fsolve. By enclosing the call to fsolve in square brackets, you create a list of the
roots.

R := [ fsolve(y=0, x, complex) ];>

(6.102)

Next, change this list of complex numbers into a list of points in the plane. The Re and Im
functions return the real and imaginary parts of a complex number respectively. You can
use the map function and an anonymous procedure to convert the entire list at once.
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points := map(z -> [Re(z), Im(z)], R);>

(6.103)

Finally, plot the resulting list.

plot(points, style=point, symbol=point, color=black);>

You can automate the process by writing a procedure that follows the same sequence of
steps. The input must be a polynomial in x with constant coefficients.

RootPlot := proc( p::polynom(constant,x) )
description "Plots the roots of a polynomial in x";

>

local R := [ fsolve(p, x, complex) ];
local points := map( z -> [Re(z), Im(z)], R );
plot(points, style=point, symbol=point, color=black)

end proc:

Test the RootPlot procedure by plotting the roots of the polynomial .
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RootPlot( x^6+3*x^5+5*x+10 );>

Generate a random polynomial using the randpoly function, and then test the RootPlot
procedure again.

y := randpoly(x, degree=100);>

(6.104)
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RootPlot( y );>

6.8 Writing Usable and Maintainable Procedures
As with any programming language, it is easy to write a Maple procedure that others cannot
easily comprehend (or that you, as the author, have trouble understanding when you look
at it, or try to modify it, in the future). Maple's syntax provides you with several facilities
to alleviate such problems and produce maintainable code.

Formatting Procedures for Readability

Although it is possible to enter an entire procedure on a single very long line, this makes it
difficult to understand and edit. For example, the binary search procedure shown earlier
could have been written this way:

BinarySearch := proc( D::list(string), w::string ) local low :=
1, high := numelems(D), mid; while low <= high do mid := trunc((low

>

+ high) / 2); if w < D[mid] then high := mid - 1 elif w > D[mid]
then low := mid + 1 else return true end if end do; false end
proc:
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Procedures are more easily readable if written with one statement per line, and with the
statements enclosed within the bodies of loops and if-statements indented:

BinarySearch := proc( D::list(string), w::string )
local low := 1, high := numelems(D), mid;

>

while low <= high do
mid := trunc((low + high) / 2);
if w < D[mid] then

high := mid - 1
elif w > D[mid] then

low := mid + 1
else

return true
end if

end do;
false

end proc:

Sometimes, a single statement is too long to fit on a single line. Maple's syntax allows you
to insert line breaks and white space between any two syntactic tokens such as reserved
words, variable names, numbers, and punctuation. Indentation can be used within a statement
to clarify the grouping of expressions. For example, the polynomial root plotting procedure
could have been written like this:

RootPlot := proc( p::polynom(constant,x) )
description "Plots the roots of a polynomial in x";

>

plot(map(z -> [Re(z), Im(z)],
[fsolve(p, x, complex)]),

style=point, symbol=point, color=black)
end proc:

In this version of RootPlot, the procedure body consists of a description and a single
statement. The indentation makes it clear that z -> [Re(z), Im(z)] and [fsolve(p, x, complex)]
are arguments of the call to map, and that the result of this call together with the style,
symbol, and color options are the arguments of plot.

Commenting Your Code

Comments are one of the most important tools in writing maintainable code. There are two
ways of writing comments in Maple procedures:

# Comment text until the end of the line.

(* Delimited comment text. *)
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A # character anywhere within a procedure except inside a "string" or `quoted name` intro-
duces a comment. Everything following # until the end of the line is considered to be a
comment and is ignored by Maple. This form is useful for short comments of one or two
lines, or to annotate a line.

Average := proc( )
# Compute total.

>

local total := add(_passed[i],i=1.._npassed);
# Divide total by number of values.
total / _npassed;

end proc;

Warning, `i` is implicitly declared local to procedure `Average`

(6.105)

Comments enclosed in (* and *) can begin and end anywhere except within a "string" or
`quoted name`. Everything between the delimiters is ignored by Maple. This form can be
used within a line or to write a multiline comment.

BetterAverage := proc( )
(* This procedure computes the average of its

>

arguments. It is an error if no arguments were
passed. *)

if _npassed = 0 then
error "too few values"

else
add(_passed[i],i=1.._npassed) (*TOTAL*) / _npassed

end if
end proc;
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Warning, `i` is implicitly declared local to procedure `BetterAverage`

(6.106)

Notice that comments are discarded by Maple when the procedure is simplified. Comments
are purely for the benefit of the programmer(s) who write, read, and maintain the procedure.

As described earlier, a procedure in Maple can also have a description section. One or more
strings can follow the description keyword. Like comments, these have no effect on the
execution of the procedure, but they are retained when the procedure is simplified.

AnotherAverage := proc( )
description "Compute the average of one or more values.",

>

"At least one value must be passed.";
if _npassed = 0 then

error "too few values"
else

add(_passed[i],i=1.._npassed) / _npassed
end if

end proc:

Warning, `i` is implicitly declared local to procedure `AnotherAverage`

You can use Maple's Describe command to print a procedure's declared parameters, return
type, and description.

Describe(AnotherAverage);>

# Compute the average of one or more values.
# At least one value must be passed.
AnotherAverage( )

Describe(RootPlot);>

# Plots the roots of a polynomial in x
RootPlot( p::polynom(constant,x) )
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6.9 Other Methods for Creating Procedures
Enclosing a sequence of statements in proc...end proc is not the only way to create a proced-
ure in Maple. You can also use functional operator notation or the unapply function.

Functional Operators: Mapping Notation

Functional operator notation (or arrow notation) is a method by which you can create a
special form of procedure which represents a mathematical function or mapping. The syntax
is:

( parameterSequence ) -> expression

The parameterSequence can be empty, and the expression must be a single expression or
an if statement.

F := (x,y) -> x^2 + y^2;>

(6.107)

If the procedure requires only a single parameter, you can omit the parentheses around
parameterSequence:

G := n -> if n < 0 then 0 else 1 end if;>

(6.108)

Internally, a procedure created using operator notation is the same as any other procedure,
except that it will have options operator, arrow. You can invoke such a procedure in the
usual way:

F(1,2);>

(6.109)

G(-1);>

(6.110)

You can use declared parameter types when defining a functional operator:

H := ( n::even ) -> n! * (n/2)!;>

(6.111)

H(6);>

(6.112)
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H(5);>
Error, invalid input: H expects its 1st argument, n, to be of type
even, but received 5

The arrow notation is designed for simple one-line function definitions. It does not provide
a mechanism for specifying local or global variables, options, a description, or more than
a single statement. If these are required, use the more general proc...end proc notation.

The unapply Function

Another way to create a procedure is with the unapply function:

unapply( expression, parameterSequence )

The expressionmust be a single expression, and parameterSequence a sequence of symbols.

B := x^2 + y^2;>

(6.113)

F := unapply(B, x, y);>

(6.114)

F(3,4);>

(6.115)

The functional operator notation (or arrow notation) is a syntax for writing an operator. The
unapply function is a functionmapping expressions to procedures. Use the unapply function
to create a procedure from an expression that was computed instead of one that was entered.
This works because unapply first evaluates the expression and then encloses the result in a
procedure. The arrow notation always produces a procedure containing the expression that
was entered.

IntExpr := int(1/(x^3+1), x);>

(6.116)

IntFunc := unapply(evalf(IntExpr), x);>

(6.117)
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IntFunc(3.5);>

(6.118)

If you had tried to use operator notation to create the IntFunc procedure, you would not
get what you expected:

BadIntFunc := x -> evalf(IntExpr);>

(6.119)

BadIntFunc(3.5);>

(6.120)

Notice that the result still contains the symbol x. This is because the x appearing in IntExpr
is the global variable x, not the parameter x of BadIntFunc.

Anonymous Procedures

Recall from the beginning of this chapter that a procedure is a valid Maple expression, in-
dependent from any name that it may have been assigned to. You can in fact create, manip-
ulate, and invoke a procedure without ever assigning it to name. Such procedures are called
anonymous.

Consider the following mapping (a procedure in functional operator notation):

x -> x^2;>

(6.121)

You can invoke this anonymous procedure in the following manner:

(x -> x^2) (t);>

(6.122)

Syntactically, this is a Maple function call. Instead of specifying the procedure to call by
giving its name, the procedure is given directly. The same method can be used to directly
call a procedure defined using the proc...end proc notation:

proc( x, y ) x^2 + y^2 end proc (u, v);>

(6.123)
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Anonymous procedures are often used with the map function:

map( x -> x^2, [1,2,3,4] );>

(6.124)

They are also used to initialize Arrays in Arrays (page 148). You can find numerous other
examples of anonymous procedures in this guide.

Procedures, whether anonymous or not, can be combined in expressions, or processed by
operators such as D, the differential operator:

D( x -> x^2 );>

(6.125)

F := D( exp + 2 * ln );>

(6.126)

F(x);>

(6.127)

6.10 Recursion
A procedure is termed recursive if it contains a call to itself, either directly, or indirectly
through another procedure that it calls. In order for a recursive procedure to produce a result,
it must test for some condition under which the recursion terminates. Otherwise, it would
go on calling itself forever (until Maple runs out of stack space).

You have already seen one example of recursion used to compute Fibonacci numbers in
The remember, cache, and system Options (page 225). Another well-known example of re-
cursion is the computation of the factorial of an integer. For any integer , the
factorial (denoted by ) is defined by . For , is defined to be
equal to . This definition naturally lends itself to a recursive implementation:

Fact := proc( n::nonnegint, $ )
if n > 0 then

>

n * Fact(n-1)
else

1
end if

end proc;
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(6.128)

Fact(0);>

(6.129)

Fact(4);>

(6.130)

Fact(-4);>
Error, invalid input: Fact expects its 1st argument, n, to be of type
nonnegint, but received -4

The if-statement ensures that Fact only calls itself when .

Rather than using the name to which the procedure has been assigned to make the recursive
call, you can also use procname or thisproc. This ensures that the recursion continues to
work even if the procedure body is later assigned to a different name. The special symbol
procname refers to the name that the procedure was called with. In the Fact example,
procname would be equivalent to Fact. The symbol thisproc on the other hand refers to
the procedure itself. Calling the procedure recursively using thisproc is slightly more effi-
cient, and works within anonymous procedures.

This example uses an anonymous version of the Fact procedure above to compute the
factorials of a list of numbers:

map( n -> if n > 0 then n * thisproc(n-1) else 1 end if,
[0, 1, 2, 3, 4] );

>

(6.131)

TheBinarySearch procedure you saw earlier also lends itself to a recursive implementation.

BinarySearch := proc( D::list(string), w::string,
low::integer := 1, high ::integer :=

>

numelems(D) )
local mid;
if low > high then

# Nothing left to search. Word is not in list.
false

else
mid := trunc((low + high) / 2);
if w < D[mid] then
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# Search within the left part of the range.
thisproc(D,w,low,mid-1)

elif w > D[mid] then
# Search within the right part of the range.
thisproc(D,w,mid+1,high)

else
# Word was found in middle of current range.
true

end if
end if

end proc:

Dictionary := [ "induna", "ion", "logarithm", "meld" ];>

(6.132)

BinarySearch( Dictionary, "hedgehogs" );>

(6.133)

BinarySearch( Dictionary, "logarithm" );>

(6.134)

BinarySearch( Dictionary, "melody" );>

(6.135)

You use this procedure by passing it a sorted list of strings and a word to search for. The
two optional parameters, low and high, specify which range of list elements to search and
have default values specifying the entire list. After determining that the word is lexicograph-
ically less than or greater than the middle value, this procedure calls itself recursively,
passing the list and word, as well as appropriate values for the low and high parameters to
restrict the search. The recursion (and thus the search) ends when the procedure is asked to
search a zero-length section of the list (in which case the word was not found), or when the
middle element of the specified range contains the word.

If your procedure has the procname option, any attempt to make a recursive call via proc-
name instead of thisproc calls the procedure that invoked your procedure.

6.11 Procedures That Return Procedures
Some of the built-in Maple commands return procedures. For example, rand returns a pro-
cedure which in turn produces randomly chosen integers from a specified range. The dsolve
function with the type=numeric option returns a procedure which supplies a numeric estimate
of the solution to a differential equation.
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You can write procedures that return procedures too. This section discusses how values are
passed from the outer procedure to the inner procedure.

Example: Creating a Newton Iteration

The following example demonstrates how locating the roots of a function by using Newton's
method can be implemented in a procedure.

To use Newton's method to find the roots of a function graphically:

Choose a point on the -axis that you think might be close to a root.

Draw the tangent to the curve at that point and observe where the tangent intersects the
-axis. For most functions, this second point is closer to the real root than the initial guess.

Use the new point as a new guess and repeat this process.

The same process can be expressed numerically as an iteration:

where is the initial guess, and is the result of the kth iteration.
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The following procedure takes a function and creates a new procedure which expects an
initial guess and, for that particular function, generates the next guess. The new procedure
is specific to the function that it was generated for, and does not work for other functions.
To find the roots of a new function, useMakeIteration to generate a new iterating procedure.

MakeIteration := proc( expr::algebraic, x::name )
local iteration := x - expr / diff(expr, x);

>

unapply(iteration, x);
end proc:

The procedure returned by theMakeIteration procedure maps the name x to the expression
assigned to the iteration.

Test the procedure on the expression :

expr := x - 2 * sqrt(x);>

(6.136)

iter := MakeIteration(expr,x);>

(6.137)

The generated procedure, which is assigned to iter, returns the solution, after a few
iterations.

x0 := 2.0:>

to 4 do x0 := iter(x0); print(x0) end do:>

(6.138)

Observe that theMakeIteration procedure above requires its first argument to be an algeb-
raic expression. You can also write a version ofMakeIteration that works on other proced-
ures (such as functional operators).

MakeIteration := proc( f::procedure )
(x->x) - eval(f) / D(eval(f));

end proc:

>
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This example uses Maple's ability to treat expressions containing procedures as procedures.
The result of calling this version of MakeIteration is an expression with procedures as
operands (x->x is just a procedure that maps any value to itself).

Because of last name evaluation, MakeIteration will accept either a procedure or a name
whose value is a procedure. The calls to eval within MakeIteration ensure that the result
refers to the actual procedure that was passed in, instead of to the name of that procedure.

g := x -> x - cos(x);>

(6.139)

iter := MakeIteration(g);>

(6.140)

Note that the procedure generated by the call to MakeIteration is independent of the name
g (because of the aforementioned calls to eval). Thus, you can later change g without
breaking iter. You can find a good approximate solution to in a few iter-
ations.

x0 := 1.0;>

(6.141)

to 4 do x0 := iter(x0); print(x0) end do:>

(6.142)

Example: A Shift Operator

Consider the problem of writing a procedure that takes a function, , as input and returns
a function, , such that . You can write such a procedure like this:

ShiftLeft := ( f::procedure ) -> ( x -> f(x+1) ):>

Try performing a shift on sin(x).

ShiftLeft(sin);>

(6.143)
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Maple lexical scoping rules declare the f within the inner procedure to be the same f as the
parameter of the outer procedure. Therefore, the ShiftLeft procedure works as written.

The previous example of ShiftLeft works with univariate functions but it does not work
with functions of two or more variables.

h := (x,y) -> x*y;>

(6.144)

hh := ShiftLeft(h);>

(6.145)

hh(x,y);>
Error, (in hh) invalid input: h uses a 2nd argument, y, which is
missing

To modify ShiftLeft to work with multivariate functions, rewrite it to generate procedures
that accept the additional parameters and pass them on to f.

ShiftLeft := ( f::procedure ) -> ( x->f(x+1, _rest) ):>

hh := ShiftLeft(h);>

(6.146)

hh(x,y);>

(6.147)

Because the ShiftLeft procedure does not call eval on parameter f, the function hh depends
on h. Changing the value assigned to h implicitly changes hh:

h := (x,y,z) -> y*z^2/x;>

(6.148)

hh(x,y,z);>

(6.149)
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6.12 The Procedure Object
Recall that a Maple procedure is itself an expression in Maple which can be (and usually
is) assigned to a name. Like any Maple expression, a procedure has a type, and has operands
(not to be confused with its parameters).

The procedure Type

Maple recognizes all procedures (and names to which a procedure has been assigned) as
being of type procedure. To verify whether a name or an expression is a procedure, use
the type function or :: operator:

F := proc( x ) x^2 end proc:>

type(F, name);>

(6.150)

type(F, procedure);>

(6.151)

type(F, name(procedure));>

(6.152)

type(eval(F), name);>

(6.153)

type(eval(F), procedure);>

(6.154)

The procedure type is a structured type (see Structured Types (page 122)). Using a structured
type allows you to verify that a name refers to a procedure, and additionally verify the spe-
cified types of the procedure's parameters.

G := proc( n::integer, s::string )
print(s);

>

2 * n * length(s)
end proc:

type(G, procedure(integer,string));>

(6.155)
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Procedure Operands

Every Maple procedure has eight operands, corresponding to sub-parts of the procedure
definition. The following table lists each operand and the corresponding op call that can be
used to access it. In the table, the name P represents the name of the procedure, and the
eval call is necessary so that op will be passed the procedure, not the name (because proced-
ures have last name evaluation).

Table 6.1: Procedure Operands

op CommandOperand
op(1,eval(P))Parameters
op(2,eval(P))All local variables
op(3,eval(P))Options
op(4,eval(P))Remember table
op(5,eval(P))Description
op(6,eval(P))Declared global variables
op(7,eval(P))Lexical scoping table
op(8,eval(P))Return type

The value of any operand can be a single item, an expression sequence if there are two or
more items (such as local variables), or NULL if there were no items (for example, no op-
tions).

The lexical scoping table is an internal structure that records the correspondence between
undeclared variables within the procedure and locals (or exports), globals, and parameters
of surrounding procedures (or modules). It does not correspond to any part of the procedure
as written.

The procedure's statement sequence is not one of the operands of the procedure, and thus
cannot be extracted by op. This is because statements and statement sequences are not ex-
pressions, and thus cannot be assigned to names or otherwise manipulated.

The following nested procedure illustrates how the parts of the procedure map to the oper-
ands. Note that this example refers to the procedure that appears within, and is returned by
procedure MakeProc (in order to illustrate lexical scoping). This procedure is not intended
to illustrate good programming style, but merely provide an example showing all the possible
operands.

MakeProc := proc( offset::integer )
description "Create and return a procedure";

>

proc( n::integer, s::string ) :: integer;
description "An example to illustrate procedure operands";

option remember;
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global codes := convert(s,bytes);
local i;
total := 0;
for i to nops(codes) do

total := total + codes[i]
end do;
total * n + offset

end proc:
end proc:

Warning, `total` is implicitly declared local to procedure

P := MakeProc(3):>

P; # The name of the procedure>

(6.156)

eval(P); # The procedure>

(6.157)

op(1,eval(P)); # Parameters>

(6.158)

op(2,eval(P)); # All local variables>

(6.159)

op(3,eval(P)); # Options>

(6.160)
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P(3,"nonsense"); # Place an entry in the remember table>

(6.161)

op(4,eval(P)); # Show the remember table>

(6.162)

op(5,eval(P)); # Description>

(6.163)

op(6,eval(P)); # Declared global variables>

(6.164)

op(7,eval(P)); # Lexical table>

(6.165)

op(8,eval(P)); # Return type>

(6.166)

6.13 Exercises

1. Implement the function , first as a procedure, and then by
using the mapping notation. Compute f(1/2) and f(0.5), and comment on the different
results.

2. You can use to compute the least common multiple of two integers, a and b, where

g is the greatest common divisor of a and b. For example, the least common multiple of
4 and 6 is 12. Write a Maple procedure, LCM, which takes as input n>0 integers ,

, ... , and and computes their least common multiple. By convention, the least

common multiple of zero and any other number is zero.

3. Write a Maple procedure called Sigma which, given n>1 data values, , , ..., ,

computes their standard deviation. The following equation gives the standard deviation
of n>1 numbers, where is the average of the data values.
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4. Write a Maple procedure which, given a list of lists of numerical data, computes the
mean of each column of the data.

5. Write a Maple procedure called Position which returns the position i of an element x in
a list L. That is, Position(x,L) should return an integer i>0 such that L[i]=x. If x is not
in list L, 0 is returned.
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7 Numerical Programming in Maple
An important part of efficient scientific and mathematical programming is numerical com-
putation. Maple provides many tools for computing with floating-point numbers, some for
improving efficiency and some for improving accuracy.

7.1 In This Chapter
• An Overview of Numeric Types in Maple

• An Explanation of Floating-Point Numbers in Maple

• Maple Commands for Numerical Computing

• Efficient Numerical Programs

7.2 Numeric Types in Maple
Before discussing numerical computing in Maple, we will first introduce the various numeric
data types used in Maple and briefly describe how they are represented. All of the real
numbers discussed in this section will pass checks of type,numeric or type,extended_numeric.

Integers

The most basic numeric type in Maple is the integer. Small integers are represented directly
as hardware integers (similar to the int type in C or integer type in Fortran), which allows
for maximum efficiency of both CPU time used for arithmetic and memory used for storage.
That is, the number can be stored in one machine word and arithmetic operations can be

performed with one CPU operation. On 32-bit architectures, integers in the range

to are stored in this way, while on 64-bit architectures, integers in the range

to . Integers stored in this way are referred to as immediate integers.

Larger integers are stored in DAGs of type INTPOS or INTNEG, which contain pointers

to arrays of digits that can store integers up to magnitude on 32-bit architectures

and on 64-bit architectures.

dismantle(2^80-1);>

INTPOS(6): 1208925819614629174706175
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dismantle(-2^101+6);>

INTNEG(6): -2535301200456458802993406410746

The arithmetic for these large integers is computed using the GNU Multiple Precision
Arithmetic (GMP) library. This library is quite efficient, but still several orders of magnitude
slower than arithmetic on immediate integers since each arithmetic operation will require
more than one CPU operation and the larger the integer, the more operations and memory
will be needed for arithmetic.

CodeTools:-Usage(add(i,i=-2^15..2^16));>
memory used=161.32KiB, alloc change=0 bytes, cpu time=10.00ms, real
time=10.00ms, gc time=0ns

(7.1)

CodeTools:-Usage(add(i,i=2^88-2^15..2^88+2^16));>
memory used=16.92MiB, alloc change=8.00MiB, cpu time=80.00ms, real
time=80.00ms, gc time=0ns

(7.2)

CodeTools:-Usage(add(i,i=2^4097-2^15..2^4097+2^16));>
memory used=109.34MiB, alloc change=-7.01MiB, cpu time=712.00ms, real
time=712.00ms, gc time=551.00ms

(7.3)

Any transitions between GMP integers and immediate integers will be completely transparent
and it is not possible to tell them apart in general without use low-level tools such as address-
of. However, you can check if an integer is small enough to fit into a single machine word
with types integer[4] and integer[8] for 4-byte and 8-byte words respectively.

Integers of all types pass a type,integer type check.

The Integer constructor is guaranteed to return an integer, an extended numeric symbol such
as infinity or undefined, a complex number with integer parts, or return unevaluated.
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Integer(-2^160);>

(7.4)

Integer(infinity);>

(7.5)

Integer(1/2);>

(7.6)

The system dependent value for the largest immediate integer can be found with kernel-
opts(maximmediate), the maximum number of decimal digits in an integer can be found
with kernelopts(maxdigits), and the version of the GMP library being used can be found
with kernelopts(gmpversion).

Rationals

Exact rational numbers are stored in DAGs of type RATIONAL, which consist of a pair of
integers. The first integer is the numerator and can be a POSINT or NEGINT. The second
integer is the denominator and is a POSINT. Most low-level programming languages such
as C or Fortran do not have an equivalent rational number type.

dismantle(1/2);>

RATIONAL(3): 1/2
INTPOS(2): 1
INTPOS(2): 2

dismantle(-10/3);>

RATIONAL(3): -10/3
INTNEG(2): -10
INTPOS(2): 3

Rational numbers can be constructed by using the division operator or the Fraction construct-
or. In either case, automatic simplification will occur to ensure that the denominator is
positive and that the fraction is in lowest terms (the numerator and denominator do not have
factors in common). This means that the Fraction constructor may return integers in some
cases.
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dismantle(Fraction(21,7));>

INTPOS(2): 3

dismantle(Fraction(40,-14));>

RATIONAL(3): -20/7
INTNEG(2): -20
INTPOS(2): 7

Rational number arithmetic is performed in the natural way using integer arithmetic and
the igcd and ilcm operations to reduce to lowest terms.

Fraction(2^20+2^12,2^27-2^13) + Fraction(2^12-1,2^13);>

(7.7)

Fraction(2^20+2^12,2^27-2^13) * Fraction(23,187);>

(7.8)

Rational numbers of all types will pass a type,rational type check. Only rational numbers
that are not also integers will pass a type,fraction type check. Additionally, type,extended_ra-
tional includes all rationals as well as the extended numeric symbols infinity, -infinity, and
undefined.

type(1, fraction);>

(7.9)

Like the Integer constructor, the Fraction constructor will return unevaluated if it cannot
return a value of type extended_rational.

Fraction(x,1);>

(7.10)

Fraction(infinity);>

(7.11)

Floating-Point Numbers

Floating-point numbers are stored in DAGs of type FLOAT.
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In Maple, as in nearly every programming language, floating-point numbers can be construc-
ted using and visually distinguished from integers with a decimal point symbol, '.'. The
floating-point number is often treated as equal to the exact integer .

evalb(1. = 1);>

(7.12)

Maple floating-point numbers can also be constructed with the SFloat constructor (or the
equivalent Float constructor) and can be checked with the nearly equivalent type,sfloat and
type,float types. We will generally refer to these numbers as sfloats to when we need to
distinguish them from hardware floating-point numbers (hfloats), introduced below.

Float(1);>

(7.13)

dismantle(SFloat(0.3333));>

FLOAT(3): .3333
INTPOS(2): 3333
INTNEG(2): -4

type(.1, float);>

(7.14)

type(.1, sfloat);>

(7.15)

type(1, float);>

(7.16)

A floating-point number represents a rational number with a fixed precision. That rational
number can be recovered with convert/rational.

convert(.3333333333, rational, exact);>

(7.17)

However, not every rational number can be represented exactly by a floating-point number.

For example, the closest floating-point number to is .

convert(1/3, float);>

(7.18)
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Also, unlike numeric types integer and rational, integer and float do not have compatible
arithmetic. Floating-point arithmetic has a fixed finite precision, and does round off if the
result of arithmetic does not fit into that precision.

9123456789 + 8123456789 <> convert( 9123456789. + 8123456789.,
rational, exact);

>

(7.19)

123456 * 1234567 <> convert( 123456.*1234567., rational, exact);>

(7.20)

Unlike many other programming languages the precision of sfloat arithmetic can be changed.
For this reason, sfloats are known as arbitrary precision floating-point numbers.

More information on sfloats and how they differ from the floating-point types in languages
such as C and Fortran will be discussed in greater detail in More about Floating-Point
Numbers in Maple (page 287).

Hardware Floating-Point Numbers

Floating-point numbers of the type used in languages such as C and Fortran can also be
constructed in Maple; they are known as hardware floating-point numbers or hfloats. These
types are stored as 8-byte double precision IEEE floating-point numbers contained in DAGs
of type HFLOAT. Since the . notation is used to construct Maple sfloats, hfloats must be
constructed with the HFloat constructor. Maple will display sfloats and hfloats the same
way, using decimal notation.

HFloat(1);>

(7.21)

dismantle(HFloat(0.3333));>

HFLOAT(2): .3333

The advantage of hfloats over sfloats is that their arithmetic is computed directly using a
single CPU operation for each arithmetic operation. Maple sfloats, however, offer much
more flexibility and precision. In many ways the difference is analogous to the difference
between immediate integers and GMP integers.

Hardware floats can be distinguished from sfloats with the type,hfloat type.

type(HFloat(1), float);>

(7.22)
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type(HFloat(1), sfloat);>

(7.23)

type(HFloat(1), hfloat);>

(7.24)

type(SFloat(1), hfloat);>

(7.25)

For more information on hardware floats and how they differ from sfloats, see More about
Floating-Point Numbers in Maple (page 287).

Extended Numeric Types

The special built-in symbols infinity ( ), and undefined can be used in numeric arithmetic
in Maple. In general, operations involving simplify automatically to a signed infinity or
a complex infinity. For details, refer to the type,infinity help page.

-1*infinity;>

(7.26)

1/2*infinity;>

(7.27)

1/infinity;>

(7.28)

The undefined symbol is usually produced as the result of attempting to carry out an oper-
ation that cannot result in a number for the given operands. Almost every arithmetic operation
involving undefined returns undefined. For details, refer to the type,undefined help page.

infinity-infinity;>

(7.29)

undefined-undefined;>

(7.30)

undefined+1;>

(7.31)
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Integer and rational numbers share exact undefined and infinite symbols while sfloat and
hfloat numbers have their own versions of these, which are displayed differently but treated
similarly.

Float(infinity);>

(7.32)

HFloat(undefined);>

(7.33)

Complex Numbers

A complex number in Maple is a DAG of type COMPLEX, which consists of a pair of any
of the two numeric types. They can be constructed in the natural way using the symbol
for the imaginary unit, or using the Complex constructor.

dismantle(1+I);>

COMPLEX(3)
INTPOS(2): 1
INTPOS(2): 1

dismantle(Complex(1/2,1/3));>

COMPLEX(3)
RATIONAL(3): 1/2

INTPOS(2): 1
INTPOS(2): 2

RATIONAL(3): 1/3
INTPOS(2): 1
INTPOS(2): 3

Automatic simplification will ensure that if one of the parts of a complex number is a float
(or hfloat), then other will be made into a float (hfloat).

dismantle(Complex(1., 1/1001));>

COMPLEX(3)
FLOAT(3): 1.

INTPOS(2): 1
INTPOS(2): 0

FLOAT(3): .9990009990e-3
INTPOS(2): 9990009990
INTNEG(2): -13
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dismantle(Complex(HFloat(1.), 1/1001));>

COMPLEX(3)
HFLOAT(2): 1.
HFLOAT(2): .000999000999

dismantle(Complex(HFloat(1.), 1.));>

COMPLEX(3)
HFLOAT(2): 1.
HFLOAT(2): 1.

Complex numbers are not of type type,numeric but can be checked with type type,complex
which can also be structured to check for the numeric subtypes of its two components.

type(1+I,numeric);>

(7.34)

type(1+I,complex(integer));>

(7.35)

Non-numeric Constants

Many Maple expressions represent constants, but are not considered to be of type numeric.
This means that arithmetic performed on these constants will be more generic symbolic
operations on DAGs of type SUM, PROD, NAME, or FUNCTION. Some examples of non-

numeric constants arePi ( ), , , , and .

type(Pi, numeric);>

(7.36)

type(sqrt(5)-1, constant);>

(7.37)

7.3 More about Floating-Point Numbers in Maple
To take full advantage of floating-point numbers and to avoid many common pitfalls in
numerical computing, it is important to understand exactly what floating-point numbers are
and how they are represented.
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Representation of Floating-Point Numbers in Maple

The dismantle command shows that the two numbers and have different internal
representations. is simply stored as an integer while is stored as a pair of integers.

dismantle(1);>

INTPOS(2): 1

dismantle(1.);>

FLOAT(3): 1.
INTPOS(2): 1
INTPOS(2): 0

Similarly, the numbers and are also different even though they are both stored as
pairs of integers.

dismantle(1/2);>

RATIONAL(3): 1/2
INTPOS(2): 1
INTPOS(2): 2

dismantle(0.5);>

FLOAT(3): .5
INTPOS(2): 5
INTNEG(2): -1

In Maple, the FLOAT DAG-type represents a floating-point number in the form S * 10^E
where both S and E are integers. For , the significand (or mantissa) is and the
exponent is . In addition to being specified in decimal notation, floats of this form
can be constructed by using scientific notation, or the Float constructor.

Float(2,0);>

(7.38)

2*1e0;>

(7.39)

The advantage of using this significand-exponent representation is that fixed precision ap-
proximations of large and small numbers can be stored compactly and their arithmetic can
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be done efficiently. Storing the integer 10^50 needs at least 167 bits or 3 words on a 64-bit
machine. The floating-point number 1e50 can be stored in less than 8 bits but in in practice
uses 2 words (one for each integer).

dismantle(10^50);>

INTPOS(8): 100000000000000000000000000000000000000000000000000

dismantle(1e50);>

FLOAT(3): .1e51
INTPOS(2): 1
INTPOS(2): 50

Using two immediate integers, a float can store a much larger range of numbers than a ra-
tional number with two immediate integers. The range a rational can represent is about

while a float can represent a range of about

. This is a much larger range for the same storage
cost. Of course, that larger range means that floats of a fixed size can represent fewer
numbers in that range. And since floating-point numbers are always of a fixed size, this
means that arithmetic will always be of limited precision. That is, each operation will have
to round the result to a number that can be represented as another floating-point number.

In Maple, the significand is limited to 10 decimal digits of precision by default but can be
changed while the exponent is restricted to being a word-sized integer.

More information on the restrictions on the size of software floats in Maple can be found
by using the Maple_floats command.

By contrast, hfloats, are represented in base 2, rather than base 10. So they represent numbers
using the form S * 2^E, where the significand, S, is a 52-bit integer and the exponent, E, is
a 10-bit integer. Thus, the range of numbers representable as hardware floats is

. Because the largest possible significand

of a hardware float has about base-10 digits of precision,
hardware floats can be converted to software floats without meaningful loss of precision
when Digits is 15. Conversely, so long as their exponent is smaller than 307 and their signi-
ficand had fewer than 15 digits sfloats can be converted to hfloats without loss of precision.

Precision and Accuracy

By default, 10-digit precision is used for floating-point arithmetic, which means that the
arithmetic will be rounded to 10 digits. This means any single floating-point operation will
be accurate to 10 digits.
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For example, storing 10^50+1 requires 50 decimal digits so it will be rounded in floating-
point arithmetic. By contrast, 10^50+10^41 can be stored with 10 digits so it will still be
computed accurately.

.1e51 + 1.;>

(7.40)

.1e51 + .1e42;>

(7.41)

The Digits environment variable can be used to change the working precision used by Maple.
Larger values of Digits will allow more accurate computation, but at the cost of slower
arithmetic.

Digits := 100:>

.1e51 + 1.;>

(7.42)

The maximum value for Digits is system dependent and can be found with the Maple_floats
command.

Maple_floats(MAX_DIGITS);>

(7.43)

For the default value of Digits, the significand is an immediate integer and so arithmetic
will be fast in general. It also means that some numerical function evaluations (such as sin
in the following example) will be able to use the CPU's native hardware floating-point
arithmetic to achieve the needed precision. However, raising Digits about the default value
will lead to slower arithmetic and slower function evaluation.

Digits:=10:>

CodeTools:-CPUTime(add(sin(1e-6*i),i=1..100000));>

(7.44)

Digits:=22:>

CodeTools:-CPUTime(add(sin(1e-6*i),i=1..100000));>

(7.45)

Reducing Digits below its default value does not usually lead to large improvements in
performance.
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Digits:=5:>

CodeTools:-CPUTime(add(sin(1e-6*i),i=1..100000));>

(7.46)

It is also important to note that changing Digits does not necessarily change the accuracy
of sequences of multiple floating-point computations; it changes only the precision of the
individual operations performed. The following example computes two additions using 10
digits of precision, but catastrophic cancellation leads to a mere one digit of accuracy in
the final answer.

Digits := 10:>

x := 1234567890.;>

(7.47)

y := -x+1;>

(7.48)

z := 3.141592654;>

(7.49)

x+z+y<>z+1;>

(7.50)

Ensuring accuracy requires careful study of the problem at hand. In this example, you need
19 digits of precision to get 10 digits of accuracy.

Digits := 19:>

x+z+y=z+1;>

(7.51)

Floating-Point Contagion

An important property of floating-point numbers in Maple, and nearly every other computing
environment, is contagion. When numerical expressions are created involving both floating-
point numbers and exact numbers, the floating property is contagious and causes the answer
to become a floating-point number.

1. * 10;>

(7.52)
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0. + 10;>

(7.53)

As you can see, this contagion property can be used as a quick method to convert exact
values to floating-point numbers. However, while floating-point contagion extends to all
Maple structures of type numeric (except, in some cases, hfloats), it does not apply to non-
numeric constants.

type(3/4, numeric);>

(7.54)

4/3 + 0.;>

(7.55)

1.*sqrt(3);>

(7.56)

The hfloat type is also contagious, but the precise behavior of the contagion is determined
by the UseHardwareFloats environment variable. By default, hfloats are contagious for
small values of Digits:

type(4/3 + HFloat(0.), hfloat);>

(7.57)

type(1. + HFloat(0.), hfloat);>

(7.58)

HFloat(1.1) * sin(4*Pi/7) -1;>

(7.59)

For large values of Digits, hfloats in computations will be converted to sfloats so that the
results are sfloats.

Digits := 20;>

(7.60)

type(1 + HFloat(0.), hfloat);>

(7.61)

type(1 + HFloat(0.), sfloat);>

(7.62)

292 • 7 Numerical Programming in Maple



If UseHardwareFloats=true then hfloats are completely contagious.

UseHardwareFloats := true;>

(7.63)

Digits := 20;>

(7.64)

a := 10.^19+1;>

(7.65)

b := a + HFloat(0.1);>

(7.66)

type(b, hfloat);>

(7.67)

If UseHardwareFloats=false then hfloats will always be converted to sfloats in computations,
regardless of the setting of Digits. The HFloat constructor will still create hfloats, however.

UseHardwareFloats := false;>

(7.68)

Digits := 10;>

(7.69)

c := 1 + HFloat(0.1);>

(7.70)

type(c, hfloat);>

(7.71)

type(HFloat(0.1), hfloat);>

(7.72)

Table 7.1 summarizes the floating-point contagion rules.

Table 7.1: Floating-Point Contagion Rules

deduceddeducedfalsetrueUseHardwareFloats
16...1...15anyanyDigits
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sfloathfloatsfloathfloathfloat + hfloat
sfloathfloatsfloathfloathfloat + sfloat
sfloatsfloatsfloatsfloatsfloat + sfloat

More on the Floating-Point Model

The software floating-point system is designed as a natural extension of the industry
standard for hardware floating-point computation, known as IEEE 754. Thus, there are
representations for infinity and undefined (what IEEE 754 calls a NaN, meaning Not a
Number) as discussed in Extended Numeric Types (page 285).

The IEEE 754 standard defines five rounding algorithms. Two methods called nearest and
simple round to nearest values, and the other three are directed roundings that round up or
down (as needed) towards , , or 0. Maple implements all of these rounding modes
and the desired mode can be selected by setting the Rounding environment variable.

Rounding;>

(7.73)

1.4^10;>

(7.74)

Rounding := 0;>

(7.75)

1.4^10;>

(7.76)

Another important feature of this system is that the floating-point representation of zero,
0., retains its arithmetic sign in computations. That is, Maple distinguishes between +0. and
-0. when necessary. In most situations, this difference is irrelevant, but when dealing with
functions that have a discontinuity across the negative real axis, such as , preserving
the sign of the imaginary part of a number on the negative real axis is important.

For more intricate applications, Maple implements extensions of the IEEE 754 notion of a
numeric event, and provides facilities for monitoring events and their associated status
flags. For more information about this system, refer to the numerics help page.
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7.4 Maple Commands for Numerical Computing
In this section we will discuss some of the commands available in Maple for floating-point
computation.

The evalf Command

The evalf command is the primary tool in Maple for performing floating-point calculations
in software floating-point mode. You can use evalf to compute approximations of non-nu-
meric constants.

evalf(Pi);>

(7.77)

You can alter the number of digits of the approximation by changing the value of the envir-
onment variable Digits, or by specifying the number as an index to evalf (which leaves the
value of Digits unchanged).

Digits := 20:>

evalf(Pi);>

(7.78)

evalf[200](Pi);>

(7.79)

evalf(sqrt(2));>

(7.80)

Digits := 10:>

Remember that theDigits command specifies the precision in decimal digits, unlike hardware
floating-point numbers which specify precision in binary digits.

All floating-point computations are performed in finite precision, with intermediate results
generally being rounded to Digits precision. As such, it is possible for round-off errors to
accumulate in long computations. Maple ensures that the result of any single floating-point
arithmetic operation (+, -, *, /, or sqrt) is fully accurate. Further, many of the basic functions
in Maple, such as the trigonometric functions and their inverses, the exponential and logar-
ithmic functions, and some of the other standard special functions for mathematics, are ac-
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curate to within .6 units in the last place (ulps), meaning that if the Digits + 1st digit of the
true result is a 4, Maple may round it up, or if it is a 6, Maple may round it down. Most
mathematical functions in Maple, including numerical integration, achieve this accuracy
on nearly all inputs.

It is possible to create software floats with different precisions. Changing the value ofDigits
will not change these numbers; it affects only the precision of subsequent operations on
those numbers.

Digits := 50;>

(7.81)

a := evalf(Pi);>

(7.82)

Digits := 10;>

(7.83)

a;>

(7.84)

a+1;>

(7.85)

evalf(a);>

(7.86)

From this example, you can see that evalf can be used to create a lower precision float from
one of higher precision. This can be used to round a result to a desired number of digits.
However, evalf will not increase the precision of a low precision float.

evalf[100](1.0);>

(7.87)

evalf[10000](a);>

(7.88)
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The evalf command also provides an interface to purely numerical computations of integrals,
limits, and sums.

Some definite integrals have no closed-form solution in terms of standard mathematical
functions. You can use evalf to obtain a numerical answer directly using numerical tech-
niques.

r := Int(exp(x^3), x=0..1);>

(7.89)

value(r);>

(7.90)

evalf(r);>

(7.91)

In other cases, Maple can find an exact solution, but the form of the exact solution is almost
incomprehensible. The function in the following example is a special function that
appears in mathematical literature.

q := Int( x^99 * (1-x)^199 / Beta(100, 200), x=0..1/5 );>

(7.92)
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value(q);>

(7.93)

evalf(q);>

(7.94)

The two previous examples use the Int command rather than int for the integration. If you
use int, Maple first tries to integrate the expression symbolically. Thus, when evaluating
the following commands, Maple determines a symbolic answer and then converts it to a
floating-point approximation, rather than performing direct numerical integration. In general,
the symbolic computation is more difficult, and thus slower than the numerical computation.

evalf( int(x^99 * (1-x)^199 / Beta(100, 200), x=0..1/5) );>

(7.95)

Similarly, evalf can be used on the inert forms Limit and Sum to compute using numerical
algorithms for computing numeric limits and sums.

evalf(Limit(sin(erf(1)*x)/(erf(1)^2*x),x=0));>

(7.96)

evalf( Sum(exp(x), x=RootOf(_Z^5+_Z+1)) );>

(7.97)
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When Not to Use evalf

In general the symbolic commands in Maple are able to handle floating-point numbers in
their input, but, by their nature floats are not as precise as rationals or symbolic constants.
So, even if you want a numerical answer from a command, you should avoid calling evalf
on the input.

The following command does not compute the expected answer of .

limit(n*(evalf(1/3) - 1/(3+1/n)), n=infinity);>

(7.98)

It would have been computed correctly with non-float values in the input.

evalf( limit(n*(1/3 - 1/(3+1/n)), n=infinity) );>

(7.99)

Numeric Solvers

There are also a number of numerical algorithms available in Maple in commands other
than evalf. One of the most important is fsolve which is short for floating-point solve. This
command computes numerical solutions to equations or systems of equations. In general,
it is much more efficient than calling evalf on the result of solve, especially if you are inter-
ested in only a single solution.

fsolve( exp(x) + 2*sin(x), x);>

(7.100)

The fsolve command is a sophisticated heuristic that chooses among many different al-
gorithms depending on the input. There are several more special purpose solving tools
available in the RootFinding package.

Several symbolic solvers in Maple also have numeric modes. The dsolve and pdsolve
commands both accept a numeric option, which indicates that a numerical answer should
be computed using purely numeric methods. For extensive information on these numeric
commands, refer to the dsolve/numeric and pdsolve/numeric help pages.

The evalhf Command

Like evalf, evalhf computes an numerical approximation of its input. However, evalhf uses
hardware floats in all intermediate calculations before returning an sfloat.
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dismantle( evalhf(1/3) );>

FLOAT(3): .333333333333333315
INTPOS(2): 333333333333333315
INTNEG(2): -18

The evalhf command is affected by the value of Digits, but since intermediate calculations
are done with hfloats, at most 18 digits will be returned.

Digits := 100;>

(7.101)

evalhf(1/3) ;>

(7.102)

Notice that in this example the result is only correct to 16 digits. In general, the results from
evalhf are guaranteed to 15 digits of accuracy.

To find the number of guaranteed digits for your version of Maple, use evalhf(Digits):

evalhf(Digits);>

(7.103)

In fact, evalhf is, despite superficial similarities, very different from evalf. The evalhf
command uses a completely separate evaluation environment which uses only simple types
rather that the Maple DAG types. This means that it can be very fast, but at the cost of being
limited in the types of computations it can perform.

Digits := 15;>

(7.104)

c := 10.^14;>

(7.105)

CodeTools:-Usage( evalhf( add( (i+c), i=1..10^6) ) );>
memory used=1.68KiB, alloc change=0 bytes, cpu time=47.00ms, real
time=47.00ms, gc time=0ns

(7.106)
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CodeTools:-Usage( ( add( (i+c), i=1..10^6) ) );>
memory used=103.06MiB, alloc change=6.00MiB, cpu time=1.23s, real
time=1.23s, gc time=268.00ms

(7.107)

c := HFloat(c);>

(7.108)

CodeTools:-Usage( ( add( (i+c), i=1..10^6) ) );>
memory used=35.03MiB, alloc change=-4.00MiB, cpu time=976.00ms, real
time=977.00ms, gc time=323.00ms

(7.109)

In particular evalhf only handles a specific list of functions. For the list of functions that
evalhf recognizes, refer to the evalhf/fcnlist help page.

evalhf(sin(exp(gamma+2)+ln(cos(Catalan))));>

(7.110)

evalhf( b /3 );>
Error, cannot handle unevaluated name `b` in evalhf

evalhf works with Arrays of hardware floats. It cannot handle symbols, lists, sets, and most
other Maple data structures.

evalhf(map(t->t+1, [1, 2, 3, 4]));>
Error, unable to evaluate expression to hardware floats: [1, 2, 3, 4]

To create an Array of hardware floats, you can use the option datatype=float[8], which
specifies that the elements in the Array are 8-byte hardware floats.

A := Array([1, 2, 3, 4], datatype=float[8]);>

(7.111)

evalhf(map(t->t+1, A));>

(7.112)

You can also create an Array that can be used by evalhf by using the constructor hfarray.
Both constructors create an Array of hardware floats. The only difference is that hfarray
defaults to C_order instead of Fortran_order.
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A := hfarray(1..4, 1..4, (i,j)->ithprime(i)*isqrt(3*(i+j)));>

(7.113)

lprint(A);>
Array(1 .. 4,1 .. 4,{(1, 1) = HFloat(4.), (1, 2) = HFloat(6.), (1, 3)
= HFloat(6.), (1, 4) = HFloat(8.), (2, 1) = HFloat(9.), (2, 2) =
HFloat(9.), (2, 3) = HFloat(12.), (2, 4) = HFloat(12.), (3, 1) =
HFloat(15.), (3, 2) = HFloat(20.), (3, 3) = HFloat(20.), (3, 4) =
HFloat(25.), (4, 1) = HFloat(28.), (4, 2) = HFloat(28.), (4, 3) =
HFloat(35.), (4, 4) = HFloat(35.)},datatype = float[8],order = C_order)

User-defined Maple procedures can be evaluated in the evalhf environment as long as they
comply with the restrictions outlined in the evalhf/procedure help page.

SlowPower := proc(a,n) local i, s; s:=1; for i to n do s := a*s;
end do; end proc;

>

(7.114)

SlowPower(2,10);>

(7.115)

evalhf( SlowPower(2,10) );>

(7.116)

Numerical Linear Algebra

Maple has access to many libraries for fast numeric computation such as BLAS, CLAPACK,
and the NAG® C Library. To take full advantage of the speed provided by these commands,
you need to provide them with Matrices and Vectors with the appropriate datatype.
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For example, floating-point Matrix times Matrix products can been computed very quickly
in the BLAS libraries and quickest dispatch to the BLAS commands will happen if the
Matrices are created with datatype=float[8].

A := Matrix(5^3,5^3,(i,j)->(i-j+1)/(i+j));>

(7.117)

CodeTools:-Usage(A^2);>
memory used=0.59GiB, alloc change=109.00MiB, cpu time=4.10s, real
time=3.76s, gc time=768.00ms

(7.118)

Ahf := Matrix(5^3,5^3,(i,j)->(i-j+1)/(i+j), datatype=float[8]);>

(7.119)
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CodeTools:-Usage(Ahf^2);>
memory used=355.77KiB, alloc change=0 bytes, cpu time=20.00ms, real
time=28.00ms, gc time=0ns

(7.120)

Of course, many of the linear algebra commands will try to determine if you have a Matrix
of low precision floats and will convert to the appropriate datatype automatically. In the
next example, Af has datatype=anything, but the result of Af^2 has datatype=float[8] and
requires only a small, but noticeable, copy and conversion overhead.

Af := Matrix(5^3,5^3,(i,j)->(i-j+1.)/(i+j));>

(7.121)

CodeTools:-Usage(Af^2);>
memory used=375.02KiB, alloc change=0 bytes, cpu time=31.00ms, real
time=8.00ms, gc time=0ns

(7.122)

We recommend that you specify datatype=float[8] in your constructors explicitly if you
intend to perform numeric computations. This makes the numeric nature of the Matrix ex-
plicit, and it makes it impossible to accidentally add non-float entries to a Matrix and thus
make subsequent computations slower. An exception will be raised if non-numeric entries
are assigned into the Matrix.

Ahf[1,1] := sqrt(3);>
Error, unable to store '3^(1/2)' when datatype=float[8]

Other numeric types will be automatically converted to float[8].

Ahf[1,1] := 45/111;>

(7.123)

Ahf[1,1];>

(7.124)

If a Matrix contains only floats, but does not have a datatype=float[8] restriction, then addi-
tion of symbolic elements results in the more expensive symbolic commands to be used.

Af[1,1] := sqrt(3);>

(7.125)
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CodeTools:-Usage(Af^2);>
memory used=310.66MiB, alloc change=60.00MiB, cpu time=5.29s, real
time=3.88s, gc time=1.66s

(7.126)

Another advantage of float[8] is that these Matrices are stored in the same way as an hfarray
which is analogous to an array of floats in the C or Fortran programming languages and
different from a Matrix of datatype=anything or datatype=sfloat which are arrays of Maple
DAGs each of which will take more memory than a single 8-byte float. Note the difference
in memory used in the following two examples.

restart;>

CodeTools:-Usage(Matrix(10^3,3*10^3,(i,j)->10.^4*j+j,
datatype=sfloat));

>

memory used=114.55MiB, alloc change=22.89MiB, cpu time=7.27s, real
time=7.27s, gc time=6.06s

(7.127)

restart;>

B1:=CodeTools:-Usage(Matrix(10^3,3*10^3,(i,j)->10^4*j+i,
datatype=float[8]));

>

memory used=22.96MiB, alloc change=22.89MiB, cpu time=545.00ms, real
time=545.00ms, gc time=0ns

(7.128)

It is also important to note that elements extracted from a float[8] rtable will be of type
hfloat and so hfloat contagion will apply subject to the current setting of UseHardwareFloats.

type(B1[1,1], hfloat);>

(7.129)

There are also many optimized commands for Matrices of complex hfloats. These Matrices
can be created using the option datatype=complex[8], and work similarly to those of data-
type=float[8].

If you are constructing very large Matrices in your programs, use the ArrayTools package
to construct and copy Matrices as efficiently as possible.
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7.5 Writing Efficient Numerical Programs
Two main points to keep in mind when trying to write efficient numerical programs are:

Try to use hardware floating-point arithmetic when Digits allows

Try to minimize memory usage where possible

Writing Flexible Numerical Procedures

You can use the evalhf(Digits) construct to determine whether hardware floating-point
arithmetic provides sufficient precision in a particular application. If Digits is less than
evalhf(Digits), then you can take advantage of the faster hardware floating-point calculations.
Otherwise, you should use software floating-point arithmetic, with sufficient digits, to per-
form the calculation.

In the following example, the procedure myevalf takes an unevaluated parameter, expr.
Without the uneval declaration, Maple would evaluate expr symbolically before invoking
myevalf.

myevalf := proc(expr::uneval)
if Digits < evalhf(Digits) then

>

evalf(evalhf(expr));
else

evalf(expr);
end if;

end proc:

The evalhf command evaluates many Maple functions, but not all. For example, you cannot
evaluate an integral using hardware floating-point arithmetic.

myevalf( Int(exp(x^3), x=0..1) );>
Error, (in myevalf) unable to evaluate function `Int` in evalhf

You can improve the procedure myevalf so that it traps such errors and tries to evaluate the
expression using software floating-point numbers instead.

myevalf := proc(expr::uneval)
if Digits < evalhf(Digits) then

>

try
return evalf(evalhf(expr));

catch:
end try;

end if;
return evalf(expr);

end proc:
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myevalf( Int(exp(x^3), x=0..1) );>

(7.130)

This procedure provides a model of how to write procedures that use hardware floating-
point arithmetic whenever possible.

Themyevalf procedure returns sfloats. A version that returns hfloats is easiest to write using
the hfloat procedure option. This option will cause the procedure to use hfloat arithmetic
as much as possible so long as digits less than 15. In particular it convert all floats in the
procedure definition into hfloats, and causes evalhf to not convert its output to an sfloat.

myevalf := proc(expr::uneval)
option hfloat;

>

if Digits < evalhf(Digits) then
try

return evalhf(expr);
catch:
end try;

end if;
return evalf(1. * expr);

end proc:

The multiplication by was added to the evalf return line to induce hfloat contagion
causing the output to be an hfloat when possible.

type( myevalf( Int(exp(x^3), x=0..1) ), hfloat);>

(7.131)

For more information on the hfloat option, see The hfloat Option (page 222) or refer to the
option_hfloat help page.

Example: Newton Iteration

This section illustrates how to take advantage of hardware floating-point arithmetic to cal-
culate successive approximations using Newton's method. You can use Newton's method
to find numerical solutions to equations. AsExample: Creating a Newton Iteration (page 269)
describes, if is an approximate solution to the equation , then , given by the following
formula, is typically a better approximation.

The procedure iterate takes a function, f, its derivative, df, and an initial approximate
solution, x0, as input to the equation . The procedure iterate calculates at mostN success-
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ive Newton iterations until the difference between the new approximation and the previous
one is small. The procedure prints the sequence of approximations to show successive ap-
proximations.

iterate := proc( f::procedure, df::procedure,
x0::numeric, N::posint, $ )

>

local xold, xnew;
xold := x0;
xnew := evalf( xold - f(xold)/df(xold) );
to N-1 while abs(xnew-xold) > 10^(1-Digits) do

xold := xnew;
print(xold);
xnew := evalf( xold - f(xold)/df(xold) );

end do;
return xnew;

end proc:

The following procedure calculates the derivative of f and passes all the necessary inform-
ation to iterate.

Newton := proc( f::procedure, x0::numeric, N::posint:=15, $ )
local df;

>

df := D(f);
print(x0);
return iterate(f, df, x0, N);

end proc:

Use Newton to solve the equation .

f := x -> x^2 - 2;>

(7.132)

Newton(f, 1.5);>

(7.133)

This version of Newton uses sfloats unless the arguments passed in are hfloats. If you add
option hfloat to the procedure iterate, then hfloats are used automatically, provided the
value of Digits is small enough.
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iterate := proc( f::procedure, df::procedure,
x0::numeric, N::posint, $ )

>

option hfloat;
local xold, xnew;
xold := 1. * x0;
xnew := 1. * evalf( xold - f(xold)/df(xold) );
to N-1 while abs(xnew-xold) > 10^(1-Digits) do

xold := xnew;
print(xold);
xnew := evalf( xold - f(xold)/df(xold) );

end do;
return xnew;

end proc:

Now the procedure Newton will return hfloats instead of sfloats when Digits is less than
15.

type( Newton(f, 1.5), hfloat);>

(7.134)

In this case, the procedure is simple enough that we can go beyond option hfloat and use
the evalhf command to achieve best performance. This next version of Newton uses evalhf
for floating-point arithmetic if possible and reverts to sfloats otherwise. Since iterate only
tries to find a solution to an accuracy of 10^(1-Digits), Newton uses evalf to round the
result of the hardware floating-point computation to an appropriate number of digits.

Newton := proc( f::procedure, x0::numeric, N::posint:=15, $ )
local df, result;

>

df := D(f);
print(x0);
if Digits < evalhf(Digits) then

try
return evalf( SFloat( evalhf(iterate(f, df, x0, N)) ));

catch:
end try;

end if;
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return evalf( SFloat( iterate(f, df, x0, N) ) );
end proc:

Newton uses hardware floating-point arithmetic for the iterations and rounds the result to
software precision. Hardware floating-point numbers have more digits than the software
floating-point numbers, given the present setting of Digits.

Newton(f, 1.5);>

(7.135)

Newton must use software floating-point arithmetic to find a root of the following Bessel
function.

F := z -> BesselJ(1, z);>

(7.136)

Newton(F, 4);>

(7.137)

Software arithmetic is used because evalhf does not recognize BesselJ and the symbolic
code forBesselJ uses the type command and remember tables, which evalhf does not allow.

evalhf( BesselJ(1, 4) );>

(7.138)

Using a try-catch block (as in the previous Newton procedure) allows the procedure to
work when evalhf fails.
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The previous Newton procedure prints many digits when it is trying to find a ten-digit ap-
proximation. The reason is that the print command is located inside the iterate procedure,
which is inside a call to evalhf, where all numbers are hardware floating-point numbers,
and print as such.

Example: Jacobi Iteration

Jacobi iteration is an iterative method for numerically solving systems of linear equations
that are diagonally dominant (meaning that the diagonal elements of the matrix representing
the system are larger than the sum of all other elements in any given row of the matrix).
Given an initial guess of for the solution to , the process is: if is an approximation
for the solution, then the next approximation is where is the diagonal of and .

The procedure Jacobi is a straightforward implementation of Jacobi iteration as it is usually
presented in a numerical analysis course.

Jacobi := proc(A::Matrix(numeric), b::Vector(numeric),
x0::Vector(numeric):=b, MAXIter::posint:=25,

>

tolerance::positive:=evalf(LinearAlgebra:-Norm(b,2)*10^(1-Digits)),
$)
local i,j,k, x_old, x_new, s, residual, n;

x_new := evalf(x0);

n := LinearAlgebra:-Dimension(b);
x_old := Vector(n, 0, rtable_options(x_new));

residual := evalf(LinearAlgebra:-Norm(A . x_new-b,2));

for k to MAXIter while residual > tolerance do
ArrayTools:-Copy(x_new, x_old);
for i from 1 to n do

s := 0;
for j from 1 to n do

if i<>j then
s := s + A[i,j] * x_old[j];

end if;
end do;
x_new[i] := (b[i] - s) / A[i,i];

end do;

residual := evalf(LinearAlgebra:-Norm(A . x_new-b,2));
end do;
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if k < MAXIter then
return x_new;

else
WARNING("Residual %1 greater than tolerance %2 after %3

iterations", residual, tolerance, k-1);

return x_new;
end if;

end proc:

Here we construct a random Matrix that is strongly diagonally dominant to test the procedure.
Note that, while in practice Jacobi iteration would not be used on dense Matrices, we use
dense Matrices in these examples to illustrate some efficiency principles.

N := 25:>

M := Matrix(N,N,(i,j)->`if`(i<>j,
RandomTools:-Generate(integer(range=-100..100))/1000.,
RandomTools:-Generate(integer(range=100..10000))/10.),datatype=float);

>

(7.139)

b := LinearAlgebra:-RandomVector(N,datatype=float);>

(7.140)

CodeTools:-Usage( Jacobi(M, b) );>
memory used=0.60MiB, alloc change=0 bytes, cpu time=23.00ms, real
time=24.00ms, gc time=0ns

(7.141)

The code is written in such a way that it will automatically work for software floats at
higher values of digits.

Digits := 50:>

M := Matrix(N,N,(i,j)->`if`(i<>j,
RandomTools:-Generate(integer(range=-100..100))/1000.,
RandomTools:-Generate(integer(range=100..10000))/10.),datatype=float);

>

(7.142)

b := LinearAlgebra:-RandomVector(N,datatype=float);>

(7.143)
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CodeTools:-Usage( Jacobi(M, b) );>
memory used=18.65MiB, alloc change=8.00MiB, cpu time=161.00ms, real
time=165.00ms, gc time=0ns

(7.144)

This implementation works well for small Matrices, but when the dimension becomes large,
it becomes very slow.

Digits := 10:>

N := 500:>

M := Matrix(N,N,(i,j)->`if`(i<>j,
RandomTools:-Generate(integer(range=-100..100))/1000.,
RandomTools:-Generate(integer(range=100..10000))/10.),datatype=float);

>

(7.145)

b := LinearAlgebra:-RandomVector(N,datatype=float);>

(7.146)

CodeTools:-Usage( Jacobi(M, b) );>
memory used=145.96MiB, alloc change=16.00MiB, cpu time=3.59s, real
time=3.16s, gc time=812.00ms

(7.147)

Adding option hfloat to Jacobi is not likely to increase performance, since hfloat contagion
from the float[8] Matrix elements means that hfloat arithmetic is likely being used everywhere
possible already. However, it is possible to rewrite the internal loops as a procedure that
can be evaluated with evalhf. (It might be possible to rewrite all of Jacobi to be evaluatable
to evalhf, but it would be difficult and potential gains would be modest.)

JacobiHelper := proc(A, b, x_old, x_new, n)
local s, i, j, l;

>

option hfloat;
# this procedure acts by side effect on x_new

for i from 1 to n do
s := 0;
for j from 1 to n do

if i<>j then
s := s + A[i,j] * x_old[j];

end if;
end do;
x_new[i] := (b[i] - s) / A[i,i];
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end do;
end proc:

And the rest of the procedure with option hfloat.

Jacobi := proc(A::Matrix(numeric), b::Vector(numeric),
x0::Vector(numeric):=b, MAXIter::posint:=25,

>

tolerance::positive:=evalf(LinearAlgebra:-Norm(b,2)*10^(1-Digits)),
$)
option hfloat;
local i,j,k, x_old, x_new, s, residual, n;

x_new := evalf(x0);

n := LinearAlgebra:-Dimension(b);
x_old := Vector(n, 0, rtable_options(x_new));

residual := evalf(LinearAlgebra:-Norm(A . x_new-b,2));

for k to MAXIter while residual > tolerance do
ArrayTools:-Copy(x_new, x_old);
# JacobiHelper acts by side effect on x_new
if Digits <= evalhf(Digits) then

evalhf( JacobiHelper(A, b, x_old, x_new, n) );
else

( JacobiHelper(A, b, x_old, x_new, n) );
end if;

residual := evalf(LinearAlgebra:-Norm(A . x_new-b,2));
end do;

if k < MAXIter then
return x_new;

else
WARNING("Residual %1 greater than tolerance %2 after %3

iterations", residual, tolerance, k-1);

return x_new;
end if;

end proc:
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CodeTools:-Usage( Jacobi(M, b) );>
memory used=3.95MiB, alloc change=0 bytes, cpu time=560.00ms, real
time=559.00ms, gc time=0ns

(7.148)

Using evalhf here achieves an impressive speed-up but you can achieve even better speed
by taking advantage of the built-in Matrix and Vector operations. In general you code will
be faster if you can replace nested loops with calls to external commands for Vectors or
Matrices. Those commands will be highly optimized for your platform taking advantage of
multiple cores and cache hierarchy where possible.

Jacobi := proc(A::Matrix(numeric), b::Vector(numeric),
x0::Vector(numeric):=b, MAXIter::posint:=25,

>

tolerance::positive:=evalf(LinearAlgebra:-Norm(b,2)*10^(1-Digits)),
$)
local k, x_new, S, S_inv, residual;

x_new := evalf(x0);
S := LinearAlgebra:-Diagonal(A,datatype=float);
S_inv := 1 /~ S;

residual := evalf(LinearAlgebra:-Norm(A.x_new-b,2));

for k to MAXIter while residual > tolerance do
# computing R.x as A.x - S.x is probably a bad idea

numerically
# but we do it anyway to avoid making the code overly

complicated
x_new := S_inv *~ (b - ( A . x_new - S *~ x_new));
residual := evalf(LinearAlgebra:-Norm(A . x_new-b,2));

end do;

if k < MAXIter then
return x_new;

else
WARNING("Achieved tolerance of only %1 after %2 iterations",

residual, i-1);
return x_new;

end if;

end proc:
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CodeTools:-Usage( Jacobi(M, b) );>
memory used=4.07MiB, alloc change=0 bytes, cpu time=66.00ms, real
time=68.00ms, gc time=0ns

(7.149)

This sort of speed-up is typical. The built-in numerical linear algebra commands are easily
an order of magnitude faster than loops run in Maple, and generally also faster than loops
in evalhf.
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8 Programming with Modules
This chapter describes the structure and flexibility of Maple modules.

Modules allow you to associate related procedures and data in one structure. By creating a
module, you can write code that can be reused, transported, and easily maintained. You can
also use modules to implement objects in Maple.

This chapter provides several example modules, many of which are available as Maple
source code in the samples directory of your Maple installation. You can load these examples
into the Maple library to modify and extend them, and use them in custom programs.

8.1 In This Chapter
• Syntax and semantics

• Using modules as records or structures

• Modules and use statements

• Interfaces and implementations

8.2 Introduction
You may decide to create a module for one of the purposes described below.

Encapsulation

Encapsulation is the act of grouping code together in one structure to separate its interface
from its implementation. By doing so, you can create applications that are transportable and
reusable and that offer well-defined user interfaces. This makes your code easier to maintain
and understand--important properties for large software systems.

Creating a Custom Maple Package

A package is a means of bundling a collection of Maple procedures related to a domain.
Most of the Maple library functionality is available in packages.

Creating Objects

Objects can be represented using modules. In software engineering or object-oriented pro-
gramming, an object is defined as an element that has both a state and behavior. Objects
are passed the same way as ordinary expressions, but also provide methods which define
their properties.
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Creating Generic Programs

Generic programs accept objects with specific properties or behaviors. The underlying
representation of the object is transparent to generic programs. For example, a generic
geometry program can accept any object that exports an area method, in addition to other
objects. The framework of the program would rely on information in each given object to
determine specific behaviors, while the overall program implements a common pattern
between the objects.

8.3 A Simple Example
In the following example, a module generates a sequence of numbers.

Counter := module()
description "number generator";

>

export getNext;
local count;

count := 0;

getNext := proc()
count := 1 + count;

end proc;

end module:
Counter:-getNext();
Counter:-getNext();
Counter:-getNext();

(8.1)

The module definition format, which will be described in more detail in the next section, is
similar to a procedure definition in that the body is contained within a delimited code block.
Also, elements such as local variables, options, and description are declared at the top of
the module. Unlike a procedure, the body of the module is evaluated only once when it is
declared. The values that are defined during this evaluation process, and the values that are
defined in subsequent usage of the module, are stored and can be used again.

In a module definition, you can declare exported variables, which are names that will be
made available once the module has been run. These exported variables can be accessed by
using the member selection operator (:-) or the indexing operation ( [] ) , while local variables
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remain private (that is, they are accessible only by methods within the module). The example
above declares and uses one exported local variable called getNext and one local variable
called count.

8.4 Syntax and Semantics
Module definitions have the following general syntax.
module()

local L;
export E;
global G;
options O;
description D;
B

end module

The Module Definition

All module definitions begin with the keyword module, followed by an empty pair of par-
entheses. This is similar to the parentheses that follow the proc keyword in a procedure
definition. Following that is an optional declaration section and the module body. The
keywords end module (or simply end) terminate a module definition.

The simplest valid module definition is

module() end;>

(8.2)

which does not contain exported variables, local variables, references, global variables, or
a body of statements.

The Module Body

The body of a module definition contains the following components:

• Zero or more Maple statements. The body is executed when the module definition is
evaluated, producing a module.

• Assignment statements that assign values to the exported names of the module.

Also, the body can optionally contain the following components:

• Assignments to local variables and arbitrary computations.

• A return statement, which cannot contain a break or next statement outside of a loop.
Running a return statement terminates the execution of the body of the module definition.
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Module Parameters

Unlike procedures, module definitions do not have explicit parameters because modules
are not called (or invoked) with arguments.

Implicit Parameters

All module definitions have an implicit parameter called thismodule. Within the body of
a module definition, this special name evaluates to the module in which it occurs. You can,
therefore, refer to a module within its own definition before the result of evaluating it has
been assigned to a name.

thismodule is similar to thisproc in procedures, but is not the same as procname. The
difference between thismodule and procname is that procname evaluates to a name, while
thismodule evaluates to the module expression itself. There is no concept of amodulename
implicit variable because the invocation phase of evaluating a module definition is part of
its normal evaluation process, and it occurs immediately. Procedures, on the other hand,
are not invoked until they are called with arguments. Normally, at least one name for a
procedure is known by the time it is called; this is not the case for modules.

Implicit parameters related to passing arguments (for example, _params, _options, _passed,
and others) cannot be referenced in module definitions. They are only available within the
scope of a procedure.

For more information on procedures, see Procedures (page 205).

Named Modules

In a module definition, an optional symbol can be specified after the module keyword.
Modules created in this way are called named modules.

Semantically, named modules are almost identical to normal modules, but the exported
variables of named modules are printed differently, allowing the module from which it was
exported to be identified visually. In the following example, a normal module is assigned
to the name NormalModule.

NormalModule := module() export e; end module;
NormalModule:-e;

>

(8.3)

In the following example, the symbol (the name of the module) after the module keyword
is NamedModule.
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module NamedModule() export e; end module;>

(8.4)

NamedModule:-e;>

(8.5)

When the definition of a named module is evaluated, the name (which appears immediately
after the module keyword) is assigned the module as its value and the name is protected
(that is, it cannot be modified). Therefore, a named module is usually created only once.
For example, an error occurs when the same named module definition above is executed.

module NamedModule() export e; end module;>
Error, (in NamedModule) attempting to assign to `NamedModule` which
is protected. Try declaring `local NamedModule`; see ?protect for
details.

Executing the normal module definition again creates a new instance of the module and
does not result in an error. It simply reassigns the variable NormalModule to the new
module instance.

NormalModule := module() export e; end module;>

(8.6)

If you save a normal module to a Maple library archive, which is a file used to store a col-
lection of internal files, the normal module becomes a named module the next time it is
loaded from the library archive. The savelib command, which is the command used to save
a file to a library archive, takes the name of the variable assigned a module, and saving the
file associates this name with the module.

For more information about library archive files, see Writing Packages (page 395).

Important: Do not assign a named module to another variable, for example,

SomeName := eval( NamedModule );>

(8.7)

SomeName:-e;>

(8.8)

Exports of named modules are printed using the distinguished name that was given to the
module when it was created, regardless of whether it has been assigned to another name.
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Whether a module has a name also affects the reporting of errors that occur during its
evaluation. When the second attempt to evaluate the named module definition above gener-
ated an error, the error message reported the location of the error by name. In contrast, when
an error occurs during the evaluation of a normal module definition, the name unknown is
used instead.

NormalModule := module() export e; error "oops"; end module;>
Error, (in unknown) oops

This process differs from procedure error reporting. Maple cannot report the name of a
normal module (that is, the name of the variable to which the module is assigned) because
the evaluation of the right-hand side of an assignment occurs before the assignment to the
name takes place. Therefore, the error occurs before the association between a variable and
the module has occurred.

Declarations

The declarations section of the module must appear immediately after the parentheses. All
of the statements in the declarations section are optional, but, at most, one of each kind can
be specified. Most module declarations are the same as those for procedures.

For more information, see Parameter Declarations (page 207).

Description Strings

You can provide a brief description to summarize the purpose and function of your modules.
Providing a description is valuable to other users who read your code. Include text after the
description keyword as you would in a procedure definition.

Hello := module()
description "my first module";

>

export say;
say := proc()

print( "HELLO WORLD" )
end proc;

end module:

When the module is printed, its description string is displayed.
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eval( Hello );>

(8.9)

The export declaration is described later in this chapter.

Global Variables

Global variables referenced in a module definition are declared by using the global keyword.
Following the global keyword is a sequence of one or more symbols, which are associated
with their global module instances. In certain cases, you must declare a name as a global
variable to prevent implicit scoping rules from making it local.

Hello := module()
export say;

>

global message;
say := proc()

message := "HELLO WORLD!"
end proc;

end module:

message;>

(8.10)

Hello:-say();>

(8.11)

message;>

(8.12)

Local Variables

You can define variables that are local to the module definition by using the local declaration.
Its format is the same as for procedures. The following example is a variant of the previous
Hello module, which uses a local variable.

Hello := module()
local loc;

>

export say;
loc := "HELLO WORLD!";
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say := proc()
print( loc )

end proc;
end module:

Local variables (or locals) cannot be used or changed outside of the module definition in
which they occur. In other words, they are private to the module.

A local variable in a module is a distinct object from a global variable with the same name.
While local variables in procedures are typically used only for the duration of the execution
time of the procedure body, module local variables are stored after the module definition
is executed. They can be used to maintain a state. For example, in the Counter example
described at the beginning of this chapter, a local count variable stores the current value of
the counter. The count local variable increments each time the getNext procedure is invoked.
Its new value is stored and can be used the next time the procedure is called. At the same
time, because count is local, no external programs can change its value and end the sequence
defined by the module.

Exported Local Variables

Procedures and modules both support local variables. However, only modules support ex-
ported local variables, which are often called exports.

Module exports are declared by using the export declaration. It begins with the keyword
export, followed by a (nonempty) sequence of symbols. A name is never exported implicitly;
exports must be declared.

The result of evaluating a module definition is a module. You can view a module as a col-
lection of its exports, which are also referred to asmembers of the module. These are simply
names that can (but need not) be assigned values. You can establish initial values for the
exports by assigning values to them in the body of the module definition.

The word export is a short form for exported local variable. In most cases, a module export
is a local variable such as those declared with the local declaration. The difference is that
you can access the exported local variables of a module after it has been created.

To access an export of a module, use the member selection operator (:-). Its general syntax
is
modexpr :- membername

modexpr must be an expression that evaluates to a module and membername must be the
name of an export of the module to which modexpr evaluates. Anything else signals an
exception. You cannot access the local variables of an instantiated module by using this
syntax.
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The Hello example above has one export named say. In the following example, say is as-
signed a procedure. To call it, enter

Hello:-say();>

(8.13)

The following expression raises an exception because the name noSuchModule is not as-
signed a module expression.

noSuchModule:-e;>
Error, `noSuchModule` does not evaluate to a module

In the following example, a module expression is assigned to the name m and the member
selection expression m:-e evaluates to the value of the exported variable e of m.

m := module() export e; e := 2 end module:
m:-e;

>

(8.14)

Since m does not export a variable named noSuchExport, the following expression raises
an exception.

m:-noSuchExport;>
Error, module does not export `noSuchExport`

In addition to the :- syntax, square brackets can also be used to reference a module export.

m[e];>

(8.15)

The square bracket notation has different evaluation rules than member selection. When
using the member selection operator (:-), the export name must be known in advance. When
using [], the name of the export can be computed. In this example, an exported variables
value can be selected from an arbitrary module.

m := module() export a := 1, b := 2, c := 3; end module:
FirstExport := proc( m::`module` ) local ex := exports(m); return

>

m[ex[1]]; end proc;
FirstExport(m);
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(8.16)

Important: Exports do not need to have assigned values. The following module exports
an unassigned name. This illustrates the importance of distinguishing module exports
from global variables.

m := module() export e; end module:>

References to the exported name e in m evaluate to the name e.

m:-e;>

(8.17)

Note, however, that this is a local name e and not the global instance of the name.

evalb( e = m:-e );>

(8.18)

The first e in the previous expression refers to the global e, while the expression m:-e
evaluates to the e that is local to the modulem. This distinction between a global and export
of the same name is useful. For example, you can create a module with an export sin. As-
signing a value to the export sin does not affect the protected global name sin.

Determining the Export Names

You can determine the names of the exports of a module by using the exports procedure.

exports( Hello );>

(8.19)

exports( NormalModule );>

(8.20)

This procedure returns the global instances of the export names.

exports( m );>

(8.21)
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evalb( (8.21) = e );>

(8.22)

You can also obtain the local instances of those names by using the option instance.

exports( m, 'instance' );>

(8.23)

evalb( (8.23) = e );>

(8.24)

evalb( (8.23) = m:-e );>

(8.25)

You cannot have the same name declared as both a local variable and an exported local
variable.

module() export e; local e; end module;>
Error, exported variable `e` cannot be multiply declared

(The declared exports and locals actually form a partition of the names that are local to a
module.)

Testing for Membership in a Module

As described in previous chapters, the member command can be used to test whether a value
is a member of a set or list.

member( 4, { 1, 2, 3 } );>

(8.26)

This command can also be used for membership tests in modules.

member( say, Hello );>

(8.27)

member( cry, Hello );>

(8.28)

The first argument is a global name whose membership is to be tested, and the second argu-
ment is the name of a module. The member command returns the value true if the module
has an export whose name is the same as the first argument.
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The member command also has a three-argument form that can be used with lists to determine
the first position at which an item occurs.

member( b, [ a, b, c ], 'pos' );>

(8.29)

The name pos is now assigned the value 2 because b occurs at the second position of the
list. [ a, b, c].

pos;>

(8.30)

When used with modules, the third argument is assigned the local instance of the name
whose membership is being tested, provided that the return value is true.

member( say, Hello, 'which' );>

(8.31)

which;>

(8.32)

eval( which );>

(8.33)

If the return value from the member command is false, the name remains unassigned or
maintains its previously assigned value.

unassign( 'which' ):>

member( cry, Hello, 'which' );>

(8.34)

eval( which );>

(8.35)

Module Options

Similar to procedures, a module definition can contain options. The options available for
modules are different from those for procedures. Only the options trace and copyright are
common to both procedures and modules. The following four options have a predefined
meaning for modules: load, unload, package, and record. The load and unload options
cover functionality defined by the ModuleLoad and ModuleUnload special exports described
in the next section.
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For more information, refer to the module,option help page.

The package Option

A package is a collection of procedures and other data that can be treated as a whole.
Packages typically gather several procedures that allow you to perform computations in a
well-defined problem domain. Packages can contain data other than procedures and can
even contain other packages (subpackages).

The package option is used to designate a module as a Maple package. The exports of a
module created with the package option are automatically protected.

For more information, see Writing Packages (page 395).

The record Option

The record option is used to identify records, which are fixed-size collections of items.
Records are created by using the Record constructor and are represented using modules.

For more information, see Records (page 340).

Special Exports

Certain specially named exports, when defined in a module, affect how modules behave in
Maple. These special exports are described below. In most cases, they can be declared as
either exported local variables or local variables.

The ModuleApply Procedure

When a procedure named ModuleApply is declared as an export or local of a module, the
module name can be used as if it were a procedure name.

Consider the Counter example described at the beginning of this chapter. Since it only has
one method, the calling sequence can be shortened by using the ModuleApply function.

Counter := module()
export ModuleApply;

>

local count;

count := 0;

ModuleApply := proc()
count := 1 + count;

end proc;
end module:
Counter();
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Counter();
Counter();

(8.36)

In this example, calls to Counter:-ModuleApply() are not needed and the results are the
same as those generated by the original Counter example. The ModuleApply function can
specify and accept any number of parameters.

You can also use the ModuleApply function to create module factories, a standard object-
oriented design pattern described later in this chapter.

The ModuleIterator Procedure

The ModuleIterator procedure defines how a module functions when it is used as the in
clause of a for loop.

for e in myModule do
# Do something with e

>

end do;
for i, e in myModule do

# Do something with e, whose index in myModule is i.
end do;

In the example below, the ModuleIterator procedure returns two procedures: hasNext and
getNext. These procedures can have any names, and in fact, do not require names. When
the ModuleIterator procedure is called, an iterator is initialized for the instance, the details
of which are kept hidden from the caller. The two returned procedures can then be used to
iterate over the instance to perform a specific task. For example, consider a class that imple-
ments a form of a set of which mySet is an instance. You can iterate over this set as follows
(passing i is only necessary if the index is needed):

(hasNext,getNext) := ModuleIterator(mySet);
while hasNext() do

>

e := getNext('i');
# Do something with e, whose index is in i.

end do;

The example above is an explicit use of the ModuleIterator procedure. However, this
mechanism is also used implicitly by the Maple for-loop construct,

The hasNext procedure returns a value of true or false depending on whether remaining
elements need to be processed. Successive calls to hasNext with no intervening calls to
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getNext return the same result. The getNext procedure returns the next element to process,
and increments the iterator. If an argument was passed to getNext, it will be an unevaluated
name, and getNext should assign to it an index corresponding to the iterator (one that has
meaning to some other procedure in the module that can be used to look up an entry using
this index). If the concept of an index does not make sense for this particular module, getNext
should not perform the assignment. These procedures should be implemented so that it is
always safe to call getNext after the most recent call to hasNext returns a value of true. The
result of calling getNext after hasNext has returned a value of false, or before hasNext has
ever been called, is up to the implementer of the class.

The following example implements a fixed-size container of a collection of strings. In a
real-world use case, these might have been other values that are expensive to compute, so
we allocate this module to collect them for convenient access.

CommonWords := module()
export ModuleIterator, lookup;

>

local words := [ "the", "be", "to", "of", "and" ];

ModuleIterator := proc()
local i := 1;
return (

# This is the (anonymous) hasNext procedure.
proc()

evalb( i <= numelems(words) )
end proc,

# This is the getNext procedure.
proc(returnIndex := NULL)

local word := words[i];
# If a name was passed to hasNext, assign it the

index.
if returnIndex <> NULL then

returnIndex := i
end if;
i := i + 1;
word

end proc
)

end proc;

# This procedure can use the indices returned by getNext.
lookup := proc(index)

words[index]
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end proc;
end module;

(8.37)

This loop will enumerate only the words in the CommonWords module:

for e in CommonWords do
e

end do;

>

(8.38)

This loop will enumerate both the words and their indices:

for i, e in CommonWords do
printf( "'%s' has index %d\n", e, i );

end do;

>

'the' has index 1
'be' has index 2
'to' has index 3
'of' has index 4
'and' has index 5

Notice that the ModuleIterator procedure declares a local variable, i, that is used as the index
by hasNext and getNext. If this variable were declared local to the entire module, then it
would only be possible to iterate over it once, as i would never get reset to 1. By declaring
i local to ModuleIterator, it becomes part of the environment for the instances of hasNext
and getNext returned by a particular call to ModuleIterator. Thus, multiple iterators into the
same module can exist simultaneously without interfering with one another. For example:

for i, e in CommonWords do
printf( "'%s' has index %d\n", e, i );

>

if i = 3 then
for j, f in CommonWords do

printf( "\t'%s' has index %d\n", f, j )
end do

end if
end do;
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'the' has index 1
'be' has index 2
'to' has index 3

'the' has index 1
'be' has index 2
'to' has index 3
'of' has index 4
'and' has index 5

'of' has index 4
'and' has index 5

When the module iterator is used by the seq, add, or mul commands, Maple first checks if
the module is an object that exports the numelems command. If so, it will call the numelems
command to determine how large to preallocate the result, and the hasNext and getNext
procedures must return exactly that many elements. If the module does not export a numelems
method, Maple will enlarge the result as needed, which will consume more space (as inter-
mediate results are discarded) and time (garbage collection), although Maple will try to do
this as efficiently as possible.

The ModuleLoad Procedure

The ModuleLoad procedure is executed automatically when a module is loaded from the
Maple library archive in which it has been saved. In a normal session, initialization code
can be included in the module body. When loading a saved module, extra initialization code
is sometimes required to set up run-time properties for the module. For example, a module
that loads procedures from a dynamic-link library (.dll) file may need to call the
define_external function during the initialization process. For more information on the
define_external function, see Advanced Connectivity (page 479).

Consider the Counter example at the beginning of the chapter. The count index can have
any value when it is saved. The next time you use it, you might want to reset the count to
zero so that it is ready to start a new sequence. This can be done by using the ModuleLoad
procedure.

Counter := module()
export getNext, ModuleLoad;

>

local count;

ModuleLoad := proc()
count := 0;

end proc;
ModuleLoad();

getNext := proc()
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count := 1 + count;
end proc;

end module:
Counter:-getNext();

(8.39)

Note that the initialization code is contained within the ModuleLoad procedure. After that,
the ModuleLoad procedure is also called. By defining the module in this way, you will get
the same results when executing the module definition as you would when loading a saved
module from a library archive.

The results of ModuleLoad can be duplicated using a procedure with a different name by
using the load=pname option in the option sequence of the module.

ModulePrint

If a module has an export or local named ModulePrint, the result of the ModulePrint com-
mand is displayed instead of the module when a command in that module is executed.

The ModulePrint procedure does not display output. Instead, it returns a standard Maple
expression that will be displayed. The expression returned can be customized to another
object that portrays or summarizes the module.

In the following example, the Counter example will be extended from the ModuleIterator
example to display a summary of what the module does.

Counter := module()
export ModuleIterator, getNext, lower := 0, upper := 5;

>

local ModulePrint, hasNext, count := 0;

hasNext := proc()
evalb( count < upper );

end proc;

getNext := proc()
count := 1 + count;
return count ;

end proc;

ModuleIterator := proc()
return hasNext, getNext;

end proc;

ModulePrint := proc()
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return [[ sprintf("Counter from %d to %d", lower, upper)
]];

end proc;
end module;

(8.40)

ModuleUnload

The ModuleUnload procedure is called immediately before a module is discarded. A module
is discarded either when it is no longer accessible and is garbage collected, or when you
end your Maple session.

M := module()
export ModuleUnload;

>

ModuleUnload := proc() print("I am gone"); end proc;
end module:
unassign(M);
1;2;3;4; gc();

(8.41)

You may not see the "I am gone" message after executing the code above because several
factors determine exactly when memory is free to be garbage collected. At a minimum, no
references can be left in the module. It must not be assigned or contained in any other live
expression. This includes the ditto operators and the list of display reference handles (that
is, the undo/redo buffer of the GUI). Also, it must not be identified as being alive by the
garbage collector (i.e. a reference to the module is not found by the collector).

A module can become inaccessible, and therefore subject to garbage collection before the
unload= procedure is executed, but can then become accessible again when that procedure
is executed. In that case, the module is not garbage collected. When it eventually is garbage
collected, or if you end your Maple session, the unload= procedure is not executed again.

The behavior of ModuleUnload can be duplicated using a procedure with a different name
by using the unload=pname option in the option sequence of the module.
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Implicit Scoping Rules

The bindings of names that appear within a module definition are determined when the
module definition is simplified. Module definitions are subject to the same implicit scoping
rules that apply to procedure definitions. Under no circumstances is a name ever implicitly
determined to be exported by a module; implicitly scoped names can resolve only to non-
exported local variables or global names.

Lexical Scoping Rules

Module definitions, along with procedure definitions, follow standard lexical scoping rules.

Modules can be nested, in the sense that a module can have any of its exports assigned to
a module whose definition occurs within the body of the outer module.

Here is a simple example of a submodule.

m := module()
export s;

>

s := module()
export e;
e := proc()

print( "HELLO WORLD!" )
end proc;

end module
end module:

The global name m is assigned a module that exports the name s. Within the body of m,
the export s is assigned a module that exports the name e. As such, s is a submodule of m.
The Shapes package, which is described inWriting Packages (page 395), illustrates the use
of submodules.

Modules and procedures can both be nested to an arbitrary depth. The rules for the access-
ibility of local variables (including exported locals of modules) and procedure parameters
are the same as the rules for nested procedures.

Module Factory

The Counter example used up to this point would be more useful if you could have many
Counter modules running at the same time, and if they could be specialized according to
specified bounds. Modules do not take explicit parameters, but you can write a generic
module that could be specialized by using the factory design pattern.

To do this, write a constructor procedure for the module that accepts the lower and upper
bound values as arguments. The following module creates a Counter.
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MakeCounter := proc( lower::integer, upper::integer )
return module()

>

export ModuleIterator, getNext;
local ModulePrint, hasNext, count := lower;

hasNext := proc()
evalb( count < upper );

end proc;

getNext := proc()
count := 1 + count;
return count ;

end proc;

ModuleIterator := proc()
return hasNext, getNext;

end proc;

ModulePrint := proc()
return [[ sprintf("Counter from %d to %d", lower,

upper) ]];
end proc;

end module;
end proc;
c1 := MakeCounter(6,10);
c1:-getNext();
c1:-getNext();
c2 := MakeCounter(2,4);
c2:-getNext();
c1:-getNext();
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(8.42)

In the above example, two specialized Counters operate at the same time with different in-
ternal states.
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Modules and Types

Two Maple types are associated with modules. First, the name module is a type name.
Naturally, an expression is of typemodule only if it is a module. When used as a type name,
the name module must be enclosed in name quotes (`).

type( module() end module, '`module`' );>

(8.43)

type( LinearAlgebra, '`module`' );>

(8.44)

Second, a type called moduledefinition identifies expressions that are module definitions.
In the previous example, the module definition

module() end module:>

was evaluated before being passed to type, so the expression that was tested was not the
definition, but the module to which it evaluates. You must use unevaluation quotes (') to
delay the evaluation of a module definition.

type( 'module() end module', 'moduledefinition' );>

(8.45)

Other important type tests satisfied by modules are the types atomic and last_name_eval.

type( module() end module, 'atomic' );>

(8.46)

The procedure map has no effect on modules; modules passed as an argument to map remain
unchanged.

map( print, module() export a, b, c; end module );>

(8.47)

Modules also follow last name evaluation rules. For more information on last name evaluation
rules, refer to the last_name_eval help page.

m := module() end module:
m;
type( m, 'last_name_eval' );

>

(8.48)
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Although the type module is a surface type, which checks information at the top level of
your code, it acts also as a structured type. Parameters passed as arguments to the unevaluated
name module are interpreted as export names. For example, the module

m := module() export a, b; end module:>

has the structured module type `module`( a, b ):

type( m, '`module`( a, b )' );>

(8.49)

It also has the type `module`( a )

type( m, '`module`( a )' );>

(8.50)

because any module that exports symbols a and b is a module that exports the symbol a.

For more information about structured types, refer to the type,structure help page.

8.5 Records
The Record command, which was introduced in Records (page 159), is an example of a
module factory that can help you to write reusable code. Like an Array, a record is a fixed-
size collection of items but, like a table, individual items stored within the record can be
referenced by a name, rather than a numeric offset. In Maple, records, which are called
structures in C++, are implemented as modules.

Creating Records

To create a record, use the Record constructor. In the simplest form, it takes the field names
as arguments.

rec := Record( 'a', 'b', 'c' );>

(8.51)

The name rec is now assigned a record with fields named a, b, and c. You can access and
assign values to these fields by using the expressions rec:-a, rec:-b, and rec:-c.

rec:-a := 2;>

(8.52)

rec:-a;>

(8.53)
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If unassigned, a record field evaluates to the local instance of the field name.

rec:-b;>

(8.54)

evalb( (8.54) = b );>

(8.55)

This is useful because the entire record can be passed as an aggregate data structure.

The record constructor accepts initializers for record fields. That is, you can specify an initial
value for any field in a new or unassigned record by passing an equation with the field name
on the left side and the initial value on the right.

r := Record( 'a' = 2, 'b' = sqrt( 3 ) );>

(8.56)

r:-b;>

(8.57)

In addition, you can associate Maple types with record fields. To associate a type, use the
`::` operator with the field name specified as the first operand.

Type assertions can be used in combination with initializers. An incompatible initializer
value triggers an assertion failure when the assertlevel kernel option is set to 2. For more
information, refer to the kernelopts help page.

kernelopts( 'assertlevel' = 2 ):>

Record( a::integer = 2.3, b = 2 );>

(8.58)

r := Record( 'a'::integer = 2, 'b'::numeric );>

(8.59)

r:-b := "a string";>
Error, assertion failed in assignment, expected numeric, got a string

If the initializer for a record field is a procedure, you can use the reserved name self to refer
to the record you are creating. This allows records to be self-referential. The name self is
applicable only to creating records and not to modules in general. For example, you can
write a complex number constructor as follows.
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MyComplex := ( r, i ) ->
Record( 're' = r, 'im' = i, 'abs' = (() -> sqrt(

self:-re^2 + self:-im^2 )) ):

>

c := MyComplex( 2, 3 ):>

c:-re, c:-im, c:-abs();>

(8.60)

Combined with prototype-based inheritance, described in Object Inheritance (page 343),
this facility makes the Record constructor a powerful tool for object-oriented programming.

Record Types

Expressions created with the Record constructor are of the type record.

type( rec, 'record' );>

(8.61)

This is a structured type that works the same way as the `module` type, but recognizes re-
cords specifically.

r := Record( a = 2, b = "foo" ):>

type( r, 'record( a::integer, b::string )' );>

(8.62)

Note: In a record type, the field types are used to test against the values assigned to the
fields (if any), and are not related to type assertions on the field names (if any).

r := Record( a::integer = 2, b::{symbol,string} = "foo" ):>

type( r, 'record( a::numeric, b::string )' );>

(8.63)

Using Records to Represent Quaternions

Records can be used to implement simple aggregate data structures for which you want
named access to slots. For example, four real numbers can be combined to form a quaternion
and you can represent this using a record structure as follows.

MakeQuaternion := proc( a, b, c, d )
Record( 're' = a, 'i' = b, 'j' = c, 'k' = d )

end proc:

>
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z := MakeQuaternion( 2, 3, 2, sqrt( 5 ) );>

(8.64)

In this example, z represents the quaternion 2 + 3i + 2j + sqrt(5)*k (where i, j, and k are the
nonreal quaternion basis units). The quaternion records can now be manipulated as single
quantities. The following procedure accepts a quaternion record as its only argument and
computes the Euclidean length of the quaternion that the record represents.

qnorm := proc( q )
use re = q:-re, i = q:-i, j = q:-j, k = q:-k in

>

sqrt( re * re + i * i + j * j + k * k )
end use

end proc:

qnorm( z );>

(8.65)

A Maple type for quaternions can be introduced as a structured record type.

TypeTools:-AddType( 'quaternion', 'record( re, i, j, k )' );>

type( z, 'quaternion' );>

(8.66)

Object Inheritance

The Record constructor supports a simple form of prototype-based inheritance. An object
system based on prototypes does not involve classes; instead, it uses a simpler and more
direct form of object-based inheritance. New objects are created from existing objects (called
prototypes) by cloning, that is, by copying and augmenting the data and behavior of the
prototype.

The Record constructor supports prototype-based inheritance by accepting an index argument,
which is the prototype for the new object record.

p := Record( a = 2, b = 3 ); # create a prototype>

(8.67)

p:-a, p:-b;>

(8.68)

r := Record[p]( c = 4 );>

(8.69)
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r:-a, r:-b, r:-c;>

(8.70)

In this example, the record p is the prototype, and the second record r inherits the fields a
and b, and their values, from the prototype p. It also augments the fields obtained from p
with a new field c. The prototype p is not changed.

r:-a := 9;>

(8.71)

p:-a;>

(8.72)

Behavior, as well as data, can be copied from a prototype. To copy behavior, use a constructor
procedure for both the prototype and its clones.

BaseComplex := proc( r, i )
Record( 're' = r, 'im' = i )

>

end proc:
NewComplex := proc( r, i )
Record[BaseComplex(r,i)]( 'abs' =
(() -> sqrt( self:-re^2 + self:-im^2 )) )

end proc:

c := NewComplex( 2, 3 ):>

c:-re, c:-im, c:-abs();>

(8.73)

An object created from a prototype can serve as a prototype for another object.

NewerComplex := proc( r, i )
Record[NewComplex(r,i)]( 'arg' =

>

(() -> arctan(self:-im,self:-re)) )
end proc:

c2 := NewerComplex( 2, 3 ):>

c2:-re, c2:-im, c2:-abs(), c2:-arg();>

(8.74)

Note: Prototypes are supertypes of their clones.
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subtype( 'record( re, im, abs )', 'record( re, im )' );>

(8.75)

For example, NewComplex creates objects of a type that is a subtype of the objects created
by BaseComplex.

8.6 Modules and use Statements
The use statement is designed to complement modules and to make programming with
modules easier in some cases.

This section describes how the use statement can be used with modules. For more information
about the use statement, see The use Statement (page 199).

A modulem can appear in the binding sequence of a use statement. The module is regarded
as an abbreviation for the sequence of equations a = m:-a, b = m:-b, ..., where a, b, ... are
the exports of the module m.

For example,

m := module() export a, b; a := 2; b := 3; end module:
use m in a + b end use;

>

(8.76)

This is useful for programming with packages.

m := Matrix( 4, 4, [[ 26, 0, 0, 30 ],
[ 0, -41, -90, 0],

>

[ 0, -7, -56, 0 ],
[ 0, 0, 0, 0]] );

use LinearAlgebra in
Determinant( m );
Rank( m );
CharacteristicPolynomial( m, 'lambda' )

end use;

(8.77)
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Note that a name that appears in a binding list for a use statement, which is intended to be
a module, must evaluate to a module at the time the use statement is simplified. This is ne-
cessary because the simplification of the use statement must be able to determine the exports
of the module. For example, the following attempt to pass a module as a parameter to a
procedure does not work, and an error occurs when the procedure is simplified.

proc( m, a, b )
use m in e( a, b ) end use

end proc;

>

Error, no bindings were specified or implied

The correct way to use a module as a parameter is to specify the names to be bound explicitly,
for example,

proc( m, a, b )
use e = m:-e in e( a, b ) end use

end proc;

>

(8.78)

This is necessary because, until the procedure is called with a module expression as first
argument, the reference to e is ambiguous. The variable e could refer to a module export or
to another value (such as a global name). To expand the use statement, this must be known
at the time the procedure is simplified.

Operator Rebinding

The use statement also allows most infix and prefix operators in the Maple language to be
rebound. This is not operator overloading, which can be performed in some programming
languages (such as C++), because the rebinding occurs during the automatic simplification
process in Maple.

If an operator name appears on the left side of a binding equation for a use statement (con-
sequently, if it is an exported name of a module that is bound with use), then the correspond-
ing operator expressions in the body of the use statement are transformed into function calls.
For example,

use `+` = F in a + b end use;
m := module()

>

export `*`, `+`;
`+` := ( a, b ) -> a + b - 1;
`*` := ( a, b ) -> a / b;

end module:
s * ( s + t );
use m in s * ( s + t ) end use;
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(8.79)

When a module-based package is loaded by running the with command, all of exported
operators are rebound at the top level so you do not need to write use statements to get the
overloaded implementations. If a module, M, exports a procedure named +, and you use
the command with(M), subsequent sums will be processed through M:-+.

In most cases, the new operator procedure should contain the overload function. This
provides a softer binding where your operator implementation will only be invoked when
the arguments passed in match the specified type.

PairMath := module()
option package;

>

export `+`;

`+` := proc( a::PAIR(integer,integer), b )
option overload;
if type(b,PAIR(integer,integer)) then

PAIR( op(1,a) + op(1,b), op(2,a) + op(2,b) );
else

PAIR( op(1,a) + b, op(2,a) + b );
end if;

end proc;
end module;
with(PairMath);
PAIR(2,3) + 4;
PAIR(1,1) + PAIR(3,4);
1+1;
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(8.80)

In the example above, PairMath:-+ will only be invoked when the left side of + is a PAIR
structure. No error occurs when computing 1+1, which is not handled by PairMath:-+ be-
cause option overload has been specified for the PairMath:-+ procedure. When option
overload is specified, a mismatched type simply moves on to the next + implementation.

Bypassing the current overload occurs on a mismatched parameter type check, or on any
invalid input: exception raised within the procedure. The module above can be rewritten
as follows.

PairMath := module()
option package;

>

export `+`;

`+` := proc( a, b )
option overload;
if type(a,PAIR(integer,integer)) then

if type(b,PAIR(integer,integer)) then
PAIR( op(1,a) + op(1,b), op(2,a) + op(2,b) );

else
PAIR( op(1,a) + b, op(2,a) + b );

end if;
elif type(b,PAIR(integer,integer)) then

PAIR( a + op(1,b), a + op(2,b) );
else

error("invalid input: a or b should be a PAIR
structure");

end if;
end proc;

end module;
with(PairMath);
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1 + PAIR(2,3);
2 + 2;

(8.81)

Another option is to use the overload function to achieve polymorphism.

PairMath := module()
option package;

>

export `+`;
local PP, PA, AP;

PP := proc( a::PAIR(integer,integer), b::PAIR(integer,integer)
)

option overload;
print("in PP");
PAIR( op(1,a) + op(1,b), op(2,a) + op(2,b) );

end proc;

PA := proc( a::PAIR(integer,integer), b )
option overload;
print("in PA");
PAIR( op(1,a) + b, op(2,a) + b );

end proc;

AP := proc( a, b::PAIR(integer,integer) )
option overload;
print("in AP");
PAIR( a + op(1,b), a + op(2,b) );

end proc;

`+` := overload( [ PP, PA, AP ] );
end module;
with(PairMath);
1 + PAIR(2,3);
PAIR(2,3) + 4;
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PAIR(1,1) + PAIR(3,4);
5+5;

(8.82)

For more information, see the overload help page.

8.7 Interfaces and Implementations
Generic programming is a programming style and a software engineering methodology for
writing reusable code. Many Maple built-in operations are generic, for example, the addition
operator + computes sums of integers, rational numbers, complex numbers, polynomials,
special functions, and so on. When using the addition operator +, you do not need to define
how an expression is represented-- the automatic simplifier recognizes how Maple expres-
sions are represented. As with any dynamically typed language, Maple allows for generic
programming. Most built-in Maple operations (including many standard library commands)
are naturally polymorphic in that they can perform successfully with many data formats.

Generic Programming as a Good Software Engineering Practice

When working on any large project, it is important to write reusable code; that is, code that
can perform a well-defined function in a variety of situations. Generic programs do not rely
on the details of how their inputs are represented. They can perform their function on any
inputs that satisfy a specified set of constraints. Normally, these constraints are described
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in terms of the behavior of the inputs rather than on their physical representation or the
storage layout of their concrete representation. This behavior is sometimes called a contract.
Generic programs rely only on the object behavior specified by the contract. They do not
rely on information of how an object is implemented; therefore, generic programs separate
interfaces from implementations.

Distinction between Local and Exported Variables

The behavior specified by the contract for a module includes any module exports. Whatever
is expressed through its local variables is private to the module, and is not to be relied on,
or even known, by clients of the module. (Client access is, in fact, the only technical differ-
ence between module locals and exports.)

Before the introduction of the module system, design by contract was enforced in Maple
only by convention. Maple commands whose names had to be enclosed in name quotes (`)
were considered private, and not for client use. However, this was only a convention. Also,
it was necessary to use global variables to communicate information and state among the
commands that comprised a subsystem (such as solve or assume). Now, using modules, it
is possible to design software systems that enforce their contracts by a mechanism embedded
in the Maple language.

Interfaces

In Maple, contracts are represented by an interface, which is a special kind of structured
type. It has the form
`module`( symseq );

where symseq is a sequence of symbols or expressions of the form symbol::type. For ex-
ample, an interface for a ring can be written as

`type/ring` := '`module`( `+`, `*`, `-`, zero, one )':>

while an (additive) abelian group can take the form

`type/abgroup` := '`module`( `+`, `-`, zero )':>

These symbols are the ones to which clients have access as module exports.

A module is said to satisfy, or to implement, an interface if it is of the type defined by the
interface.

z5 := module()
description "the integers modulo 5";

>

export `+`, `*`, `-`, zero, one;
`+` := (a,b) -> a+b mod 5;
`*` := (a,b) -> a*b mod 5;
`-` := s -> 5-s mod 5;
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zero := 0;
one := 1;

end module:

type( z5, 'ring' );>

(8.83)

A module can satisfy more than one interface.

type( z5, 'abgroup' );>

(8.84)

Interfaces are an abstraction that form part of the Maple type system. They provide a form
of constrained polymorphism. Not every Maple type is an interface; only those that have
the form described are interfaces. You can define a Maple type (that, as it happens, is not
itself an interface) to describe interfaces.

`type/interface` := 'specfunc( {symbol,symbol::type},
`module` )':

>

This is a structured type. It describes expressions that are themselves structured types. They
have the form of an unevaluated function call with the operator symbol `module` and all
arguments of type symbol, or of type symbol::type. In the two previous examples in this
section, the types type/ring and type/abgroup are the interface expressions, and the names
ring and abgroup are the respective names of those interfaces.

A Package for Manipulating Interfaces

The following example illustrates a package for manipulating interfaces. The package is
small enough that it can be included here, in full, but it is also available in the
samples/ProgrammingGuide directory of your Maple installation.

Interface := module()
description "a package for manipulating interfaces";

>

global `type/interface`;
export define, # define an interface

extend, # extend an interface
extends, # test for an extension
equivalent,# test equivalence
savelib, # save an interface
satisfies; # test whether a module satisfies

# an interface
local gassign, # assign to a global variable

totype, # convert from interface name to type
toset, # convert from interface name to a set
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setup; # install `type/interface` globally
option package, load = setup;

# Define a global type for interfaces.
# This assignment takes care of installing the type
# in the Maple session in which this module definition
# is evaluated. Calling `setup()' ensures that this also
# happens when the instantiated module is read from a
# Maple library archive.
`type/interface`

:= 'specfunc( {symbol, `::`}, `module` )';

# Ensure that `type/interface` is defined. This thunk is
# called when the instantiated `Interface' module is read
# from a Maple library archive.
setup := proc()

global `type/interface`;
`type/interface`
:= 'specfunc( {symbol, `::`}, `module` )';

NULL # quiet return
end proc;

# Assign to the global instance of a name
gassign := proc( nom::symbol, val )

option inline;
eval( subs( _X = nom,

proc()
global _X;
_X := val

end proc ) )()
end proc;

# Convert an interface name to the corresponding type.
totype := ( ifc::symbol ) -> ( `type/` || ifc );

# Convert an interface name to a set of symbols.
toset := ( ifc::symbol ) -> { op( ( `type/` || ifc ) ) };

# Install a new interface into the type system.
define := proc( ifc )

description "define an interface";
if map( type, {args}, 'symbol' ) <> { true } then
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error "arguments must all be symbols"
end if;
gassign( `type/` || ifc,

'`module`'( args[ 2 .. nargs ] ) );
ifc # return the interface name

end proc;

# Implement subtyping.
extend := proc( new, old )

description "extend an existing inteface";
if map( type, {args}, 'symbol' ) <> { true } then

error "arguments must all be symbols"
end if;
if not type( totype( old ), 'interface' ) then

error "cannot find an interface named %1", old
end if;
define( new, op( totype( old ) ), args[3..nargs] )

end proc;

# Test whether ifc2 is an extension of ifc1.
extends := proc( ifc1, ifc2 )

description "test whether the second interface "
"extends the first";

local t1, t2;
t1, t2 := op( map( totype, [ ifc1, ifc2 ] ) );
if not type( [t1,t2], '[interface,interface]' ) then

if not type( t1, 'interface' ) then
error "arguments must be interface names, "

"but got %1", ifc1
else

error "arguments must be interface names, "
"but got %1", ifc2

end if
end if;
toset( ifc1 ) subset toset( ifc2 )

end proc;

# Save an interface to the Maple library archive.
savelib := proc()

description "save a named interface to a "
"Maple library archive";

local ifc;
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for ifc in map( totype, [ args ] ) do
if not type( ifc, 'interface' ) then

error "arguments must be interfaces, "
"but got %1", ifc

end if;
:-savelib( totype( ifc ) )

end do
end proc;

# Test whether a module satisfies an interface.
# This is simply an alternative to a call
# to `type()'.
satisfies := proc( m, ifc )

description "test whether a module satisfies an interface";

if not type( totype( ifc ), 'interface' ) then
error "second argument must be an interface name, "

"but got %1", ifc
end if;
type( m, ifc )

end proc;

# Test whether two interfaces are equivalent.
# Since unevaluated function calls compare
# differently if their arguments are in a
# different order, we convert them to sets first,
# and then test for equality.
equivalent := proc( ifc1, ifc2 )

description "test whether two interfaces "
"are equivalent";

local t1, t2;
t1, t2 := totype( ifc1 ), totype( ifc2 );
if not type( t1, 'interface' ) then

error "expecting an interface name, "
"but got %1", ifc1

elif not type( t2, 'interface' ) then
error "expecting an interface name, "

"but got %1", ifc2
end if;
evalb( { op( t1 ) } = { op( t2 ) } )

end proc;
end module:
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This package implements the interface abstraction. It allows you to manipulate interfaces
without having to consider how they fit into the Maple type system.

with( Interface );>

(8.85)

define( 'abgroup', '`+`', '`-`', 'zero' );>

(8.86)

type( `type/abgroup`, 'interface' );>

(8.87)

type( z5, 'abgroup' );>

(8.88)

satisfies( z5, 'abgroup' );>

(8.89)

extend( 'ring', 'abgroup', '`*`', 'one' );>

(8.90)

type( `type/ring`, 'interface' );>

(8.91)

extends( abgroup, ring );>

(8.92)

satisfies( z5, 'ring' );>

(8.93)

type( z5, 'ring' );>

(8.94)

The load Option

This package provides an abstraction of the interface concept in Maple and illustrates a
module feature that was not previously demonstrated: the load=procedure_name option.
In the Interface package, this option is used in a typical way. The declaration
option load = setup;
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that appears in the module definition indicates that, when the instantiated module is read
from a Maple library archive, the procedure setup is to be called. The procedure named
must be a local variable or an exported local variable of the module. The local procedure
setup in this module simply ensures that the global variable type/interface is assigned an
appropriate value. This assignment is also made in the body of the module so that the assign-
ment is also executed in the session in which the module is instantiated. This is done for
illustrative purposes. A better approach would be to invoke setup in the body of the module
definition.
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9 Object Oriented Programming
9.1 In This Chapter
• A brief introduction to Object Oriented Programming will be presented.

• A description of how Object Oriented Programming is implemented in Maple.

• How to override operators and engine routines using Objects.

9.2 Introduction to Object Oriented Programming
Objects are a programming tool that allows data and procedures to be encapsulated together.
For example, an object could be created to represent a car. A car object might have variables
to track its position, velocity and steering position. The car object might also have procedures
to accelerate the car and to adjust the steering. A further procedure could be implemented
to update the car's position and velocity based on the current acceleration, velocity and
steering. Multiple car objects could be used to represent multiple cars, each with their own
positions and velocities, but sharing the same procedures for how the cars move.

Objects can also restrict access to certain variables and procedures. For example the car
object would allow other code to call a routine to adjust the steering, but may not allow
external code to set the value of the steering variable directly. Although this may seem re-
strictive, it allows the object to control its internal state. In the car example, it could limit
the range of steering.

Terminology

The variables in an object that store the data and procedures are referred to as the object's
members. Procedures associated with an object are called methods. Object members have
access controls which limit where the members can be accessed from, similar to modules.
Members declared exported can be accessed from anywhere. Members declared local can
only be accessed from within the object's methods. Objects are instances of a class. A class
describes the exports and locals that each instance of the class (the objects) will have.

Benefits of Object Oriented Programming

Benefits of object oriented programming are:

- The implementation of a class can be changed radically without changing the inter-
face of exported methods. Thus code that uses the objects will not need to change
when the internal implementation changes.

- As objects are self contained, they can be reused.

- Objects can define methods that allow them to integrate with existing Maple
routines. Thus users can create objects that can be used like built-in types.
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- A set of classes can implement a common set of exports. Thus a procedure that
uses only the common exports will work with any objects from any of the classes
without needing to know which classes the objects belong to.

Good object oriented design can be difficult. In particular, identifying which concepts should
be represented as objects can be tricky. A good rule of thumb is that objects should be your
"nouns" and methods should be "verbs". Thus you would create an object to represent a car
and you call a method to accelerate the car.

9.3 Objects in Maple
Creating a New Class of Objects

To create a new class of objects, use the named module declaration syntax with option object.

module NewObject()
option object;

>

...
end module;

This will create a new object and assign the new object to the module name (NewObject in
the example above). An object created this way will be referred to as a prototype object. In
Maple, any object (prototype or other) can be used as a representative of the class.

When declaring an object the members must be declared as either local to the object, using
a local declaration or exported, using an export declaration. A member that is declared
local can only be accessed from the object's methods, or other object's methods of the same
class. A member that is exported can be accessed anywhere.

By default, the values assigned to the object's members are unique to the object. That is,
two objects of the same class can have different values assigned to their members. However
some members, member procedures in particular, are shared among all objects of a class.
Thus members can also be declared as static. A static member stores only one value that
is common to all objects of a class.

Creating More Objects

Once a prototype object exists, it can be used to create new objects using the Object routine.
The Object routine creates a new object of the same class as the object passed into Object.

newObj := Object( existingObject );>

By default, the newly created object will have its members assigned the same values as the
object passed to Object. However by implementing a ModuleCopy routine, the object can
perform different actions when new instances are created. AModuleCopy routine can accept
additional arguments that are passed into the Object routine.
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newObj := Object( existingObject, arg1, arg2, ... );>

Objects and Types

All objects are of type object. In addition type and :: can be used to determine if an object
is an instance of a particular class by passing an object of the expected class as the type.
You can refine this type checking by defining the ModuleType method.

9.4 Methods
Methods are procedures assigned to the members of an object. Methods have a few differ-
ences from normal procedures.

Methods Can Access Object Locals

A method belonging to a particular class can access both the local and exported members
of any object of that class. This allows methods to access and manipulate the internal states
of their objects without requiring the objects to export accessor procedures.

Method Names Should Be Declared static

In Maple, most method names should be declared as static. In most cases, all objects of the
same class use the same procedures for their methods. If the method name is not declared
static, each object will have a separate copy of the procedure. This can be quite wasteful.

There are some instances where an object will have a non-static method. However unless
you intend different objects to have different procedures assigned to the method, your
method should be static.

Methods Are Passed the Objects They Manipulate

Some object oriented languages associate method calls with a particular object. That object
is represented via a self variable or by allowing direct access to that object's members. Maple
does not give a particular object special significance in that way. Instead, all objects that a
method needs to manipulate must be passed as parameters.

Calling Methods

To call an object's method, call the method as a standard function call and pass the object
in as an argument.

method( ..., object, ... );>

When a function call is evaluated and an object is passed in as an argument, the object is
searched for an exported procedure with a matching name. If one is found, that member
procedure is called with the given arguments.
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This search proceeds from left to right, so the first object with a matching method is used
as the class whose method is invoked.

Objects in Indexed Function Calls

When making an indexed function call (of the form func[index](args)) Maple will also
check the indices (index) for a matching object as well as the arguments. If a matching object
is found in the indices, that object will be used before one found in the arguments.

Searching an index sequence is also performed from left to right.

Special Methods

There are a set of special methods that a class can define that will automatically be used in
various situations. Not all of these methods make sense for all objects. See the method
specific help pages for complete details.

ModuleCopy: The ModuleCopy method is invoked when a object is copied via the Object
routine.

ModuleType: The ModuleType method is invoked when an object is passed into the type
routine. It allows a module to have a more precise type check of objects of a particular class.

ModulePrint: The ModulePrint method is invoked when an object is pretty-printed.

ModuleDeconstruct: TheModuleDeconstructmethod is invoked when an object is converted
to a one-dimensional form, usually Maple syntax.

ModuleApply: The ModuleApply method is invoked when an object is used as a function
in a function call expression.

ModuleLoad: The ModuleLoad method is invoked when the object class is read in from a
library.

ModuleUnload: TheModuleUnloadmethod is invoked when an object is garbage-collected.

ModuleIterator: TheModuleIteratormethod creates an interface that can be used to iterate
over the contents of the object.

9.5 Overloading Operators
Objects can define methods which allow them to control what happens when those objects
are used with various operators. For example, if an object implements a + method, then that
method will be invoked if the object appears in a sum expression.

1 + Obj1 + n;>
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By overloading operators, objects can be used in Maple expressions. This, combined with
overloading built-in routines, allows objects to be used naturally in general Maple expres-
sions.

Supported Operators

The following operators can be overloaded by an object:
>=><=<<>=.!^/*-+

insubsetminusunionintersectimpliesxornotorand

~&name&*@@@?[]{}[]

The following operators, in particular, cannot be overridden:
:=->,:-?():

Note: These lists are not the same as the operators that can and cannot be overridden using
a use statement.

Implementing Operators

In general implementing operators is similar to implementing normal methods. However
particular operators have rules that must be followed if they are to be implemented correctly.

The rules for the various operators are documented on the Object,operators help page.

9.6 Overloading Built-in Routines
Objects can implement methods to override some built-in routines (like convert or abs).
These methods will be invoked when objects are passed as arguments to the corresponding
built-in routines. By overriding built-in routines, user-defined objects can be used in normal
Maple expressions. This, combined with overloading operators, allows objects to be used
naturally in general Maple expressions.

Any routine implemented in Maple code can be overloaded. However, not all built-in routines
(routines implemented in the Maple kernel) can be overloaded.

Overridable Built-in Routines

The following built-in routines can be overloaded by object methods:
evalfevalhfevaldiffconvertconjugateanameabs
lengthindetsimpliesReImhastypehasexpand

typetruncsubsnumboccurnormalmembermap, map2,
map[n]
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Some overloadable built-in routines have a specific interface that must be followed. The
interfaces for the overloadable built-ins can be found on the object,builtins help page.

9.7 Examples
The following example shows a class for objects representing integers modulo a given base.
(* create a new class of objects with a prototype object

named 'IntMod' *)
module IntMod()

option object;

(* These locals maintain the internal state of the ModInt objects.
base is the modulus, value is the integer. These members are not
declared as 'static' so each object has its own values for these
members. *)

local base := 1;
local value := 0;

(* We implement the 'ModuleApply' and 'ModuleCopy' routines to create
a

nice object factory. With these defined the prototype object can
be applied to generate new objects. These routines are declared
as 'static', so they are shared between objects of this class. *)

export ModuleApply::static := proc()
Object( IntMod, _passed );

end;

(* The ModuleCopy routine initializes 'self' using 'proto' and the
passed arguments. If a value or base is given as a parameter,
those are used. Otherwise, these values are copied from 'proto'. *)

export ModuleCopy::static := proc( self::IntMod, proto::IntMod,
v::integer, b::integer, $ )

if ( _npassed < 4 ) then
self:-base := proto:-base;

else
self:-base := b;

end;

if ( _npassed < 3 ) then
self:-value := proto:-value;

else
self:-value := v mod self:-base;

end;
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end;

(* Implement a 'ModulePrint' routine to allow the objects to
display nicely *)

export ModulePrint::static := proc( self::IntMod )
nprintf( "%d mod %d", self:-value, self:-base );

end;

(* We implement a 'ModuleType' routine to allow better type checking.
This allows a base to be specified in the type check *)

export ModuleType::static := proc( self, type, b, $ )
if ( _npassed = 2 ) then

true;
else

evalb( self:-base = b );
end;

end;

(* A getter function to access the value field *)
export getValue::static := proc( self::IntMod )

self:-value;
end;

(* Overload the + operator. This routine accepts any number of
arguments, it sums any IntMod objects and integers appropriately.
If there are other terms, a sum expression is returned with one
IntMod and the remaining terms. *)

export `+`::static := proc( )
local ints, imods, total, base, other;

( ints, other ) := selectremove( type, [_passed], { 'IntMod',
'integer' } );

( imods, ints ) := selectremove( type, ints, 'IntMod' );

base := imods[1]:-base;
if ( not andmap( type, imods, 'IntMod'( base ) ) ) then

error "all IntMods must be of the same base"
end;

total := ( `if`( numelems(ints) > 0, ints[1], 0 ) + add( getValue(i),
i in imods ) );

IntMod( total, base ), op( other );
end;
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(* Overload the * operator. Similar to the + operator, we multiply
out all the IntMod's and integers, and maintian other terms to be
returned as part of a product expression. *)

export `*`::static := proc( )
local ints, imods, total, base, other;

( ints, other ) := selectremove( type, [_passed], { 'IntMod',
'integer' } );

( imods, ints ) := selectremove( type, ints, 'IntMod' );

base := imods[1]:-base;
if ( not andmap( type, imods, 'IntMod'( base ) ) ) then

error "all IntMods must be of the same base"
end;

total := ( `if`( numelems(ints) > 0, ints[1], 1 ) * mul( getValue(i),
i in imods ) );

IntMod( total, base ), op( other );
end;

(* ^ operator. We need to handle 3 cases, IntMod as base, IntMod as
exponent, and both base and exponent are IntMods *)

export `^`::static := proc( b, e, $ )
if ( b::IntMod ) then

if ( e::IntMod ) then
IntMod( b:-value^e:-value, b:-base );

elif ( e::integer ) then
IntMod( b:-value^e, b:-base );

else
error( "integer expected for exponent" );

end;
else

b^e:-value;
end;

end;

(* For the comparison operators, handle the cases where there is only
one argument or one of the arguments is not an IntMod by returning
false. *)

export `=`::static := proc( l, r, $ )
if ( _npassed <> 2 or not l::IntMod or not r::IntMod ) then

return false;
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end;
evalb( l:-base = r:-base and l:-value = r:-value )

end;

export `<`::static := proc( l, r, $ )
if ( _npassed <> 2 or not l::IntMod or not r::IntMod ) then

return false;
end;
evalb( l:-base = r:-base and l:-value < r:-value )

end;

export `<=`::static := proc( l, r, $ )
if ( _npassed <> 2 or not l::IntMod or not r::IntMod ) then

return false;
end;
evalb( l:-base = r:-base and l:-value <= r:-value )

end;

export `>`::static := proc( l, r, $ )
if ( _npassed <> 2 or not l::IntMod or not r::IntMod ) then

return false;
end;
evalb( l:-base = r:-base and l:-value > r:-value )

end;

export `>=`::static := proc( l, r, $ )
if ( _npassed <> 2 or not l::IntMod or not r::IntMod ) then

return false;
end;
evalb( l:-base = r:-base and l:-value >= r:-value )

end;

(* override the convert function to allow conversions from IntMods
to integers. *)

export convert::static := proc( v, toType, $ )
if ( v::IntMod ) then

if ( toType = ':-integer' ) then
v:-value;

else
error "cannot convert from IntMod to %1", toType;

end;
else

error "cannot convert into IntMod from %1", v
end;
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end;
end:

Warning, `i` is implicitly declared local to procedure IntMod:-`+`
Warning, `i` is implicitly declared local to procedure IntMod:-`*`

i0m5 := IntMod( 0, 5 );>

(9.1)

i1m5 := Object( i0m5, 1 );>

(9.2)

type( i1m5, 'IntMod' );>

(9.3)

type( i1m5, 'IntMod'(3) );>

(9.4)

type( i1m5, 'IntMod'(5) );>

(9.5)

i2m5 := i1m5 + 1;>

(9.6)

i3m5 := i2m5 + 1;>

(9.7)

i4m5 := i3m5 + 1;>

(9.8)

i4m5 + 1;>

(9.9)

i3m5+i4m5;>

(9.10)

i1m5 + 9 + i4m5;>

(9.11)

convert( i3m5, 'integer' );>

(9.12)
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convert( 3, IntMod );>
Error, (in IntMod:-convert) cannot convert into IntMod from 3

i2m5 * i4m5 * y * f(x);>

(9.13)

i2m5^1;>

(9.14)

i2m5^2;>

(9.15)

i2m5^3;>

(9.16)

i2m5^4;>

(9.17)

i2m5^5;>

(9.18)

evalb(i2m5 < i4m5);>

(9.19)

evalb(i3m5 > i2m5);>

(9.20)

evalb(i2m5 <= i4m5);>

(9.21)

evalb(i3m5 >= i2m5);>

(9.22)

evalb(i3m5 = i2m5);>

(9.23)
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9.8 Avoiding Common Mistakes
Be Aware of NULL

Be careful when assuming that operators and built-in routines will always be passed a certain
number of arguments. Many will accept NULL as an argument, and this may lead to fewer
arguments than expected.

module Wrapper()
option object;

>

local value := 10;

export `=`::static := proc( l, r, $ )
( l::Wrapper and r::Wrapper and l:-value = r:-value );

end;
end:

cp := Object( Wrapper ):>

evalb( cp = Wrapper );>

(9.24)

evalb( cp = 11 );>

(9.25)

evalb( cp = NULL );>

(9.26)

Lexical Scoping Does Not Circumvent local

Members that are declared as local can only be accessed from within the class's methods.
This means that methods cannot use lexical scoping to pass values to nested procedures.

module LexicalObj()
option object;

>

local a;

export b :: static := proc(mm :: m, f, lst :: list, $)
print(mm:-a);
return map(x -> f(mm:-a, x), lst);

end;
end:
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b(m, `+`, [1,2,3]);>

(9.27)

In this example, we can print the value of a in b because b is a method. However the map
fails because the arrow procedure is not a member and thus does not have access to a.
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10 Input and Output
10.1 In This Chapter
• Introduction

• Input and output in the worksheet

• Input and output with files

• Reading and writing formatted data

• Useful utilities

• 2-D math

10.2 Introduction
This chapter explores the ways in which you can read input and write output programmat-
ically. Here are a few examples of I/O operations in Maple.

• Example 1: An integral can be printed in various ways. The two outputs below show the
integral in 2-D and 1-D representations, respectively.

y := Int(x^2, x=1..2);>

(10.1)

lprint(y);>
Int(x^2,x = 1 .. 2)

• Example 2: The checkfile procedure defined below uses commands in the FileTools
package to examine the properties of a file.

checkfile := proc(fname :: string)
return FileTools:-Exists(fname) and

>

FileTools:-IsReadable(fname);
end proc:

• Example 3: A Matrix is written to a file using the ExportMatrix command.

373



M := LinearAlgebra:-RandomMatrix(5, 4);>

(10.2)

ExportMatrix("testfile", M);>

(10.3)

• Example 4: The sscanf command is used here to read three floating-point numbers from
the string given as the first argument.

z := sscanf("X=123.4 Y=-27.9 Z=2.3E-5", "X=%f Y=%f Z=%f");>

(10.4)

The first example shows the difference between 1-D and 2-D output in Maple. Note that
input can also be provided in both forms. In Maple, 1-D math is character-based, is available
in all interfaces, and can be controlled by many of the basic I/O commands discussed in
this chapter. Typeset or 2-D math is available only with the standard worksheet interface
and is generally manipulated interactively using the Maple GUI tools. However, it can be
controlled programmatically in a limited way.

Most of this chapter is devoted to the manipulation of files, which is the main way data is
shared between Maple and external applications. Many of the file-processing commands
also apply to interactive input and output, when 1-D mode is used. For example, the command
for formatted writing, printf, produces output in a Maple worksheet or document. However,
it is essentially identical to the fprintf command for printing to a file.

This chapter starts with a discussion of input and output in the worksheet, including some
notes on using other interfaces. The next section covers manipulation of files. Tools for
importing and exporting general files as well as those specially designed for numerical data
are discussed. Later in the chapter, low-level commands for formatted reading and writing,
along with other useful utilities, are shown. The chapter concludes with an explanation of
2-D math and how it can be customized programmatically.

374 • 10 Input and Output



10.3 Input and Output in the Worksheet
This section introduces common ways of reading from the keyboard and writing to the
screen. In contrast, the following section discusses I/O through the use of files. There is
some overlap between the two sections, as the keyboard and screen themselves can be
considered files. This is explained further in the "Default and Terminal Files" section of the
file_types help page.

Interfaces

Maple has several user interfaces, all described on the versions help page. In this chapter,
it is assumed you are using either the standard worksheet interface or the command-line
interface. Most of the I/O operations described here apply to either interface. The major
exception is typeset or 2-D math, which is available only with the standard worksheet inter-
face.

You can use the interface command to communicate with the user interface. It allows you
to query or set certain user interface variables. This is one way of controlling the look of
the output. Note that the interface command does not affect the actual computation. A few
examples are shown below. A complete list of the variables is available on the interface
help page.

The version variable returns the interface version, platform information, build date and
build number.

interface(version);>

(10.5)

The prettyprint variable controls how Maple expressions are rendered as output.

interface(prettyprint=1):
Diff(f(x), x);

>

(10.6)

interface(prettyprint=3):
Diff(f(x), x);

>

(10.7)

The rtablesize variable specifies the largest-sized rtable that will be displayed inline. If an
rtable has a dimension that is larger than this integer, then it is displayed as a placeholder.
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interface(rtablesize);>

(10.8)

Matrix(5, 5, (i,j)->i+j);>

(10.9)

Matrix(15, 15, (i,j)->i+j);>

(10.10)

Interactive Output

By default, the output from a statement entered in the worksheet is automatically printed
to the screen, unless the statement is terminated by a colon. In the previous section, you
saw how to use the interface command to customize certain aspects of the output. Another
way to adjust the output is to set the printlevel environment variable. The default value of
printlevel is 1. When it is set to a higher value, additional information pertaining to procedure
calls is printed. This is one way of tracing a procedure for debugging purposes. For more
information about debugging programs, see Testing, Debugging, and Efficiency (page 559).

The print command prints Maple expressions using the current setting of the prettyprint
interface variable. In the worksheet, the default output is 2-D math and in the command-
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line version, the default is a simulated math notation using text characters. Note that the
print command returns NULL and thus the output cannot be regenerated with the ditto
commands.

The print command is particularly useful in two situations. First, it can be used to print in-
termediate results calculated within a procedure. Normally, only the returned value of a
procedure is printed when it is called.

p := proc(n)
local i;

>

for i to n do
i^2;

end do;
end proc:

p(5);>

(10.11)

q := proc(n)
local i;

>

for i to n do
print(i^2);

end do;
end proc:

q(5);>

(10.12)

The print command can also be used to print procedures and other expressions that follow
last name evaluation rules. For more information, refer to the last_name_eval help page.
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print(q);>

(10.13)

The lprint command prints Maple expressions in a character-based notation that is similar
to the format used for 1-D input. Like the print command, the value returned by a call to
lprint is NULL, and the output cannot be recalled using the ditto operator. When the
prettyprint interface variable is set to 0, Maple uses lprint to print all expressions to the
interface.

lprint(expand(x+y)^5);>
(x+y)^5

Another commonly used command is printf, which produces formatted output. This command
will be discussed in Reading and Writing Formatted Data (page 388).

If you want to redirect all output that normally goes to the screen to a file, use the writeto
and appendto commands. This is an easy way to log the input and output of a Maple session,
particularly if you are using the command-line interface. In the standard worksheet interface,
you can simply save the current worksheet or document. For more information on writing
to files, see Input and Output with Files (page 379).

Interactive Input

Normally, input is passed to Maple procedures directly through the procedure's parameters.
In the standard worksheet interface, input can also be provided through Maplets and com-
ponents. For more information about these topics, see Programming Interactive
Elements (page 463).

The readline and readstat commands are also available for interactive input, though these
are less commonly used. The readline command reads the next line from the terminal or a
file and returns it as a string, while the readstat command reads the next statement from
the terminal and returns the value of that statement.

Customization

You can customize the prettyprinting of a function fnc in a limited way by defining a
print/fnc procedure. In the following example, expressions of the form g(x) should be
printed so that the argument is repeated three times in a list.
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`print/g` := proc(x) [x, x, x] end proc:>

g(b^2);>

(10.14)

g(5.8);>

(10.15)

There is a similar facility for prettyprinting a module. If a module has an export or local
named ModulePrint, then the result of the ModulePrint command is displayed instead of
the module when a command in the module is executed. For more information, see
Programming with Modules (page 317).

10.4 Input and Output with Files
Introduction

This section covers input and output using files, which is recommended when you have a
large amount of data to process. This also provides a way for Maple to share data with ex-
ternal applications. In this chapter, the term "file" is not limited to a disk file, but can include
the default output stream to a terminal or worksheet output region. Below is a brief intro-
duction to a few concepts related to files. For more detailed information, refer to the file
and file_types help pages.

• Text and binary files: The Maple I/O library works with both text files (streams of
characters) and binary files (streams of bytes). The I/O commands allow you to specify
the type of file and generally assume a text file if no information is given.

• Read and write modes: At any given time, a file may be open either for reading or for
writing. If you attempt to write to a file which is open for reading, Maple closes and re-
opens the file for writing. If you do not have permission to write to the file, then an error
occurs.

• The default and terminal files: The Maple I/O library treats the user interface as a file.
The identifier default refers to the current input stream, the one from which Maple reads
and processes commands. The identifier terminal refers to the top-level input stream,
the current input stream when you started Maple. When Maple is run interactively, default
and terminal are equivalent.

• File names and descriptors: Maple I/O commands refer to files in one of two ways: by
name (given as a string) or by descriptor. A file descriptor identifies a file after you have
opened it using its name and offers slight advantages in terms of efficiency and flexibility.
The commands described in this section accept either a name or a descriptor as the file
identifier.
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• Current directory: If you create files using the examples in this chapter, the files are
saved in the current directory. To query or set the current working directory, use the
currentdir command.

Working with General Files

This section covers the manipulation of general files. If you are working with files of nu-
merical data, it is recommended that you use the commands described in ImportMatrix and
ExportMatrix (page 384).

There are two sets of commands that you can use. The first subsection below describes the
basic top-level commands for file manipulation. Alternatively, you can use the FileTools
package, which provides a simpler interface to the other commands and offers additional
functionality. For most file operations, the FileTools package is recommended, but the two
sets of commands are generally compatible and can be used interchangeably on a file.

The Maple I/O Library

Below is a description of commonly used commands in the Maple I/O library.

• Opening and closing files

Before you can read from or write to a file, you must open it. When referring to files by
name, this happens automatically with the first file operation. When you use descriptors,
however, you must explicitly open the file first to create the descriptor. The fopen com-
mand takes as arguments the filename, a mode (READ, WRITE or APPEND) and op-
tionally, the file type (TEXT or BINARY).

f := fopen("testfile", 'WRITE', 'TEXT');>

When you are finished with a file, you can close it with the fclose command, which takes
the file identifier as its argument. This operation ensures that all information is written
to the disk. When you exit Maple or use the restart command, Maple automatically
closes any open files, whether they were opened explicitly with fopen or implicitly
through one of the other I/O commands.

• Reading and writing lines of text

The readline command reads one newline-terminated line from a file and returns a string
containing that line. The writeline command writes one or more strings to a file, separated
with newline characters, and returns a count of the characters. If the file is not already
open with typeTEXT, then the readline or writeline command will open the file automat-
ically.

writeline("testfile", "The first line", "The second line");>

• Reading and writing bytes
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The readbytes command reads one or more or bytes from a file and returns a list of in-
tegers. Optionally, you can specify that the file is to be opened in text rather than binary
mode, and in this case, a string is returned. You can also provide a previously created
rtable to the readbytes command and it will return the data in the rtable. Similarly, the
writebytes command writes bytes from a string or list to a file. More information about
both commands can be found on their help pages.

• Reading and writing formatted input and output

The fscanf command parses expressions from a file based on a format string. Similarly,
the fprintf command prints expressions to a file based on a format string. Both commands
are similar to the C standard library commands of the same names. Both fscanf and
fprintf are described in greater detail in Reading andWriting Formatted Data (page 388).

• Other file utilities

There are a number of other useful file utilities, including iostatus (obtain the status of
an open file), fremove (remove a file), fflush (flush output), filepos (sets or returns the
position), and feof (check if the current position is at the end). For more information
about these commands, refer to their help pages.

Below is a simple example that uses a few of the commands introduced here. The file gen-
erated will be placed in your current working directory, which you can set with the currentdir
command.

First, define a Vector of floating-point values.

V := Vector([1.20, 4.85, 6.23, 2.45, 7.99]):>

n := LinearAlgebra:-Dimension(V):>

Next, create a new file called prices1.txt and write a number of lines, one for each Vector
entry.

fid := fopen("prices1.txt", 'WRITE', 'TEXT'):>

writeline(fid, "List of Prices"):
for i to n do

>

fprintf(fid, "Item %d costs %.2f\n", i, V[i]):
end do:

fclose(fid):>

Now open the file again and read the values from each line, adding them up as they are
read.

fid := fopen("prices1.txt", 'READ', 'TEXT'):>

readline(fid):>
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pricesum := 0.:
while not feof(fid) do

>

t := fscanf(fid, "Item %d costs %f\n"):
pricesum := pricesum + t[2]:

end do:

fclose(fid):>

Finally, reopen the file to append a line showing the sum of the prices.

fid := fopen("prices1.txt", 'APPEND', 'TEXT'):>

fprintf(fid, "\nThe sum of the prices is: %.2f\n", pricesum):>

fclose(fid):>

If you encounter an error while using any of the I/O commands listed in this section, refer
to the IO_errors help page for more information about the source of the error. Common
mistakes include reading from a file that does not exist and writing to a file for which you
do not have permission to alter.

The FileTools Package

The FileTools package is a collection of file manipulation utilities. It covers most of the
functionality described in the previous section and provides an easy-to-use interface. It also
contains a large number of additional commands that are useful when working with files.

The FileTools package contains two subpackages: FileTools:-Text and FileTools:-Binary.
These subpackages contain commands to work with text files and binary files, respectively.

Some of the commonly used commands are listed below. A full list of commands is available
in the FileTools help page.

• Opening and closing files

The FileTools:-Text:-Open command allows a file to be opened, with options to indicate
whether Maple can create the file if it does not already exist, overwrite it, or append to
it. It returns a file descriptor. As with the situation described in the previous section, it is
not always necessary to open a file before using it, as a file is automatically opened when
you use a FileTools command to access it. The FileTools:-Text:-Close command closes
a file and ensures all data is written to disk. When you exit Maple, all open files are
automatically closed. The FileTools:-Text:-OpenTemporaryFile command causes a
temporary file to be opened. Corresponding commands are available in the Binary sub-
package: FileTools:-Binary:-Open, FileTools:-BinaryClose, and FileTools:-Binary:-
OpenTemporaryFile.

• Reading from and writing to binary files
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The FileTools:-Binary:-Read and FileTools:-Binary:-Write commands are available for
reading and writing binary data. Unlike the readbytes and writebytes commands, the
FileTools commands support a number of hardware data types and allows the byte order
to be specified. There is also a FileTools:-Binary:-CountBytes command for returning
the total number of bytes left in a file.

• Reading from and writing to text files

The FileTools:-Text subpackage has a large number of commands for reading and writing
text. The FileTools:-Text:-Readline and FileTools:-Text:-Writeline commands read and
write a line at a time. The FileTools:-Text:-ReadFile command reads all lines in a file at
once.

The FileTools:-Text:-ReadFloat and FileTools:-Text:-WriteFloat commands offer simple
ways to read and write a single float. The FileTools:-Text:-ReadNextFloat command is
useful if you want to read the next float while ignoring all characters preceding it. The
FileTools:-Text:-CountFloats command counts the number of floating-point numbers
remaining in the file. Similar commands are available for integers, characters, and strings
as well.

• Checking and modifying properties of files

The FileTools package has commands that allow you to examine the properties of a file,
such as FileTools:-Status, FileTools:-Exist, and FileTools:-AtEndOfFile. There are a
number of additional commands that check if a file is open, readable, writable, lockable,
or executable. The package also includes commands that return a file's size and position.

It is possible to modify files, by using, for example, the FileTools:-Rename and FileTools:-
Remove commands. There are also commands for copying, locking, and unlocking files.

• Performing directory operations

The FileTools package also includes commands to work with directories and file paths,
such as FileTools:-ListDirectory, FileTools:-MakeDirectory and FileTools:-AbsolutePath.

The following example is similar to the one shown in the previous section using the basic
I/O commands, but this time, you will use the FileTools package.

First, create a new file prices2.txt containing a title and a line for each of the values in V.
Here, you can use the commands for writing strings, integers and floats, without worrying
about specifying the formatting precisely.

with(FileTools:-Text):>

V := Vector([1.20, 4.85, 6.23, 2.45, 7.99]):>

fid := Open("prices2.txt", 'overwrite'):>
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WriteLine(fid, "List of Prices"):
for i to n do

>

WriteString(fid, "Item");
WriteInteger(fid, i, 'delim'=" ");
WriteString(fid, "costs");
WriteFloat(fid, V[i], 'leftdelim'=" "):
WriteLine(fid, ".");

end do:

Close(fid);>

Now, open the file again and read the floating-point values from each line. TheCountLines
and ReadNextFloat commands make this task easier, as you do not have to check for the
end of file or explicitly read other characters in each line.

fid := Open("prices2.txt"):>

ReadLine(fid):>

pricesum := 0.:
numlines := CountLines(fid):

>

for i to numlines do
ReadNextInteger(fid):
pricesum := pricesum + ReadNextFloat(fid):

end do:

Close(fid):>

Finally, open the file again to append a line showing the sum of the prices.

fid := Open("prices2.txt", 'append'):>

WriteLine(fid, "", "The sum of the prices is:"):>

WriteFloat(fid, pricesum):>

Close(fid):>

Importing and Exporting Numerical Data

The basic I/O commands and the FileTools package can be used to read from and write to
any text or binary file. However, if the file that you want to read or write consists exclusively
of numeric data, then it is much easier to use one of the commands designed for this type
of file.

ImportMatrix and ExportMatrix

The ImportMatrix and ExportMatrix commands read and write data that can be stored in a
Matrix or Vector.
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These commands support different types of files, including some that are generated or re-
cognized by other software applications. The formats supported are: MATLAB®, Matrix
Market, comma-separated values (.csv), and generic delimited files. The source and target
options are used to indicate the desired format.

Files created with MATLAB® versions 5, 6 or 7 can be imported. By default, the Export-
Matrix command generates a MATLAB® Version 7 binary file, using data compression
as described on the StringTools:-Compress help page, when the target=Matlab option is
provided. However, it is possible to generate a Version 6 file without compression by adding
the mode=v6 option. You can also read and write MATLAB® ASCII files using the
mode=ascii option. Import and export of both dense and sparse Matrices are supported with
MATLAB® format.

Matrix Market files are imported and exported using theMatrixMarket value for the source
and target options. The Matrix Market coordinate and array formats are supported; the
pattern format is not supported.

For .csv and general delimited files, the format option can be used to indicate whether the
storage is dense or sparse. In the latter case, only the nonzero entries are present in the im-
ported or exported file.

Below is a small example showing how ImportMatrix and ExportMatrix work with
MATLAB® arrays. The file will be placed in your current working directory.

Generate two random Matrices and export them to a MATLAB® Version 6 file. The number
of bytes written is returned by the ExportMatrix command.

A := LinearAlgebra:-RandomMatrix(3, 4, 'datatype'=float[8]);>

(10.16)

B := LinearAlgebra:-RandomMatrix(2, 5, 'datatype'=float[8]);>

(10.17)

ExportMatrix("testfile.mat", [A, B], 'target'='Matlab',
'mode'='v6');

>

(10.18)

Now, read the MATLAB® arrays back into Maple using the ImportMatrix command. It
is not necessary to use the source and mode options in this case. The ImportMatrix com-
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mand can automatically recognize MATLAB® binary files. With most text files (MATLAB®
or otherwise), you will have to specify the source type.

M := ImportMatrix("testfile.mat");>

(10.19)

A sequence of two lists is returned, with each list containing a string and a Matrix. The
string shows the name stored with each matrix in the MATLAB® file. The names are
automatically assigned by the ExportMatrix command, but you can specify your own
names with the arraynames option.

Now, export the Matrix A to a text file with values delimited by spaces.

ExportMatrix("anotherfile.txt", A, 'target'='delimited',
'delimiter'=" ");

>

(10.20)

Import the contents of the file back into Maple. In this case, it is necessary to specify the
source and the character used as delimiter.

ImportMatrix("anotherfile.txt", 'source'='delimited', 'delimiter'="
");

>

(10.21)

Notice that only a single Matrix is returned. Multiple Matrices can be exported to MAT-
LAB®, but with other formats, only a single Matrix can be saved in a file. Also, only
MATLAB® arrays have names associated with them.

Other Commands

The readdata command reads numeric data from a text file into Maple. The data in the file
must consist of integers or floating-point values arranged in columns, separated by white
space, and it is returned in a list or list of lists.
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The writedata command writes numeric data from a Maple vector, matrix, list or list of lists
into a text file. This command accepts an optional argument in the form of a procedure that
allows you to control the formatting of the output.

Files Used by Maple

In additional to the general files that can be manipulated by the I/O commands described
earlier in this section, several other files are used implicitly by Maple. A few are described
briefly below. For more information, refer to the file help page.

• Maple language files

A Maple language file contains statements conforming to the syntax of the Maple language.
These are the same as statements that can be entered interactively. Any filename can be
used for a Maple language file, but the name cannot end with ".m". The standard file
extension for Maple language files is ".mpl".

Maple language files can be created using a text editor or the save statement. Maple
procedures and complex scripts of commands are usually written in a text editor, while
the save statement is used to save results or procedures that were entered into Maple in-
teractively.

Maple language files may be read using the read statement. The statements within the
file are read as if they were being entered into Maple interactively, except that they are
not echoed to the screen unless the echo interface variable has been set to 2 or higher.

Maple includes a preprocessor modeled on the C preprocessor and Maple language files
may include preprocessor directives such as $include and $define.

• Internal format files

Maple internal format files are used to store expressions compactly. Expressions stored
in this format can be read by Maple faster than those stored in the Maple language format.
These files are identified by filenames ending with the two characters ".m" (or ".M" on
platforms where filenames are not case-sensitive).

Like Maple language files, Maple internal format files are read and written using the read
and save statements. The presence of the ".m" ending in the filename specifies that the
file is an internal format file, and not a language file.

• Library archives

Maple uses library archive files to store collections of internal format files. These files
end with the extension ".mla" (or, for older library archive files, with extension ".lib").
For more information about creating Maple libraries, see Writing Packages (page 395).

• Workbook files with the extension ".maple" can be used to store collections of worksheets,
documents, maple code, images, data files and more.
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• Help databases

A Maple help database is a file that stores a collection of files representing help pages in
the Maple help system. It contains the information required to index, navigate, and search
the help system, and its filename has the extension ".help". For more information, refer
to the worksheet/reference/helpdatabase help page.

• Worksheet files

If you are using Maple with a graphical user interface, you can save your worksheet. In
the standard worksheet interface, files are identified by names ending with ".mw". In the
classic worksheet interface, files end in ".mws". Both types of files are portable between
the graphical user interfaces on different platforms.

• Maplet Files

Maple worksheets can be saved as ".maplet" files. The MapletViewer runs such files in-
dependent of the Maple worksheet environment.

10.5 Reading and Writing Formatted Data
The scanf and printf Commands

The scanf and printf commands allow you to read from and write to the terminal using a
specified format. The formatting information is provided by a format string. Below is an
example showing how the printf command is used to display floating-point values.

Enter the following Vector of values:

V := Vector([.8427007929, .9953222650, .9999779095, .9999999846,
1.000000000]);

>

(10.22)

Print each value on a single line, preceded by an integer indicating its position. The format
string is the first argument to the printf command. This string consists of two conversion
specifications, "%d" and "%.2e", along with other characters to be printed, including the
newline character "\n". The first conversion specification indicates that the first argument
following the format string should be printed as an integer. The second conversion specific-
ation indicates that the second argument following the format string should be printed in
scientific notation, with two digits after the decimal point.
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for i to LinearAlgebra:-Dimension(V) do
printf("%d%12.2e\n", i, V[i]);

end do;

>

1 8.43e-01
2 9.95e-01
3 1.00e+00
4 1.00e+00
5 1.00e+00

The scanf and printf commands belong to a family of related commands that provide
formatted I/O capabilities. The other commands will be discussed later in this chapter. These
commands are based on similarly named functions from the C programming language library.

For example, the sscanf command below reads an integer, a space, a character, and a floating-
point value from the string given as the first argument. The conversion specifications, "%d",
"%c" and "%f", will be explained in the next section.

sscanf("892 123.456E7","%d %c%f");>

(10.23)

Format Strings

As you saw in the previous examples, the format string passed to scanf or printf specifies
exactly how Maple is to parse the input or write the output. It consists of a sequence of
conversion specifications that may be separated by other characters.

First, consider the specification for the scanf command, which has the format shown below.
What follows is a brief explanation of the specification. For more information, refer to the
scanf help page.

%[*][width][modifiers]code

• The character "%" begins each conversion specification.

• The optional character "*" indicates that the item scanned is to be discarded and not re-
turned as part of the result.

• The optional width indicates the maximum number of characters to be scanned for this
object. You can use this to scan one larger object as two smaller objects.

• The optionalmodifier affects the type of value to be returned. The most common of these
is "Z", which, when preceding any of the numeric format codes, indicates that a complex
value is to be scanned.

• Several format codes are available for use with scanf. A few of the more commonly used
ones are mentioned here.
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"d" -- integer

"f" -- floating-point number

"c" -- character

"s" -- string

"a" -- Maple expression

The specification for the printf command is similar to that for scanf. The differences are
summarized here. For more information, refer to the printf help page. The specification has
the following format.

%[flags][width][.precision][modifiers]code

• As with scanf, the conversion specification for printf begins with "%". The optional
width and modifiers are similar to those described earlier. The width value indicates the
minimum number of characters to output for the field.

• The optional flag can be one of several characters affecting how numeric values are dis-
played. For example, the flag "+" indicates that signed numeric values are output with a
leading "+" or "-" sign.

• The format codes for printf are similar to those for scanf. One notable difference is that,
while "e" and "g" are equivalent to "f" for scanf, they produce different output in printf.
The code "e" causes a numeric value to be printed in scientific notation, while output
using the code "g" uses one of integer, fixed-point or scientific notation, depending on
the numeric value.

The scanf and printf commands can also be used to print rtables. For more information
about the flags used for this purpose, refer to the rtable_printf help page.

Related Commands

Several commands are related to scanf and printf:

• fscanf and fprintf

These commands read from and write to a file instead of the terminal. They take a filename
or descriptor as an additional argument, but otherwise use the same calling sequence as
scanf and printf.

• sscanf and sprintf

These commands read from and write to a string (which is then returned) instead of the
terminal. The sscanf command takes a string as an additional argument, but otherwise
these commands use the same calling sequence as scanf and printf.

• nprintf
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This command is the same as sprintf except that it returns a Maple symbol instead of a
string.

All these commands are described fully on the scanf and printf help pages.

10.6 Useful Utilities
This section describes other tools that are useful for input and output.

The StringTools Package

The StringTools package is a collection of utilities for manipulating strings. These commands
are frequently used in conjunction with the basic input and output commands, for analyzing
or converting data that is read or written. The StringTools package includes numerous
commands; for brevity, we will describe only a few commands that may be of interest to
users performing input/output operations in Maple. These include commands for

• converting the case of characters (e.g., StringTools:-LowerCase)

• performing character class tests (e.g., StringTools:-HasDigit)

• comparing strings (e.g., StringTools:-IsPrefix)

• doing pattern-matching and text searching (e.g., StringTools:-Substitute)

• handling whitespace (e.g., StringTools:-TrimRight)

Two commands that are relevant to file I/O are StringTools:-Compress and StringTools:-
Uncompress. The first command uses an algorithm from the zlib library to compress the
input into a lossless and more compact format, while the second reverses the process. These
commands are compatible with the commands for reading and writing bytes described in
Input and Output with Files (page 379).

For more information about the zlib library, visit http://www.zlib.net.

Conversion Commands

Some additional commands may be useful when you are performing input and output oper-
ations in Maple.

• The convert/bytes help page shows how to transform strings into bytes using the convert
command.

• The parse command allows you to parse a string as a Maple statement. For example, the
following command parses the given string, evaluates it, and returns the expression 4*x^2.

parse("x^2+3*x^2");>

(10.24)
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10.7 2-D Math
Introduction

Typeset or 2-D math is available with the standard worksheet interface. Normally, input
and output of 2-D math is done interactively using the Maple GUI tools. However, certain
aspects of the input and output can be controlled programmatically in a limited way.

There are two available modes for typesetting: standard and extended. The mode can be
changed by using the interface command. The following command shows the current setting
in your worksheet or document:

interface(typesetting);>

(10.25)

Standard typesetting uses default rules for displaying expressions. With extended typesetting,
the rules can be customized using the Typesetting Rule Assistant (TypesettingRuleAssist)
or exports from the Typesetting package. The Typesetting Rules Assistant and the Typeset-
ting package exports can also be used to adjust how 2-D input is parsed, regardless of the
typesetting mode used for output.

The Typesetting Package

The Typesetting package provides commands for programmatically customizing extended
typesetting output in certain situations and for controlling how particular 2-D expressions
are parsed. It also includes internal-use commands that are not intended for general use.
Additionally, the package exports a number of names that act as Maple typesetting tags
similar to MathML tags.

The commands available to users are described on the Typesetting help page. A subset of
the commands are listed below:

• Typesetting:-Settings: adjust general extended typesetting settings, such as whether dot
notation for derivatives is used and whether functions such as should be interpreted
as implicit multiplication.

• Typesetting:-Suppress: suppress dependencies of functions (so that can be interpreted
as , for example).

• Typesetting:-EnableTypesetRule, Typesetting:-EnableParseRule and Typesetting:-En-
ableCompletionRule: control specific typesetting, parsing and command-completion
rules.

• Typesetting:-UseSymbolForTypeset: control the display of operator symbols.
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Extended typesetting output is produced by the Typeset command. When this command is
called, an unevaluated function is returned. This output, which is recognized by the Maple
GUI, is not intended to be altered by users. Because the structure is meant for internal use,
the tag names and format of the structure may change from one Maple release to another.

lprint(Typesetting:-Typeset(BesselJ(v, x)));>
Typesetting:-mrow(Typesetting:-mi("BesselJ",fontstyle =
"normal"),Typesetting:-mo("&ApplyFunction;"),Typesetting:-mfenced(Typesetting:-mi("v"),Typesetting:-mi("x")))

Additional Tips
• Users are discouraged from manipulating the typesetting structures created for internal

use. However, in rare circumstances, it may be useful to call the Typesetting:-Typeset
command. For example, standard typesetting mode is generally used for typeset text in
plots. Extended typesetting output produced by the Typeset command may be passed to
plots inside the typeset structure. For more information, see Typesetting (page 455).

• Occasionally, you may find it necessary to manipulate a typeset expression programmat-

ically without having the expression evaluate. For example, you want to print +

without having it evaluate to , or you want to use , which gives an error when

evaluated in Maple. In these situations, it is useful to create an atomic variable. To do
this, you must be working in the standard worksheet interface. Enter the expression in
the input line, select it and then use the 2-D math context menu to convert to an atomic
variable. If you lprint the result, you will see a name (such as
`#mrow(mi("x"),mo("&plus;"))`, for ) that can now be used within a Maple program
written in 1-D math.

10.8 Exercises
1. Write a loop (with a single statement in its body) that prints strings listing the cubes of

the integers 1 to 10.

2. Create a file in a text editor that contains the following lines.

x := 1; # valid input line

if := 2;} # invalid assignment

y := 3; # valid input line

two words := 4; # invalid assignment

Save the file. In a Maple session, open the file by using the read statement. Observe how
Maple reacts to invalid statements.

3. Create a data file in a text editor that contains the following information.
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1 2 3

4 5 6

Save the file. Read this file into a Maple session, convert the data to a list, and reverse
its order. Write the reversed data in the same format to a different file.
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11 Writing Packages
This section describes how to collect a large software project in Maple into a package that
is easy to maintain. Packages can be configured to load automatically when you start Maple
and distributed to other users as a library rather than as Maple source code.

11.1 In This Chapter
• What is a package

• Writing Maple packages by using modules

• Examples of custom packages

11.2 What Is a Package
A package is a collection of procedures and other data that can be treated as a whole.
Packages typically gather a number of procedures that enable you to perform computations
in a well-defined problem domain. Packages may contain data other than procedures, and
may even contain other packages (subpackages).

Packages in the Standard Library

A number of packages are shipped with the standard Maple library. For example, the
GroupTheory, NumberTheory, CodeGeneration, and LinearAlgebra packages are all
provided with Maple, along with several dozen others. TheGroupTheory package provides
procedures for computing with groups that have a finite representation in terms of permuta-
tions, or of generators and defining relations. TheLinearAlgebra package provides numerous
procedures for computational linear algebra.

Packages Are Modules

Modules are the implementation vehicle for packages. A module represents a package by
its exported names. The exported names can be assigned arbitrary Maple expressions, typ-
ically procedures, and these names form the package.

For more information about modules, see Programming with Modules (page 317).

Some older and deprecated Maple packages such as simplex and networks are not imple-
mented using modules; they are implemented using tables. In table-based packages, the
name of a package command is used as the index into a table of procedures. It is not recom-
mended to write new packages using tables since modules allow much more flexibility.
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Package Exports

Some of the data in a package is normally made accessible to the user as an export of the
package. For packages implemented as modules, the package exports are the same as the
exports of the underlying module. For packages implemented as tables, the package exports
are the names used to index the underlying table.

Accessing the exports of a package is a fundamental operation that is supported by all
packages. If P is a Maple package, and e is one of its exports, you can access e by using the
fully qualified reference P[ e ]. If P is a module, you can also use the syntax P:-e. These
methods of accessing the exports of a module are normally used when programming with
a package.

Note that the member selection operator (:-) is left-associative. If S is a submodule of a
module P, and the name e is exported by S, then the notation P:-S:-e is parsed as (P:-S):-
e, and so it refers to the instance of e, which is local to S. This concept is important for ref-
erencing members of subpackages. For example,

CodeTools:-Profiling:-Coverage:-Print();>

calls the procedure Print in the subpackage Coverage in the subpackage Profiling, which
is part of the CodeTools package. You can use indexed notation for this.

CodeTools[Profiling][Coverage][Print]();>

Using Packages Interactively

For interactive use, it is inconvenient to enter fully qualified references to all of the exports
of a package. To facilitate the process of entering package command names, the Maple
procedure with is provided for the interactive management of package namespaces. By using
with, you can globally impose the exported names of a package. This allows you to access
the package exports, without typing the package prefix, by making the names of the exports
accessible at the top level of the Maple session. For example, to use the NumberTheory
package, enter the command
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with( NumberTheory );>

(11.1)

This command makes the names exported by the NumberTheory package (a list of which
is returned by the call to with) available temporarily as top-level Maple commands.

Divisors( 60 );>

(11.2)

11.3 Writing Maple Packages By Using Modules
A Simple Example

The simplest type of package is a collection of related procedures that are bundled together
for convenience, for example, PolynomialTools or ArrayTools are packages which are both
included with Maple. The following is an example of a custom package.
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SomeTools := module()
description "Some useful tools";

>

option package;
export axpy, sqrm1, identity;

axpy := proc(a::algebraic, x::algebraic, y::algebraic, $)
description "compute a times x plus y";

return a*x + y;
end proc; # axpy

identity := proc()
description "return the arguments";

return _passed;
end proc; # axpy

sqrm1 := proc(x::algebraic, $)
description "square minus one";

return x^2 - 1;
end proc;

end module; # Some Tools

(11.3)

This example is simply a module that consists of a few exported members that are procedures
and an option called package. As with all modules, its members can be accessed by using
the :- and [] operators.

SomeTools:-axpy(1,1,1);>

(11.4)

SomeTools[sqrm1](2);>

(11.5)

The package option also allows you to call the package by using the with command to access
the package exports.
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with(SomeTools);>

(11.6)

identity("nothing");>

(11.7)

If the with command is used to call a module that does not include the package option, an
exception will occur:

SomeOtherTools := module() export Nothing; Nothing := x->x; end
module;

>

(11.8)

with(SomeOtherTools);>
Warning, SomeOtherTools is not a correctly formed package - option
`package' is missing

(11.9)

Packages generally include many lines of Maple code, so you will probably want to create
and modify them in a specialized editor designed for programming such as vim or emacs.
In the example above, the definition of the module SomeTools have been put in a file called
SomeTools.mpl in the samples/ProgrammingGuide/ directory of your Maple installation).
If you copy this file into the current directory, it can then be loaded in Maple by using the
read command.

read("SomeTools.mpl");>

This allows you to access the SomeTools package commands in a Maple worksheet or
document. You can include a read statement as the first executed command or in the startup
code of a Maple worksheet or document.

Custom Libraries

If you prefer not to call the read command to load your custom package, you can save your
package as a Maple library archive (.mla) file. This allows your package to be available
whenever Maple is started; however, it is loaded into memory only if it is required. In con-
trast, the read method automatically loads the package into memory.

Before a package can be saved to a library archive, it must be loaded into Maple, either
directly in a worksheet or by using the read command. Then, the simplest method for saving
it to a library archive is to call the savelib command.
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Before calling the savelib command, you may want to set up a directory to store your custom
library. For example, you can create a directory called maple in your home directory and
use the LibraryTools commands to create an empty .mla file in which to store your library.

mylibdir := cat(kernelopts(homedir), kernelopts(dirsep), "maple",
kernelopts(dirsep), "toolbox", kernelopts(dirsep), "personal",
kernelopts(dirsep), "lib");

>

(11.10)

FileTools:-MakeDirectory(mylibdir, 'recurse');>

LibraryTools:-Create(cat(mylibdir, kernelopts(dirsep),
"packages.mla"));

>

libname := mylibdir, libname;>

(11.11)

To save a new value for libname (a predefined variable, which specifies the location of the
main Maple library, and package and user libraries), and to make sure that this directory is
the default location for saving in the future after you use the restart command, add the line
above to your Maple initialization file, which specifies initialization settings for Maple.

For more information on initialization files, see the worksheet/reference/initialization help
page.

Note: Maple automatically adds lib subdirectories of directories in
HOMEDIR/maple/toolbox as well as your current directory to the predefined variable
libname. Therefore, modifying the .mapleinit or maple.ini file is only necessary if you
want to designate a directory as the default location in which the savelib command will
save your library files.

You can modify the Maple initialization file manually in a text editor or by using the
FileTools commands in Maple:

mapleinitfile := cat(kernelopts(homedir), kernelopts(dirsep),
`if`(kernelopts(platform)="unix", ".mapleinit", "maple.ini"));

>

(11.12)

FileTools:-Copy(mapleinitfile, cat(mapleinitfile, ".mpl.bak"));>

FileTools:-Text:-Open( mapleinitfile, 'append');>
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FileTools:-Text:-WriteLine(mapleinitfile, cat("libname :=
\"",mylibdir,"\", libname:"));

>

FileTools:-Text:-Close( mapleinitfile );>

Restart, and verify that your libname is set now correctly.

restart;>

libname;>

Finally, save the package to the library archive by calling the savelib command.

savelib( 'SomeTools' );>

Enter the restart command, followed by the ShowContents command in LibraryTools to
verify that the package has been added to the library archive. If everything has worked
correctly, you can now use the with command to access the package commands.

restart;>

LibraryTools:-ShowContents(libname[1]);>

with(SomeTools);>

Running the savelib command saves the module to the first library archive found in the path
specified by the global variable libname or the library archive in the path specified by the
global variable savelibname, if it is defined. (At least one of these values must be defined.)
You can save your package to a different library archive by using the LibraryTools:-Save
command or by providing a file name as a second argument to the savelib command.

You will want to remove this example package from your library when you are done. This
can be done using the Delete command in the LibraryTools package.

LibraryTools:-Delete('SomeTools', libname[1]);>

You can confirm that it has been deleted.

LibraryTools:-ShowContents(libname[1]);>

Important: Always make sure that the standard Maple library directory is write-protected
to avoid saving expressions in it. If you accidentally save a file to the standard Maple
library, you may need to reinstall Maple to restore the main library archive.

11.4 A Larger Example
Several additional techniques are useful for writing larger packages. Some of these techniques
will be described in the context of an example package called RandomnessTests whose
full source can be found in the samples/ProgrammingGuide/RandomnessTests directory,
which is located in the directory where Maple is installed. It is a package containing proced-
ures to analyze the randomness of a sequence of bits.
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ModuleLoad

Often, a package needs to initialize the internal or global state when it is loaded. For example,
many packages define new types for the type system. Generally, these types are not needed
unless the package is loaded, and so they are created by the ModuleLoad local member of
the package. In this example, we will define a type BinarySequence that is a linear data
type containing only zeros and ones.

ModuleLoad := proc()
TypeTools:-AddType

>

(
':-BinarySequence',
proc(L)

type(L, list({identical(0),identical(1)}))
or type(L, 'Vector'({identical(0),identical(1)}))
or ( type(L, 'Array'({identical(0),identical(1)}))

and nops([rtable_dims(L)])=1
and op([1,1], [rtable_dims(L)])=1 );

end proc
);

end proc;

The local namedModuleLoadwill automatically run when a module is loaded from a library.
If you are using the read command to load the definition of the module into Maple or if
you enter it in a worksheet, this procedure will not run automatically.

You can also define the local ModuleUnload, which will run if the module is removed
from memory because it is not being used. In this case, the custom type definition Bin-
arySequence is removed.

ModuleUnload := proc()
TypeTools:-RemoveType(':-BinarySequence');

end proc;

>

It is also possible to use the load=proc and unload=proc options in the module definition
to specify different procedures to be invoked when a package is loaded and unloaded re-
spectively. However, the use of theModuleLoad andModuleUnload procedures is recom-
mended.

The Preprocessor and Structured Source Files

If a package has many exports, it often useful to put each export into its own source file.
The Maple preprocessor is similar to the preprocessor of a C compiler. It allows you to
specify the names of source files and macro definitions to include in a master .mpl file,
which defines the contents of your package.
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To include the file name of an export in an .mpl file, you can use the $include directive.

To define macros, you can use the $define directive.

In our example, we have a file called RandomnessTests.mpl, which has several exports
stored in the same directory in the files: WaldWolfowitz.mm, BitFrequency.mm, Compress-
ibility.mm, BinaryRank.mm. The following example shows the contents of the Random-
nessTests.mpl file.

Table 11.1: RandomnessTests

##MODULE RandomnessTests
##
##DESCRIPTION
##- A package containing commands for testing the randomness of
## binary sequences.

$define RANDINFO ':-RandomnessTests'
$define MAINLEVEL 2

RandomnessTests := module()
option package;

export
WaldWolfowitz,
BitFrequency,
Compressibility,
BinaryRank;

local
Runs,
ModuleLoad,
ModuleUnload;

ModuleLoad := proc()
TypeTools:-AddType
(

':-BinarySequence',
proc(L)

type(L, list({identical(0),identical(1)}))
or type(L, 'Vector'({identical(0),identical(1)}))
or ( type(L, 'Array'({identical(0),identical(1)}))

and nops([rtable_dims(L)])=1
and op([1,1], [rtable_dims(L)])=1 );

end proc
);

end proc;
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ModuleUnload := proc()
TypeTools:-RemoveType(':-BinarySequence');

end proc;

$include "WaldWolfowitz.mm"
$include "BitFrequency.mm"
$include "Compressibility.mm"
$include "BinaryRank.mm"

end module; # RandomnessTests

When this file is loaded into Maple from the command-line interface or by using the read
command in a Maple worksheet or document, Maple automatically replaces each $include
directive with the contents of the file specified.

The file also includes two $define directives which are macros that are not used in this file,
but will be used in the included files. Including them in the top-level source file allows us
to make package-wide changes by editing the macros in one place. In our example, these
macros will be used to control the userinfo definitions throughout the package. The following
line appears in the WaldWolfowitz.mm file:
userinfo(MAINLEVEL, RANDINFO, nprintf("sequence has %d runs", runs));

When loaded, the preprocessor will transform this line into the following:

userinfo(2, ':-RandomnessTests', nprintf("sequence has %d runs",
runs));

>

Macros can also have parameters such as the following macro in the BinaryRank.mm file:
$define GF2RankProbability(m,n,r)
2^(r*(n+m-r)-m*n)*mul(((1-2^(l-n))*(1-2^(l-m)))/(1-2^(l-r)),l=0..(r-1))

which allows GF2RankProbability to be used as if it were a procedure. However, it will
be replaced inline by the preprocessor. This is similar to how procedures with option inline
function, but with more restrictions.

Subpackages

When creating large packages, it is useful to organize commands into smaller subpackages.
Our package does this with a Visualization subpackage and a Data submodule to store
sample random inputs.

Achieving this is as simple as including the definition for these other modules and packages
within the top-level package.
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11.5 Example: A Shapes Package
In this section, a sample package is presented to illustrate concepts that may be helpful when
working with modules and submodules, and putting them together into a package.

Modules allow you to create packages with a hierarchical structure; this cannot be done
with table-based implementations of packages. This section covers the following topics:

• Organizing the source code for a large package that has a nontrivial substructure.

• A description of the Shapes package, including details of its design and implementation

• Hints related to source code organization.

The package presented in this section provides the means to compute areas and circumfer-
ences of various planar figures, which are called shapes.

Note:Only portions of the source code for this package are shown. The fully commented
source code can be found in the samples/ProgrammingGuide/shapes directory of your
Maple installation.

Source Code Organization

The Shapes package is organized into several source files:

• shapes.mpl

• point.mm

• segment.mm

• circle.mm

• square.mm

• triangle.mm

To avoid platform-specific differences, all of the source files are located in the same directory
or folder.
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Figure 11.1: Organization of Package Source Files

To define the module that implements this package, use the Maple preprocessor to include
the remaining source files at the appropriate point in the master source file shapes.mpl. A
number of $include directives are included in shapes.mpl, such as
$include "point.mm"
$include "segment.mm"

Splitting a large project into several source files makes it easier to manage and allows sev-
eral developers to work on a project at the same time. The source file is divided into shape-
specific functionality. Most of the functionality for points, for instance, is implemented by
the source code stored in the point.mm file.

Package Architecture

The Shapes package is structured as a module with several exported procedures. Individual
submodules provide specific functionality for each shape type supported by the package.
Each of these shape-specific submodules is stored in its own source file; these files are in-
cluded into the main package source file, shapes.mpl.

The package module Shapes has a submodule, which is also called Shapes. The submodule
Shapes:-Shapes contains one submodule for each shape supported. The submodule hierarchy
is illustrated in Figure 11.2.

406 • 11 Writing Packages



Figure 11.2: Design of Package

The result of preprocessing the main file shapes.mpl produces a module whose source has
the following general form.
Shapes := module()

option package;
export make, area, circumference;
local Shapes, circum_table;
Shapes := module()

export point, segment, circle, square, triangle;
point := module() ... end module;
segment := module() ... end module;
.....

end module;
make := proc() ... end proc;
area := proc() ... end proc;
circum_table := table(); ...
circumference := proc() ... end proc;

end module:

The Package API

The Shapes package exports the following procedures:

• make

• area

• circumference

The make Procedure

The exported procedure make creates shapes. It is used to create a shape expression from
the input data. For example, points are derived from their x and y coordinates.
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org := make( 'point', 0, 0 );>

(11.13)

A circle is created from its center and radius.

circ := make( 'circle', org, 2 );>

(11.14)

In each case, the name of the shape is passed as the first argument to specify which kind of
shape to return.

The area Procedure

To compute the area of a shape, call the exported procedure area with the shape as its argu-
ment.

area( circ );>

(11.15)

The circumference Procedure

The exported procedure circumference computes the circumference of a given shape.

circumference( circ );>

(11.16)

Shape Representation

Shapes are represented as unevaluated function calls. The arguments to the call are the in-
stance-specific data for the shape. For example, a point with coordinates (2,3) is represented
by the unevaluated function call POINT( 2, 3 ). Some instance data are shapes themselves.
For example, a segment is represented, using its endpoints, as an unevaluated function call
of the form SEGMENT( start_point, end_point ). The start and end points of the segment
can be obtained by calling the point constructor.

Procedure Dispatching

The Shapes package illustrates three types of procedure dispatching.

• Dispatching on submodule exports

• Conditional dispatching

• Table-based dispatching
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Dispatching on Submodule Exports

Themake procedure, which is exported from the Shapes package, uses the Shapes:-Shapes
submodule for procedure dispatching.

To test whether a method for a given shape is available, the make procedure tests whether
there is a submodule by that name in the Shapes:-Shapes submodule. If no such submodule
is found, an exception is raised. Otherwise, the make export from the submodule is passed
the arguments that were given to the top-level Shapes:-make procedure. The make source
code is as follows.

make := proc( what::symbol )
description "constructor for shapes";

>

local ctor, # the shape constructor,
# if found

theShape; # the submodule for the
# kind of shape requested

if not member( what, Shapes, 'theShape' ) then
error "shape `%1' not available", what

end if;
if member( ':-make', theShape, 'ctor' ) then

ctor( args[ 2 .. nargs ] )
else

error "no constructor provided for "
"shape %1", what

end if
end proc:

The first argument to make is a symbol that specifies the shape to create (point, circle,
triangle). This symbol is used as an index in the Shapes:-Shapes submodule. The first
statement uses the member command to test whether the symbol passed in the what para-
meter is exported by the Shapes:-Shapes submodule. If it is not found, an appropriate dia-
gnostic is issued and an exception raised. If member returns the value true, then its third
argument, the local variable theShape, is assigned the export found in the submodule.

For example, if what is the symbol circle, then the local variable theShape is assigned the
submodule Shapes:-Shapes:-circle that implements operations on circles. The same idea
is used to select the shape-specific constructor; it is the value assigned to the local variable
ctor when the value true is returned from the second call to the member command. Any
remaining arguments are used as data to construct the shape. These are passed to the make
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export in a shape-specific submodule, if found, and are not checked further at this level.
This design localizes the shapes to the corresponding submodule.

Conditional Dispatching

The procedure area uses a simple conditional dispatching mechanism. The tag of the input
shape is extracted and is used in direct comparisons with hard-coded values to determine
which shape-specific area subcommand to call to perform the area computation.

area := proc( shape )
description "compute the area of a shape";

>

local tag;

if not type( shape, 'function' ) then
error "expecting a shape expression, "

"but got %1", shape
end if;

# Extract the "tag" information from the shape
tag := op( 0, shape );

# Dispatch on the "tag" value
if tag = ':-POINT' then

Shapes:-point:-area( shape )
elif tag = ':-SEGMENT' then

Shapes:-segment:-area( shape )
elif tag = ':-CIRCLE' then

Shapes:-circle:-area( shape )
elif tag = ':-SQUARE' then

Shapes:-square:-area( shape )
elif tag = ':-TRIANGLE' then

Shapes:-triangle:-area( shape )
else

error "not a recognized shape: %1", tag
end if

end proc:

Table-based Dispatching

The third dispatch method illustrated in the Shapes package is table-based. This technique
is used by the exported procedure circumference, which references the table circum_table
to look up the appropriate procedure to call. This table is built by assigning its entries in
the body of the Shapes package.
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circum_table := table();>

circum_table[ 'POINT' ] := Shapes:-point:-circumference;>

circum_table[ 'SEGMENT' ] := Shapes:-segment:-circumference;>

circum_table[ 'CIRCLE' ] := Shapes:-circle:-circumference;>

circum_table[ 'SQUARE' ] := Shapes:-square:-circumference;>

circum_table[ 'TRIANGLE' ] := Shapes:-triangle:-circumference;>

The source code for the procedure circumference is as follows.

circumference := proc( shape )
description "compute the circumference of a "

>

"shape expression";
if not type( shape, 'function' ) then

error "expecting a shape, but got %1", shape
end if;
if assigned( circum_table[ op( 0, shape ) ] ) then

circum_table[ op( 0, shape ) ]( shape )
else

error "no circumference method available "
"for shape %1. Supported shapes "
"are: %2", tag,

sprintf( "%q", op( ALL_SHAPES ) )
end if

end proc:

Minimal checking is done to ensure that the input has the right structure. If an entry is found
in the table circum_table for the shape tag (as with the area procedure), the corresponding
procedure is called with the given shape as an argument. (The shape must be passed as an
argument, so that the shape-specific submodule can extract the instance data from it.) Oth-
erwise, a diagnostic is issued and an exception is raised.

Shape-specific Submodules

As already noted, each shape is implemented in a shape-specific submodule. The set of
exports of each module varies, but each supports the required exports make, area, and
circumference in the top-level Shapes module. Certain shapes support other operations.
Only two submodules are described here. You can see the source for the other submodules
in the sample source code.

The point Submodule

The submodule that implements points is fairly simple. In fact, it makes no reference to any
lexically scoped variables in its parent modules (Shapes and Shapes:-Shapes).
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point := module()
description "support commands for points";

>

export make, area, circumference, xcoord, ycoord;
option package;

make := ( x, y ) -> 'POINT'( x, y );
area := () -> 0;
circumference := () -> 0;
xcoord := p -> op( 1, p );
ycoord := p -> op( 2, p );

end module:

Since the area and circumference of a point are both 0, these procedures are easy to imple-
ment. In addition to the required exports, the point submodule also exports two utility pro-
cedures, xcoord and ycoord, for retrieving the x and y coordinates of a point. Providing
these values makes it possible for clients of this submodule to use it without requiring in-
formation about the concrete representation of points. This makes it easier to change the
representation later, if required.

Within this submodule, the names make, area, and circumference are the same as the
names with the same external representation at the top-level Shapes module.

The circle Submodule

This submodule provides the circle-specific commands for the Shapes package.

circle := module()
export make, center, radius, diameter,

>

area, circumference;
option package;

make := proc( cntrPt, radius )
'CIRCLE'( cntrPt, radius )

end proc;

center := circ -> op( 1, circ );
radius := circ -> op( 2, circ );
diameter := circ -> 2 * radius( circ );
circumference := circ -> Pi * diameter( circ );
area := circ -> Pi * radius( circ )^2;

end module:
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Again, some extra commands are provided in addition to those required at the top level of
the Shapes package. The exported procedure radius is used to define other commands. It
can be made local to this submodule.
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12 Graphics
Maple offers a variety of ways to generate 2-D and 3-D plots. This chapter shows you how
to create and manipulate such plots programmatically. You will learn about the Maple
plotting library, the plot data structure, and how to write your own graphics procedures.

12.1 In This Chapter
• Introduction

• The Plot Library

• Programming with Plots

• Data Structures

• Customizing Plots

• Animations

• Miscellaneous Topics

• Avoiding Common Problems

12.2 Introduction
Plots in Maple

A plot in Maple is a 2-D or 3-D graphical representation of a mathematical object, such as
a function or a set of statistical data. Most of this chapter will be assuming a Cartesian co-
ordinate system for this purpose. In general, the horizontal and vertical axes in 2-D plots
will be referred to as the and axes, respectively, while the axes in 3-D plots will be
called the , , and axes.

The following command generates a 2-D plot of the function over the range
-2 to 2.
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plot(x^3-x^2+3, x=-2..2, 'title'="A First Plot");>

The plot command is commonly used to create 2-D plots and it is described in more detail
inGenerating 2-D and 3-D Plots (page 418). There is a corresponding plot3d command for
creating 3-D plots. In the previous statement, the three arguments to the plot command are
the Maple expression x^3-x^2+3 representing the function to be plotted, an equation spe-
cifying the plotting variable and range, and an option indicating that a title be added.

If you are using Standard Interface in Maple, executing the previous statement produces a
plot in the current document. You can also create plotting output for other interfaces (for
example, plots that open in a different window) and plots that are saved as a graphics file.
For more information, see Interfaces and Devices (page 460).

Generating a Plot

The plot and plot3d commands are not the only ways to generate plots. Maple has an ex-
tensive library of commands for plotting and related tasks. These are described in The Plot
Library (page 417). A plot that is generated with a library command is returned as a plot
data structure. This is described in the section Data Structures (page 446).

Maple also provides interactive ways to create and modify plots, including:

• the Interactive Plot Builder,

• dragging and dropping, and

416 • 12 Graphics



• context menus.

More information about these topics can be found in the Maple User Manual. If you are
interested in simply creating a plot to be displayed in a Maple worksheet, then these easy-
to-use, interactive methods are recommended. However, if you want to write programs that
build and manipulate plots, then it is necessary to be familiar with Maple's plotting library
commands.

Plots can also be used as embedded components, which means they are created as graphical
interface components that can be manipulated through various actions. For more information,
see Programming Interactive Elements (page 463)

12.3 The Plot Library
This section provides an overview of the most commonly used plotting commands in the
library. Refer to the Maple Plotting Guide for a pictorial listing of the kinds of plots that
can be generated in Maple. The commands described here can be entered in the worksheet
to generate individual plots, or they can be used in combination within procedures.

Many of the commands introduced in this section are from the plots package, so the short
form of the names will be made available.

with(plots);>

(12.1)
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Most plotting commands accept optional arguments that change the default look of the plots.
These options are summarized on the plot/option and plot3d/option help pages, and the most
commonly used ones are described in Customizing Plots (page 450). The options that apply
to the entire plot, such as title or gridlines, will be referred to as global options. Options
that apply to individual elements, such as color, are called local options.

Generating 2-D and 3-D Plots

Introduction

There are two basic plotting commands in Maple: plot and plot3d. The plot command pro-
duces 2-D curves from representations of mathematical functions in one independent variable,
and the plot3d command generates 3-D surfaces from representations of functions in two
variables.

The following command generates a 2-D plot of the function over the
range 1 to 5.

plot(exp(x/2)-5*x+x^2, x=1..5, 'color'="NavyBlue", 'thickness'=2);>

The following command generates a 3-D plot of the function over and
ranges of to .
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plot3d(sin(x)*sin(y), x=-Pi..Pi, y=-Pi..Pi, 'transparency'=0.2);>

In both these statements, the first argument is an expression representing the curve or surface
to be plotted. This is followed by ranges for the independent variables. Finally, optional
arguments may be added.

Note: If a range is not provided, both plot and plot3d commands assume default ranges of
-10 to 10, or to when a trigonometric plot is detected.

Expression and Operator Forms

The two plotting statements in the previous section use the expression form of the plot and
plot3d commands. These plots can also be generated using the operator form of the calling
sequence.

plot(proc(x) exp(x/2)-5*x+x^2 end proc, 1..5, 'color'="NavyBlue",
'thickness'=2);

>

plot3d((x, y)->sin(x)*sin(y), -Pi..Pi, -Pi..Pi,
'transparency'=0.2);

>

In the operator form of the calling sequence, the first argument must be a procedure. It can
be written using proc ... end proc, as in the call to plot or with arrow notation, as in the call
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to plot3d. It can be the name of any predefined procedure, including ones from the Maple
library, as in the following example.

plot3d(binomial, 0..5, 0..5);>

The procedure must accept one floating-point input argument in the 2-D case and two such
arguments in the 3-D case, and it must return a floating-point value. For the operator form
of the calling sequence, the range arguments are simple ranges rather than equations, as
with the expression form of the calling sequence.

The operator form is primarily used when the function to be plotted is not easily written as
a Maple expression in the plotting variables.

p := proc(x)
if abs(x)<0.1 then

>

100*x
elif abs(x)>0.5 then

4*x
else

1/x
end if;

end proc:
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plot(p, -1..1);>

Normally, ranges given to a plotting command must have endpoints that evaluate to floating-
point numbers. However, you can get an infinity plot by including infinity as one of the
endpoints. For more information, refer to the plot/infinity help page. With 3-D plots, you
can also use, in the range for one variable, an expression that depends on the other variable.
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plot3d(x*y, x=-1..1, y=-x^2..x^2);>

To display multiple curves or surfaces in a single plot, provide a list of expressions or pro-
cedures to the plot or plot3d command. With the plot command, the options that affect the
look of an individual curve, such as color or thickness, also accept lists of values.
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plot([sin(x), cos(x)], x=-Pi..Pi, 'color'=["Niagara BlueGreen",
"Niagara DarkOrchid"]);

>

If you want to generate a 3-D plot containing three surfaces, you must add the option plotl-
ist=true to distinguish this plot from a parametric plot, which is described in the next section.

Occasionally, users get unexpected results by mixing the two calling sequences. Common
errors are described in Mixing Expression and Operator Forms (page 460)

Parametric Form

In the previous examples, the first argument is used to calculate the value of the dependent
variable as a function of the independent variable or variables. A parametric curve, where
the and values are functions of a single parameter , can also be plotted by the plot
command. Similarly, a parametric surface, where the , , and values are functions of
two parameters and , can be plotted by the plot3d command.

To generate a 2-D parametric plot, provide as the first argument a list containing three items:
an expression for the value, an expression for the value, and an equation containing
the parameter and its range.
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plot([sin(t), cos(t), t=0..Pi]);>

To generate a 3-D parametric plot, provide as the first argument a list containing three ex-
pressions, for the , , and values respectively. Two additional arguments are required,
each in the form of an equation containing one of the parameters and its range.
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plot3d([s^2, cos(s), t*cos(t)], s=0..2*Pi, t=0..Pi);>

Operator form can also be used with parametric plots. The two previous examples are
written using operator form as follows. As with non-parametric plots, options may be added.

plot([sin, cos, 0..Pi], thickness=3, linestyle=dash);>

plot3d([(s,t)->s^2, (s,t)->t*cos(s), (s,t)->cos(t)], 0..2*Pi,
0..Pi, 'axes'='boxed');

>

The calling sequences for parametric plots are explained in detail on the plot/details and
plot3d help pages.

Plotting Points, Polygons, and Text

Points

The plots:-pointplot and plots:-pointplot3d commands are used to plot collections of 2-D
or 3-D points. These points can be provided as lists of two-element or three-element lists.
Alternatively, they can be provided as two or three Vectors. The options symbol and sym-
bolsize, described on the plot/options help page, can be used to change the look of each
point.
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pointplot([[0, 1], [1, -1], [3, 0], [4, -3]], 'color'= ["Red",
"Green", "Black", "Blue"], 'symbol'='asterisk', 'symbolsize'=15,
'view'=[-1..5, -4..2]);

>

xvector := <1, 2, 3, 4, 6>:
yvector := <1, 3, 5, 8, 9>:

>

zvector := <0, 1, 0, 1, 0.5>:
pointplot3d(xvector, yvector, zvector, 'color'="Niagara Burgundy",
'axes'='boxed', 'symbol'='solidsphere', 'symbolsize'=20);
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The plot command also offers a calling sequence in which a collection of points is provided.
The plot command differs from the pointplot command in that a connecting line is drawn
by default. To draw discrete points with the plot command, use the style=point option.

If you have a large data set, it is highly recommended that you create the data set as a Matrix
with the datatype option set to float. You can import data sets created by applications
other than Maple by using the ImportMatrix command or the ImportData assistant.

Polygons and Polyhedra

The plots:-polygonplot and plots:-polygonplot3d commands plot polygons in 2-D or 3-D
space. The vertices of the polygons are specified in a way similar to the way points are
specified for the pointplot and pointplot3d commands.
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polygonplot3d(Matrix([[0, 1, 1], [1, -1, 2], [3, 0, 5], [1, 1,
1]], 'datatype'='float'), 'color'="Niagara BluishPurple",
'axes'='boxed');

>

The plots:-polyhedraplot command can be used to display any of the polyhedra described
on the plots/polyhedra_supported help page.
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polyhedraplot([0, 0, 0], 'polytype' = 'dodecahedron', 'scaling'
= 'constrained', 'orientation'=[76, 40]);

>

The polyhedraplot command makes use of the geometry and geom3d packages. Use these
packages if you want to do more computations with geometric objects. These objects can
be plotted with the geometry:-draw and geom3d:-draw commands.

The plottools package also offers commands to create geometric objects. The result of these
commands is a plot data structure. For more information about this package, see Creating
Plot Structures (page 449).

Text on Plots

Text can be added to plots with the title and caption options. Axis and tickmark labels can
also be specified with the labels and tickmarks options. For details on specifying tickmarks,
refer to the plot/tickmarks help page. The text can be a string, a Maple expression, or an
unevaluated typeset call, which allows you to combine mathematical expressions and strings.
The mathematical expressions are typeset as described in Typesetting (page 455).
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plot(x^2, x=-2..2, 'title'='typeset'("A plot of the function ",
x^2));

>

The plots:-textplot and plots:-textplot3d allow you to create plots containing text objects at
arbitrary locations. The first argument is a list consisting of the coordinate values followed
by the text to be placed at the location defined by the coordinates. Common options used
with the textplot and textplot3d commands include the font option, to change the font type
and size, and the align option, to position the text relative to the coordinate values.
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textplot([1, 2, f(x)], 'font'=['times', 20], 'align'='above');>

Usually, text objects are displayed in combination with other plot elements. In the next
section, you will learn how to merge plots created with the commands introduced so far.

Combining Plots

This section describes how to use the plots:-display command to combine plots, or more
specifically, plot data structures. Two or more plots can be merged into a single plot or they
can be placed side-by-side in a tabular arrangement.

When a plot is generated using any library command, a plot data structure is created. This
structure can be assigned to a variable to be reused or modified. A detailed explanation of
how the structures are formed is available inData Structures (page 446), but it is not necessary
to understand the details in order to manipulate the structures as described here.

Merging Plots

To combine the elements of two or more plots into a single plot, use the plots:-display
command, with the plots contained in a list as the first argument.

sinecurve := plot(sin(x), x=-Pi..Pi):>

maxtext := textplot([Pi/2, 1, "maximum"], 'align'='above'):>
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display([sinecurve, maxtext], 'caption'="This plot shows a local
maximum of the sin function.");

>

Any combination of plot structures created from arbitrary Maple plotting commands can
be combined using the display command, with a some restrictions. Usually, different types
of plots (2-D, 3-D, arrays of plots, and animations) cannot be mixed.

When plots are merged, their options are also merged if possible. If there is a conflict, the
display command will try to resolve it. For example, if two plots with different titles are
merged, the display command will arbitrarily choose one for the merged plot.

The display command allows additional options to be provided. In the case of global options
(ones that apply to the entire plot such as caption), these additional options will override
those given for the individual plots. However, local options specified within the plots are
generally not overridden.

The display command accepts the option insequence=true, which causes the plots to be
displayed sequentially in an animation rather than merged. This use of the display command
is discussed in Animations (page 457).

Generating an Array of Plots

The display command can be used to generate a tabular display of plots by providing a one-
dimensional or two-dimensional Array of plot structures as the first argument. An animation
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plot structure can also be given, in which case the frames of the animation are displayed in
tabular form.

Unlike the situation where plots are merged, you can mix different types of plots in an array
of plots. For example, you can create an array containing both 2-D and 3-D plots.

A limited number of options can be passed to this command. Most global plot options are
accepted and are applied to each plot in the Array individually.

For more information about this feature, including the aligncolumns option that allows you
to align the -axes of plots within a column, refer to the plot/arrayplot help page.

Specialty Plots

In this section, a few commonly used commands for specialty plots are introduced. Refer
to the Maple Plotting Guide for a complete list of commands available.

The plots:-implicitplot and plots:-implicitplot3d commands generate plots of implicitly
defined curves and surfaces.

implicitplot(x^2-y^2 = 1, x = -Pi .. Pi, y = -Pi .. Pi,
'color'="Niagara BluishPurple", 'thickness'=2, 'gridrefine'=2);

>

The plots:-contourplot command generates a contour plot for an expression in two variables.
The plots:-contourplot3d command does the same but generates a 3-D display.
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contourplot3d(-5*x/(x^2+y^2+1), x=-3..3, y=-3..3,
'filledregions'=true, 'coloring'=["Niagara Burgundy", "Niagara
Navy"]);

>

The plots:-polarplot command generates a plot in polar coordinates with polar axes. This
command offers a number of options to control the look of the radial and angular axes.
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polarplot(theta, theta = 0..2*Pi,
'axis'['radial']=['color'="Niagara DeepBlue"]);

>

To plot in other coordinate systems, you can use the coords option. However, unlike with
the polarplot command, these plots are drawn with Cartesian axes. For a complete list of
supported coordinate systems, refer to the coords help page,
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plot3d(z, theta=0..2*Pi, z=-1..1, 'coords'='cylindrical');>

The plots:-dualaxisplot command creates a plot with two -axes located at the left and right
sides of the plot. You can provide either two expressions or two plot data structures.
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dualaxisplot(plot(x^2, x=0..10, 'labels'=[x, x^2], 'legend'=x^2),
plot(x^3, x =0..10, 'color'="Niagara Navy", 'labels'=[x, x^3],
'legend'=x^3), 'title'="A Comparison");

>

The plots:-densityplot command creates a plot of a function of two variables colored by the
function value. You can create a grayscale or RGB-colored plot.
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densityplot(sin(x+y), x=-1..1, y=-1..1);>

The plots:-fieldplot and plots:-fieldplot3d commands generate plots of 2-D or 3-D vector
fields.
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fieldplot3d([(x, y, z)->2*x, (x, y, z)->2*y, (x, y, z)->1], -1..1,
-1..1, -1..1);

>

Other Packages

Many of the plotting commands introduced so far are part of the plots package. Several
other packages in Maple also contain visualization commands.

The plottools package includes commands for generating and transforming graphical objects.
This package is described in Creating Plot Structures (page 449).

The Student package consists of several subpackages designed to assist with the teaching
and learning of mathematics. Each Student package has a collection of visualization com-
mands. For example, for Calculus, refer to the Student/Calculus1/VisualizationOverview
help page.
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Student:-Calculus1:-RollesTheorem(sin(x), x=1..3*Pi-1);>

The Statistics package contains a large number of commands for visualizing univariate and
multivariate data. These are listed in the Statistics/Visualization help page.
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chartvalues := [seq(i=sqrt(i), i=1..15)]:
Statistics:-PieChart(chartvalues, sector=0..180);

>

As mentioned in Polygons and Polyhedra (page 427), geometric objects can be created and
displayed with the geometry and geom3d packages.

In the GraphTheory package, directed and undirected graphs can be drawn with the
GraphTheory:-DrawGraph command. In addition, the package provides many predefined
graphs as well as visualizations of some algorithms.
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with(GraphTheory):
with(SpecialGraphs):
DrawGraph(PetersenGraph());

>

12.4 Programming with Plots
Now that you are familiar with the wide range of commands available in the Maple plotting
library, you can combine them to create custom graphics procedures. In this section, you
will examine two simple examples: one in 2-D and one in 3-D. In later sections, additional
programming examples will be provided as new concepts are introduced.

A 2-D Example

This first example shows how plotting commands can be combined to create a single plot.

f := x*sin(x):
fderiv := diff(f, x):

>

fplot := plot(f, x=-2*Pi..2*Pi, 'color'="Niagara Burgundy",
'legend'=f, 'thickness'=2):
fdplot := plot(fderiv, x=-2*Pi..2*Pi, 'color'="Niagara Navy",
'legend'=fderiv):
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plots:-display([fplot, fdplot], 'title'="A function and its
derivative", 'titlefont'=["Helvetica", 16]);

>

You can make this code more general and reusable by defining a procedure to produce a
similar plot given an expression as the first argument, and an equation involving the plotting
variable and range as the second argument.

derivativeplot := proc(f, r :: name=range)
local fderiv, v, fplot, fdplot;

>

# Extract the plotting variable and compute derivative.
v := lhs(r);
fderiv := diff(f, v);

# Create both curves.
fplot := plot(f, r, 'color'="Niagara Burgundy", 'legend'=f,

'thickness'=2):
fdplot := plot(fderiv, r, 'color'="Niagara Navy",

'legend'=fderiv):

# Combine into final plot.
plots:-display([fplot, fdplot], 'title'="A function and its

derivative",
'titlefont'=["Helvetica", 16]);

end proc:

derivativeplot(t^3-4*t^2+2*t, t=-3..3);>

There are a few modifications that can be made to improve derivativeplot, such as error-
checking and processing of additional plotting options.

In the derivativeplot procedure, the name=range type is specified for the r parameter, and
the type-checking of this argument is done automatically by the built-in parameter processing
facilities in Maple. However, it is useful to check for correctness of the first expression.
Specifically, derivativeplot should check that the first argument is an expression in one
variable and that variable matches the one given in the second argument. For example, the
following incorrect call would produce an empty plot.

derivativeplot(x^3-4*x^2+2*x, t=-3..3);>

Many visualization commands in the Maple library that use the basic plotting procedures
plot, plot3d, and plots:-display assume that additional arguments are global plot options to
be passed along for processing by these commands. In the modified derivativeplot procedure
below, the unprocessed arguments in _rest are passed to the display command. For more
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information on _rest, see Special Sequences for Referring to Parameters and
Arguments (page 233).

Here is the new derivativeplot procedure.

derivativeplot := proc(f, r :: name=range)
local fderiv, vnames, v, p1, p2, pfinal;

>

# Extract the plotting variable, check that it matches the
# indeterminate names in f, and then compute derivative.
v := lhs(r);
vnames := select(type, indets(f), 'name');
if nops(vnames)>1 then

error "too many variables in expression %1", f;
elif nops(vnames)=1 and vnames[1]<>v then

error "variable in expression %1 does not match %2", f,
v;

end if;
fderiv := diff(f, v);

# Create both curves.
p1 := plot(f, r, 'color'="Niagara Burgundy", 'legend'=f,

'thickness'=2):
p2 := plot(fderiv, r, 'color'="Niagara Navy", 'legend'=fderiv):

# Combine into final plot.
plots:-display([p1, p2], 'title'="A function and its

derivative",
'titlefont'=["Helvetica", 16], _rest);

end proc:

derivativeplot(x^3-4*x^2+2*x, x=-3..3, 'axes'='boxed', 'title' =
"My latest plot");

>

Notice that the title option in the last derivativeplot call replaces the default title specified
within the procedure. The convention followed by many Maple commands is that, when
there are duplicate option names in the calling sequence, the last value given is the one that
is applied. However, if you added the option color="Green", that would not change the default
colors of the two curves. That is because the color="DarkRed" and color="Navy" options
have been saved in the plot data structures p1 and p2 as local options, and they will not be
overridden by plot options passed to the display command.
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A 3-D Example

The next example defines a procedure that accepts a list of expressions in one variable and
displays these as "ribbons" in a 3-D plot.

The following ribbonplot procedure accepts a list of expressions in one variable, an equation
containing the variable name and range, and an optional keyword parameter, numberpoints.
The numberpoints option specifies the number of points along the ribbon and is set to 25
by default. For brevity, this procedure does not include the error-checking of the list of ex-
pressions as for the derivativeplot example.

ribbonplot := proc(f::list, r::name=range, {numberpoints::posint
:= 25})

>

local i, p, y, n;

n := nops(f);
p := Vector(n);
# Generate a 3-D plot for each expression and combine with
# plots:-display.
for i to n do

p[i] := plot3d(f[i], r, y=i-0.75..i, 'grid'=[numberpoints,
2]);

end do;
plots[display](convert(p, 'list'), _rest);

end proc:

In the procedure ribbonplot, a Vector is used to store the n plot structures generated by
the plot3d command. The grid option is passed to plot3d to specify the number of sample
points in each plot direction. As with the previous example, additional global plot options
are passed directly to the plots:-display command.

Call ribbonplot with four expressions as the input and using the default options. Then, call
it again with more sample points and constrained scaling.

ribbonplot([cos(x), cos(2*x), sin(x), sin(2*x)], x=-Pi..Pi);>

ribbonplot([cos(x), cos(2*x), sin(x), sin(2*x)], x=-Pi..Pi,
'numberpoints'=40, 'scaling'='constrained');

>

Now, change the ribbonplot procedure so that it accepts input in operator form instead of
expression form. Following the convention of the plot and plot3d command, in the modified
procedure, the second argument is the plotting range, with no plotting variable specified.
In addition, this version of ribbonplot allows a ribboncolors option that lets the user specify
the color of each ribbon. If no such option is provided, the ribbons are colored with the default
surface shading for 3-D plots.
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ribbonplot := proc(f::list, r::range, {numberpoints::posint :=
25,

>

ribboncolors::list({name,string}):=[]})
local i, p, y, n, nr;

n := nops(f);
p := Vector(n);

# Check that the number of ribbon colors matches the number
of

# procedures.
nr := nops(ribboncolors);
if nr>0 and nr<>n then

error "%1 ribbon colors needed", nr;
end if;

# Generate a 3-D plot for each procedure and combine with
# plots:-display. Include a ribbon color if provided.
for i to n do

p[i] := plot3d((u,v)->f[i](u), r, i-0.75..i,
'grid'=[numberpoints, 2],

`if`(nr=0, NULL, 'color'=ribboncolors[i]));
end do;
plots[display](convert(p, 'list'), _rest);

end proc:

This procedure contains a check to ensure that the number of ribbon colors is the same as
the number of procedures in the list f. Also, each procedure in f must be turned into a pro-
cedure with two input parameters before being passed to the plot3d command. In the call
to plot3d, the color option is passed only if the ribboncolors option had originally been
provided.

g := proc(x) if x < 0 then cos(x) else cos(2*x); end if; end proc:
ribbonplot([g, sin, cos+sin], -Pi..Pi, 'transparency'=0.5,

'ribboncolors'=["DarkBlue", "DarkRed", "DarkGreen"]);

>

12.5 Data Structures
When you generate a plot in Maple, a plot data structure is created. The data structure is in
the form of an unevaluatedPLOT,PLOT3D, or _PLOTARRAY function call. The function
arguments specify the objects to be plotted, as well as properties such as color or line
thickness.
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PLOT(POINTS([0., 0.], [1., 1.]), SYMBOL(_SOLIDBOX, 20));>

These structures are Maple expressions; therefore, they can be assigned to variables and
used in the same way as other expressions. When you enter a plotting command, the plot
data structure is generated. Then, the output displayed depends on the current interface or
plotting device requested. If you are using the standard worksheet interface and the plot
output has not been redirected to a non-default device, you will see the plots rendered as
they are shown in this guide.

In this section, you will learn about the components of the plot data structure and the tools
available to manipulate them. An understanding of the internal data structure is useful when
writing programs that create and transform plots. However, it is strongly recommended that
you use the available Maple library commands to generate plots and plot components
whenever possible, rather than building the structures directly. Because these structures are
part of the internal representation of plots, new graphics features offered in future Maple
releases may necessitate minor updates to the format.

Types of Data Structures

This section provides an overview of the major components in plot data structures. Full
details are available in the plot/structure help page. Note that some data structure names,
those introduced in Maple 10 or later versions, are prefixed with underscores.

Basic Structures
• PLOT -- 2-D plot. Contains any of the object data structures listed below, except for
MESH and ISOSURFACE, followed by any number of 2-D option structures. Can also
contain an ANIMATE structure.

• PLOT3D -- 3-D plot. Contains any of the object data structures listed below, followed
by any number of 3-D option structures. Can also contain an ANIMATE structure.

• _PLOTARRAY -- Array of plots. Contains a single Matrix, each element of which is a
PLOT or PLOT3D structure.

• ANIMATE -- Animation. Contains a sequence of lists, each corresponding to a single
frame in the animation and containing object and option structures.

Object Structures

In the following description, refers to the dimension (2 or 3) of the plot object.

A collection of points in dimensions is specified as a list of -element sublists or
as an by Matrix. Each sublist or Matrix row holds the coordinates of a single point.

• CURVES -- 2-D or 3-D curve(s). Contains one or more collections of points in list or
Matrix format as described above. Each collection of points defines a single curve.
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• POLYGONS -- 2-D or 3-D polygon(s). Contains one or more collections of points in
list or Matrix format, each defining the vertices of a single polygon.

• POINTS -- 2-D or 3-D points. Contains a collection of points in list or Matrix format.

• TEXT -- 2-D or 3-D text object. Contains a point in list format followed by the string or
expression to be displayed.

• GRID -- 3-D surface over a regular grid. Contains ranges in the and directions,
followed by a two-dimensional Array or list of lists containing the grid data.

• MESH -- 3-D surface over an arbitrary grid. Contains the , , and coordinates cor-
responding to points over an by grid. This data is contained in a three-dimensional
Array or in nested lists.

• ISOSURFACE -- 3-D volume of data, which consists of function values over a regular
grid. This results in a rendering of a 3-D surface approximating the zero surface of the
function. Contains , , , and values over an by by grid. The data
is contained in a four-dimensional Array or in nested lists.

Each object structure may contain one or more local option structures following the required
data. For example, the following structure produces two polygons, one blue and one purple.

PLOT(POLYGONS([[0., 0.], [0., 1.], [1., 1.], [1., 0.]], COLOR(RGB,
0., 0., 1.)), POLYGONS([[1., 1.], [1., 2.], [2., 2.], [2., 1.]],
COLOR(RGB, .5, 0., .5)));

>

Option Structures

There are a large number of option structures, some used for either 2-D plots or 3-D plots
only, and some that apply to both. Most of the option structures have a direct correspondence
to plot options described on the plot/options and plot3d/option help pages. (Note that the
converse is not necessarily true. Several plot options do not have associated option structures.)
Here are a few examples.

• The symbol=asterisk option is translated to SYMBOL(_ASTERISK) in the plot data
structure.

• The color="Turquoise" option is translated to COLOUR(RGB, 0.25098039, 0.87843137,
0.81568627).

• The title="Another Plot" and titlefont=["Helvetica", 30] options together translate to
TITLE("Another plot", FONT("Helvetica", 30)).

In The Plot Library (page 417), the concept of global options (options that apply to the entire
plot) and local options (ones that apply to a particular plot object) was introduced. This
concept applies in a similar way to plot structures. Local option structures, such as STYLE
or TRANSPARENCY can appear inside one or more plot object structures (CURVES,
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TEXT, etc.). Global option structures, such as TITLE, appear outside the plot object
structures and usually there is only one instance of each kind of structure.

Some options, such as COLOR, can appear as a global option as well as a local option. In
this situation, the value of the local option is applied to the plot object with which it is asso-
ciated, and it is not overridden by the global option. If a plot structure has duplicate options
at the same level (all global, or all local within the same plot object structure), such as two
CAPTION entries, then the last one appearing in the structure is the one that is applied
when the plot is rendered.

The plots:-display command can be used to merge plot data structures. Details on how option
structures are combined are given inMerging Plots (page 431). The display command can
also be used to add an option structure to an existing plot. In the following example, the
display command accepts the thickness=3 plot option and adds THICKNESS(3) to the data
structure.

p := plot(x^2-2*x+1, x=-4..4, 'color'="Niagara DarkOrchid"):>

p;>

plots:-display(p, 'thickness'=3);>

Creating Plot Structures

Complete plot structures are normally created with commands such as the ones in the plots
package. If you want to generate data structures for individual plot objects, it is recommended
that you use the commands in the plottools package rather than build them yourself.

• Frequently used commands include ones for generating the basic plot objects, such as
plottools:-curve, plottools:-point, and plottools:-polygon. Note that the plots:-surfdata
command can be used to generate 3-D surfaces. Other commands include ones for gener-
ating common geometric shapes, such as plottools:-ellipse, plottools:-sphere, and plot-
tools:-tetrahedron.

The plottools commands do not produce complete plots, so the output will consist of the
data structure in text form rather than a rendered image. To view the result of a plottools
command, you must pass it to the plots:-display command.

with(plottools):>

t := torus([1, 1, 1], 1, 2, 'color'="LightBlue",
'transparency'=.5):

>

s := sphere([5, 2, 3], 2, 'color'="LightGreen", 'transparency'=.7):>

plots:-display([t, s], 'scaling'='constrained');>

As shown in this example, options may be passed to the plottools commands. These must
be local options that are applicable to the type of structure that is produced. The color option
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applies to any plot object, while the transparency option is used only with plot objects that
are rendered as surfaces. The scaling option is a global option that applies to an entire plot;
thus, it is included in the call to display instead of the calls to torus and sphere.

Altering Plot Structures

In addition to the commands for building plot structures, the plottools package also contains
commands for altering structures. These commands, which accept 2-D or 3-D plots as input,
include ones for translation, scaling, and rotation of a plot.

p := plots:-arrow([0,1], 'color'="Orange"):>

pr := rotate(p, Pi/2):>

plots[display]([p, pr], 'scaling'='constrained', 'axes'='boxed');>

You can apply an arbitrary transformation to a 2-D or 3-D plot using the plottools:-transform

command. To do this, define a procedure f that represents a mapping from to ,
where and can take values 2 or 3. The procedure must take as input arguments
and return a list of components. If you pass f to the transform command, it returns a
procedure that takes a 2-D or 3-D plot data structure as its argument and returns a transformed
plot.

p := plots:-contourplot(2*x^2+y^2, x=-3..3, y=-3..3, 'filled',
'coloring'=["Purple", "Teal"]):

>

f := (x, y)->[x, y, 0]:>

tf := transform(f):>

plots:-display(tf(p), 'axes'='boxed', 'view'=['default', 'default',
-2..2], 'scaling'='constrained');

>

12.6 Customizing Plots
In this section, you will look at different ways of customizing plots by providing options
to the Maple plotting commands. The complete list of options is available in the plot/options
and plot3d/option help pages. Here, a few of the more commonly used ones are described.

In the descriptions in this section, it is assumed that you are using the plot and plot3d com-
mands. However, many other plotting commands in Maple accept these options as well.

Controlling the Sampling

The commands for plotting curves and surfaces generate points by sampling the function
to be plotted over the specified range or ranges. Several options are available to control how
the sampling is done. All these options must be provided when the curve or surface is first
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created. They cannot be used with the plots:-display command or with the plottools com-
mands that alter existing plot structures.

Number of Points

The numpoints option sets the minimum number of sampling points used by the plot and
plot3d commands. Because the plot command uses an adaptive plotting scheme, it usually
generates more points than this number. The plot3d command does not use an adaptive
scheme and generates a number of points close to the specified numpoints value.

The grid option is an alternative way of specifying the number of sample points in 3-D
plots. This option takes a list of two positive integers that specify the dimensions of the
rectangular grid over which the points are generated.

p1 := plot3d(.5*sin(x+y), x = -Pi .. Pi, y = -Pi .. Pi, grid =
[10, 10]):

>

p2 := plot3d(.5*sin(x+y)+1, x = -Pi .. Pi, y = -Pi .. Pi):>

p3 := plot3d(.5*sin(x+y)+2, x = -Pi .. Pi, y = -Pi .. Pi, grid=[40,
40]):

>

plots:-display([p1, p2, p3]);>

Adaptive Plotting

In 2-D plotting, the numpoints value is used to set the initial sample points. When the ad-
aptive option value is set to true (the default value), the intervals defined by the initial
sample points are further subdivided in an attempt to get a better representation of the
function. The attempts at subdivision are based on the current sample values, and intervals
are subdivided a maximum of six times. The adaptive option can also take a positive integer
value that controls the maximum times intervals are subdivided.

If the adaptive option is set to false, the number of points generated is the same as the
numpoints value (or the default value, if it is not provided).

The sample option allows you to provide a set of points at which the function is to be
sampled. If adaptive plotting is allowed, the final set of sample points includes those in the
provided list but normally consists of many more. To use exactly the list of points given by
the sample option, specify adaptive=false.

plot(x^2, x=0..4, 'adaptive'='false', 'sample'=[seq(0.1*i,
i=0..40)], style=point);

>

The adaptive and sample options are not available for 3-D plotting.
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Discontinuities

If a function with a discontinuity is being plotted, then evaluation at the point of discontinuity
will lead to an undefined value, which results in a gap in the plotted curve or surface. It is
more likely that the function is evaluated at points very close to the discontinuity, and this
can lead to a distorted view of the plot when the values are extremely large or small and an
inappropriate connecting of the points over the discontinuity.

In the 2-D case, the discont option can be used with the plot command when you suspect
a discontinuity. The plot command uses the discont and fdiscont commands to detect dis-
continuities and divides the plotting range into subranges over which the plot is continuous.
In the following example, the plot on the left contains extraneous vertical lines. These are
avoided in the right-hand-side plot generated with the discont option.

plots:-display(Array([plot(tan(x), x=-Pi..Pi, y=-4..4),
plot(tan(x), x=-Pi..Pi, y=-4..4, 'discont'=true)]));

>

Usually, removable discontinuities are ignored. However, you can use the showremovable
suboption to draw a circle on the plot to mark the point of discontinuity. Another suboption
is usefdiscont, which controls how the fdiscont command is used to find discontinuities
numerically. For more information about all the suboptions available for the discont option,
refer to the plot/discont help page.

Colors

The color option is used to specify the color of plot objects in 2-D and 3-D plots, and its
value can take several forms. A few of these are described in this section. For more details,
refer to the plot/color help page. Default colors are chosen by Maple when none are specified.

Specifying a Single Color

The easiest way to apply a color to a plot object is to provide the name of a color known to
the Maple plotting commands. The list of all such color names and their associated RGB
values is available on the plot/colornames help page. These names correspond to commonly
used HTML color names.

plot3d(binomial, 0..5, 0..5, 'color'="Niagara GreenishBlue");>

Alternatively, a plot color structure can be used as the value for the color option. This takes
one of the following forms: COLOR(RGB, v1, v2, v3), COLOR(HSV, v1, v2, v3), or
COLOR(HUE, v1). More information about the COLOR structure is available in the
plot/structure help page.
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Using Multiple Colors

The color option can be applied to individual objects that are then combined using the plots:-
display command. Some commands, such as plot, allow you to provide a list of objects to
be plotted as well as a list of colors to be applied in order.

plot([seq(i+sin(x), i = 1 .. 4)], x = 0 .. 4*Pi, 'color'= ["Niagara
Navy", "Niagara Burgundy", "Niagara Olive", "Niagara PaleRed"]);

>

If no colors are provided, the plot command uses a default list of colors. To see the default
list used by plot and several other 2-D plotting commands, use the plots:-setcolors command.

plots:-setcolors();>

plot([seq(i+sin(x), i = 1 .. 4)], x = 0 .. 4*Pi);>

The plots:-setcolors command also allows you to set new default colors. If there are fewer
colors than curves, the colors are repeated in order.

plots:-setcolors(["Indigo", "ForestGreen"]):>

plot([seq(i+sin(x), i = 1 .. 4)], x = 0 .. 4*Pi);>

The following command resets the colors to the original default colors.

plots:-setcolors('default'):>

The ColorTools Package

The ColorTools package contains commands for working with colors and color palettes,
as well as converting between supported color formats. For a complete list of ColorTools
commands and supported color formats, see the ColorTools help page.

Coloring Surfaces

When you plot a 3-D surface, the surface is shaded using a default shading scheme based
on the coordinates of the points that define the surface. As with 2-D plots, a single color
can be provided through the color option. Alternatively, a different shading may be specified
with the shading option.

plot3d(x^2*y, x=-1..1, y=-1..1, 'shading'='zgreyscale');>

You can obtain a customized shading parametrized by the plot variables. To do this, provide
an expression or a list of three expressions in terms of the plot variables. If a single expression
is given, it is taken to be a hue value; if a list of three expressions is given, the triplet is
taken to be RGB values.

plot3d(x^2*y, x = -Pi/2 .. Pi/2, y = -1 .. 1, color = y^2*cos(x));>

Similarly, if the input is given as procedures instead of expressions in two plotting variables,
the color can be specified by a procedure or a list of three procedures that take two input
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parameters and return a single value. More details are provided in the plot3d/colorfunc help
page.

The colorscheme option is another way of coloring either a 3-D surface or a density plot
generated by the plots:-densityplot command. This option allows you color a surface based
on a function value or to supply your own procedure implementing a color scheme.
More details are given in the plot/colorscheme help page.

plots:-densityplot(x*cos(x)+y^2, x=-5..5, y=-5..5,
colorscheme=["Green", "Violet", "NavyBlue"], style=surface);

>

Images and Backgrounds

Surfaces can be colored with an image using the image option, as described in the
plot3d/options help page.

imgfile := cat(kernelopts(mapledir),
"/data/images/rollercoaster.jpg"):

>

plot3d(sin(y)*cos(x), x=0..Pi, y=0..Pi, image=imgfile,
lightmodel=none, orientation=[0, 80, 30]);

>

You can also use an image as a background for a 2-D plot by providing the background=t
option where t is an image file or filename. The background option also allows you to use
a solid color as the plot background. See the plot/options help page for more information.

plot(sin(x), color="Orange", background="DarkBlue", thickness=3,
axis=[color="LightGrey"]);

>

Size and View

The size option, for 2-D plots only, allows you to specify the size of the plot window. The
size is usually specified in numbers of pixels but an aspect ratio or fraction of the worksheet
width may be provided. In the following example, the width is specified as 300 pixels and
the height as 1.5 times the width.

plot(x^2, x = 0 .. 2, size = [300, 1.5]);>

The view option determines the extent of the axes in the rendered plot. In the next example,
the plot data structure produced by the plot command contains all the points generated from
the given range, -2..4. However, the view is restricted to the portion of the plot in the box
defined by values in the range -1..3 and values in the range -3..0.

plot(-x^2+2*x-1, x=-2..4, 'axes'='boxed', 'thickness'=3,
'view'=[-1..3,-3..0]);

>

In the next example, the specified -axis view is much larger than the range. Since the
computed points are based on the range , the displayed curve is only shown for
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this range. To generate the curve for the entire range from -5 to 7, you must re-execute
the plot with x=-5..7 as the second argument.

plot(-x^2+2*x-1, x=-2..4, axes=boxed, thickness=3, view=[-5..7,
-10..2]);

>

In certain cases, the plotting command automatically sets the view option based on the
provided ranges. Otherwise, the default view is determined by the minimum and maximum
values of the data points generated.

smartview option

The plot command generates data based on the range provided by the user or on a default
range, if the user does not provide range data. When the smartview=true option is provided,
the view is restricted to the most important regions of the plot.

To prevent such a restriction use the smartview=false option.

For example:

plot(1/(x-1));>

plot(1/(x-1),smartview=false);>

Typesetting

Typeset text and mathematics can appear anywhere in a 2-D or 3-D plot where text is al-
lowed. This includes text provided by the plots:-textplot command and the following options:
annotation, caption, labels, legend, tickmarks, and title.

You can provide arbitrary expressions to the textplot command or as values for the options
to the command. These expressions are displayed on the plot as typeset output whenever
possible. Strings are displayed as plain text without the quotation marks, but names such
as x, y, and Pi are typeset. To concatenate several expressions, wrap them inside a typeset
structure.

plot(x^2/(x+5), x=1..5, 'caption'='typeset'("A plot of ",
x^2/(x+5), "."));

>

The plot/typesetting help page provides more details about using typeset mathematics in
plots. It includes tips on using 2-D math input to generate typeset expressions that are not
easily expressed in 1-D math input. These expressions can then be made into atomic variables
through the context menu and then converted to 1-D math to be used programmatically.
For more information about 1-D and 2-D math input modes, see 2-D Math (page 392).
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Axes and Gridlines

Several options are available for customizing the look of axes and gridlines, including:

• axes and axesfont for specifying the style of axes and the font for tickmark labels

• labels and labelfont for adding labels to axes and specifying the font for the labels

• gridlines for adding gridlines to 2-D plots.

• tickmarks for controlling the number of tickmarks or for specifying custom tickmarks
and labels

plots:-implicitplot([x^2-y^2 = 1, y = exp(x)], x = -Pi .. Pi, y
= -Pi .. Pi, 'color' = ["Blue", "DarkGreen"], 'axes' = 'boxed',
'tickmarks' = [3, 3], 'labelfont' = ["Times", 16]);

>

You can obtain greater control over the look of each axis by using the axis or axis[dir] option
and providing a list of suboptions. To apply suboptions to one axis, use the indexed axis[dir]
option, where the direction dir is 1, 2, or 3, with 3 applicable to 3-D plots only. To apply
the suboptions to all axes, use the axis option without the index.

The suboptions include gridlines and tickmarks options, which are similar to the regular
options of these names but offer more flexibility. Other suboptions are color (to change the
color of an axis), location (to move an axis to the lowest or highest value of the view range
or to the origin), and mode. This last suboption allows you to use logarithmic scaling for
an axis. (Note that you can also create log plots with the plots:-logplot, plots:-semilogplot,
and plots:-loglogplot commands.)

plot3d(x*y, x = 1 .. 10, y = 1 .. 10, 'axes' = 'normal', 'axis'[3]
= ['mode' = 'log', 'color' = "Crimson"]);

>

Coordinate Systems

Plots are normally plotted in the Cartesian coordinate system, but you can use the coords
option to plot in a different system. The 2-D and 3-D coordinate systems recognized by
Maple and the transformations that they represent are listed in the coords help page.

plot3d(y, x=-Pi..Pi, y=0..2*Pi, 'coords'='cylindrical');>

The coords option must be used at the time the plot is generated. However, the plots:-
changecoords command can be used to transform a plot structure that has already been
created to one that uses a different coordinate system.

When working with alternate coordinate systems, two useful commands are plots:-coordplot
and plots:-coordplot3d, which provide graphical representations of coordinate systems using
lines or surfaces of constant value.
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plots:-coordplot('rose', 'color'=["Blue", "Magenta"]);>

Because the polar coordinate system is commonly used, Maple has a plots:-polarplot com-
mand for plotting in this system. Polar axes are displayed by default, and special options
are available for customizing the look of these axes. In particular, the coordinateview option
can be used to restrict the view in the polar coordinate system.

plots:-polarplot([[t, t, t = -Pi .. Pi], [2*cos(t), sin(t), t =
-Pi .. Pi]], 'color' = ["DarkRed", "Brown"], 'axis'['angular'] =
['color' = "Navy"], 'coordinateview'=[0..4, 0..Pi]);

>

The style of the coordinate axes (either polar or cartesian) can be changed with the axisco-
ordinates option. This option is available for 2-D plots in general and is not restricted to
the polarplot command.

plot([s*sin(s), s*cos(s), s = 0 .. 4*Pi], 'axiscoordinates' =
'polar');

>

Setting Options

The section Colors (page 452) describes the use of the plots:-setcolors commands to set the
default curve colors for 2-D plots. More general commands for setting options for all 2-D
and 3-D plotting commands are plots:-setoptions and plots:-setoptions3d.

The plots:-setoptions command allows you to specify options that are applied to all 2-D
plots created in the same Maple session. The plots:-setoptions3d command performs a
similar function for 3-D plots. These settings are recognized by the plot, plot3d, and plots:-
display commands, as well as a number of other plotting commands in Maple.

In the following example, the default symbol for point plots is set to solidcircle with a
symbol size of 20.

plots:-setoptions('symbol'='solidcircle','symbolsize'=20);>

plots:-pointplot([seq([i, i^2], i=0..10)]);>

The default value is overridden in the following example, which provides the symbol option
explicitly in a command.

plots:-pointplot([seq([i, i^2], i=0..10)], 'symbol'='box');>

12.7 Animations
Building an Animation with plots:-display

The plots:-display command can be used to build an animation. The calling sequence is
plots:-display(L, insequence=true)
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where L is a list of plot structures, all 2-D or all 3-D. An animation will be created in which
the plots in L appear in sequence, one in each frame.

for i to 10 do
plotframe[i] := plot(0.75*x^i, x=0..1):

>

end do:
plots:-display([seq(plotframe[i], i=1..10)], insequence=true,
scaling=constrained);

The plots:-animate command

The plots:-animate command can be used to create an animation from a single command
with one varying parameter. Any Maple plotting command that produces a 2-D or 3-D plot,
including ones in packages not primarily intended for plotting, can be used.

The following example shows how to create an animation with the plots:-spacecurve com-
mand. The first argument to animate is the procedure name. The second argument is the
list of arguments to be passed the the given procedure. This list contains a parameter whose
range, over which the animation will vary, is given in the final argument to animate.

plots:-animate(plots:-spacecurve, [[cos(t), sin(t), (2+sin(a))*t],
t=0..20, 'thickness'=5, 'numpoints'=100, 'color'="Black"],
a=0..2*Pi);

>

You can animate a custom procedure instead of a Maple library command.

p := proc (s, t) plots:-display([plottools:-disk([s*cos(s),
s*sin(s)], 1, 'color' = "Orange"), plottools:-disk([t*cos(t),

>

t*sin(t)], 2, 'color' = "Blue")], 'scaling' = 'constrained') end
proc:

plots:-animate(p, [a, a+3*Pi], a=0..4*Pi);>

3-D Animations with the viewpoint Option

An animation can be generated from any static 3-D plot with the viewpoint option. This
option allows you to create the animation by varying the viewpoint through the plot, as if
a camera were flying through the space. The position, direction, and orientation of the
camera can be varied.

There are several ways to create the animation, which are all described on the
plot3d/viewpoint help page. The simplest way is to use one of the standard viewpoint paths,
such as circleleft.

plots:-polyhedraplot([0, 0, 0], 'polytype'='OctagonalPrism',
'scaling'='constrained', 'viewpoint'='circleleft',
'lightmodel'='light3', 'glossiness'=1);

>
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Another way is to provide a parametrically defined path.

plot3d(1, x = 0..2*Pi, y = 0..Pi, 'coords'='spherical',
'viewpoint'=['path'=[[50*t, 80*cos(t), 100*sin(t)], t=-3*Pi..Pi]]);

>

Other Animation Commands

There are a number of other commands in Maple for creating animations, such as plots:-
animatecurve (for visualizing the drawing of a curve) and ones for specific applications
such as those in the Student package.

Displaying an Animation as an Array of Plots

Animations, like other plots, can be combined using the plots:-display command and put
into arrays of plots. You can display an entire animation, frame by frame, in a table by
passing it directly to the plots:-display command.

anim := plots:-animatecurve([sin(t), cos(t), t=0..2*Pi],
'thickness'=3, 'color'="Indigo", 'frames'=9):

>

plots:-display(anim, 'view'=[-1..1, -1..1],
'scaling'='constrained');

>

If you specify the insequence option to plots:-display, then it is displayed as a regular an-
imation.

plots:-display(anim, 'view'=[-1..1, -1..1],
'scaling'='constrained', 'insequence'=true);

>

12.8 Miscellaneous Topics
Efficiency in Plotting

The Floating-Point Environment

The plotting commands attempt to evaluate the input expressions or procedures using the
floating-point hardware of the underlying system whenever possible. This is done through
calls to the evalhf command. If the environment variable Digits is greater than the value of
evalhf(Digits), or if an initial attempt using evalhf fails, then the slower evalf command is
used for numerical evaluation. For an introduction to the evalhf and evalf commands, see
Maple Commands for Numerical Computing (page 295).

To maximize efficiency, expressions and procedures passed to plotting commands should
be written so that they can be evaluated by evalhf if possible. For more information on the
functions and constructs supported by evalhf, refer to the evalhf/procedure and evalhf/fcnlist
help pages.
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Lists and rtables

Plotting large datasets of points is much more efficient when you use rtables rather than
lists. For instance, for efficiency, when using the plots:-pointplot and plots:-pointplot3d
commands, provide the input as a Matrix of datatype float[8]. If your data is in an external
file, it can be imported directly into a Matrix with the ImportMatrix command.

It is recommended that you build plot structures by using the commands in the plotting
library. However, if you want to build the plot structures directly, similar guidelines apply.
Most plot data structures (described in Data Structures (page 446)) allow the data to be
stored in either a list or an rtable. rtables should be used for those structures that support
them, and they should be created with the datatype=float[8] and order=C_order options.

Interfaces and Devices

The Maple standard worksheet interface provides all of the functionality for plotting described
in this chapter. If you are using another interface, then some of the plotting features will
not be available. For more details about the differences, refer to the plot/interface help page.

With any of these interfaces, you can redirect plotting output to an alternative device. The
devices available are listed in the plot/device help page and include common graphics
formats such as JPEG and PostScript®.

Plot output is controlled by a number of interface variables such as plotdevice (the name
of the plotting device) and plotoutput (the name of an output file). These are described in
the interface help page. The plotsetup command provides a simpler way to set up these in-
terface variables, without having to use the interface command directly.

For example, the following command specifies that all subsequent plot output be in PostScript
format and be saved in a file called plot.ps. Furthermore, the PostScript driver will use a
portrait orientation with no border. The plotsetup(default) command restores the default
output options.

plotsetup('ps', 'plotoutput'="plot.ps", 'plotoptions' =
"portrait,noborder");

>

plotsetup('default');>

12.9 Avoiding Common Problems
Mixing Expression and Operator Forms

If the first argument to a plotting command is an expression in the plotting variable, these
same plotting variables must appear in the range arguments. A common mistake is to omit
the plotting variable in the ranges or to use a different variable name accidentally. It is also
a mistake to provide a procedure as the first argument but then to use variable names in the
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subsequent range arguments. The first example below generates an error, while the next
one produces an empty plot with a warning that the plotting function could not be evaluated
to numeric values.

plot(sin, x=0..Pi);>

plot(sin(x), 0..Pi);>

Another common mistake is to use the expression form when you mean to provide an oper-
ator. A typical example is the following:

p := proc(x) if type(x, 'positive') then sqrt(x) else 0 end if;
end proc;

>

The correct way to plot this procedure over the range -1 to 1 is the use operator form.

plot(p, -1..1, 'axes'='boxed');>

If you attempt to use expression form, then p(x) is evaluated immediately, the value 0 is
passed to the plot command as the first argument, and the resulting plot is a horizontal line.

plot(p(x), x=-1..1, 'axes'='boxed');>

Generating Non-numeric Data

Most of the Maple plotting commands are meant to work with real-valued functions, though
specialized commands such as plots[complexplot] are available for plotting complex-valued
functions. Generally, when evaluation of the input expression or procedure results in a
complex value, the value is replaced by an undefined value. Many plotting commands check
for numbers with very small imaginary parts and will convert these numbers to real numbers,
with the criteria for dropping an imaginary part depending on the Digits environment variable
and on its relative size compared to the real part. This procedure helps to avoid problems
caused by round-off errors during the computation. However, it is advisable to ensure that
the input expression or procedure always evaluates to a numeric value.

In the first example below, the ragged edge is caused by the fact that some of the values are
undefined. The second example, which has the range of t going from 0 to s instead of 0 to
1, produces a more accurate plot.

plot3d(sqrt(s^2-t^2), s=0..1, t=0..1);>

plot3d(sqrt(s^2-t^2), s=0..1, t=0..s);>

Non-numeric data can also be produced as the result of mistyping a variable name. In the
example below, the second argument mistakenly contains the variable z instead of x. Con-
sequently, when a numeric value in the range 0..Pi is substituted for the variable z in the
expression sin(x), the result remains the algebraic expression sin(x), which is non-numeric.
This leads to a warning from Maple and an empty plot.
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plot(sin(x), z=0..Pi);>
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13 Programming Interactive Elements
The Maple standard interface provides several tools for building interactive mathematical
content. It includes a set of embedded components, which are configurable graphical controls,
buttons, meters, and other interactive components that you can insert in a Maple document
to analyze, manipulate, and visualize equations and Maple commands. For example, several
task templates in Maple use embedded components to demonstrate mathematical concepts.

The Maple library also includes a package calledMaplets for building custom user interfaces
to allow users to perform analysis tasks related to your mathematics. Several Maple com-
mands, such as the tutors in the Student package, use Maplets that allow users to perform
various tasks.

13.1 In This Chapter
• Programming embedded components

• Programming Maplets

13.2 Programming Embedded Components
In the Maple standard interface, embedded components are available in the Components
palette. These components include boxes, lists, gauges, and dials.

Adding Embedded Components to a Document

When you click an icon in theComponents palette, the corresponding embedded component
is inserted in your document at the current cursor location. For example, you can insert a
button within a paragraph, or you can include a series of plot components, sliders,
and check boxes that function together.

You can use a table to lay out the components in your document. To insert a table, from the
Insert menu, select Table. You can then insert buttons, plots, gauges, math, text, and so
on in each table cell.
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Editing Component Properties

Embedded components can be programmed to accomplish specific tasks when mouse actions
are performed. For example, button components and sliders can be programmed to display
information when they are clicked or dragged, and a plot component can be programmed
to display points when it is clicked. To program an embedded component to perform a task,
you must edit the properties of the embedded component and, in most cases, provide the
code needed to accomplish the task.

For example, if you want to provide code for a button component, you would right-click
(Control-click for Macintosh) the button component that you inserted in your document
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and select Edit Click Action to display a window in which you can enter the code (see
Figure 13.1). By default, this window contains sample code that you can start with.

Figure 13.1: Code Region for an Embedded Component

Each embedded component has different properties that you can edit. For more information
about the properties for a specific component, refer to the EmbeddedComponents help page
and browse to the page of the component that you want to use.

Tip: If you are working with multiple components in a document, you may find it easier to
include the code for all of the component actions in one area, for example, the startup code
region of your document. For more information, see the worksheet,documenting,startupcode
help page.

Example: Creating a Tic-Tac-Toe Game

In the following example, a tic-tac-toe game will be created using embedded components
in Maple. This example contains nine list boxes that are organized in a 3 by 3 table.
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It is possible to associate code with each of the list boxes individually. However, if you
want to change this code in the future, you would need to change it in nine places. A simpler
approach is to write a Maple module that contains the code to perform the action and call
that code from each list box.

1. Open a new Maple document.

2. To insert a table, from the Insert menu, select Table...

3. In the Rows and Columns fields, enter 3, and click OK.

4. Place your cursor in the top-left cell of your table.

5. On the left side of the Maple window, open the Components palette and click the list
box component icon.

6. In your document, right-click (Control-click for Macintosh) the list box component that
you inserted and select Component Properties...

7. Click the Edit button beside Item List.

8. In the item list, double-click ListBox, replace this value with a hyphen character (-), and
press Enter.

9. Click the Add button, double-click the new field, enter X in this field, and press Enter.
Repeat this step to add a list item for O.

10. To close the dialog box, click OK.

11. In the Name field, specify the name ListBox0 for the component.

Tip:Make sure that all of the embedded components in your document have unique names.

12. To close the Properties dialog box, click OK.

13. Right-click (Control-click for Macintosh) the list box component, then selectEdit Select
Action and replace the default code with TicTacToe:-Select( %this);, and click OK.

14. From the File menu, select Save Code.

15. From the File menu, select Close Code Editor.

16. In the document, select the list box, and then copy and paste it into all of the remaining
cells.

Note: You can copy and paste embedded components within a document or from one doc-
ument to another. A unique name is assigned to each pasted component - the number in the
component name is incremented. Other details associated with the component, for example,
properties and actions, are copied in their original form.

17. Below the table, enter the following module to perform the action.

TicTacToe := module()
uses DT = DocumentTools;

>
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export Select;

Select := proc( what )
if DT:-GetProperty( what, 'value' ) <> "-" then

DT:-SetProperty( what, 'enabled', false );
end if;

end proc;
end module;

The%this argument, which is passed as the value of thewhat parameter to theTicTacToe:-
Select procedure, is set to the name of the component that generates the action. Therefore,
the result is that if you select either the "X" or the "O" list element, the list box is dimmed
and the user's selection cannot be changed.

For more information about modules, see Programming with Modules (page 317).

Alternatively, you can save this module in a Maple library archive, which is a separate file
in which you can store Maple procedures, modules, and other data. For more information,
refer to the repository help page.

Retrieving and Updating Component Properties

The examples above use commands from the DocumentTools package to retrieve inform-
ation from components and update component properties. This package includes the following
commands.

• GetProperty: Retrieve information from a component.

• SetProperty: Update a component.

• Do: An alternate interface to both GetProperty and SetProperty. This command
can be used to retrieve and update components.

For more information about the properties that can be retrieved and set for each component,
refer to the EmbeddedComponents help page and browse to the help page of the component
that you want to use.

Using the GetProperty Command to Retrieve Properties

You can specify two arguments for theDocumentTools:-GetProperty command: the name
of the component and the property (or option) to be retrieved. Note: The value returned by
the GetProperty command will either be a number or a string. For example, the command
DocumentTools:-GetProperty( component_name, 'visible' ) returns a value of "true" or
"false". To retrieve the corresponding Boolean value, the result must be processed by the
parse command: parse( DocumentTools:-GetProperty( component_name, 'visible' ) ) returns
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a value of true or false. However, in many cases, this extra step is not necessary. For ex-
ample, the comparison

if DocumentTools:-GetProperty( component_name, 'visible' ) = "true"
then

>

will be faster than

if parse( DocumentTools:-GetProperty( component_name, 'visible'
) ) then

>

Using the SetProperty Command to Update Properties

You can specify the following arguments for theDocumentTools:-SetProperty command:
the name of the component to update, the property to update, the new value for that property,
and an optional parameter to indicate whether the update occurs immediately.

Code associated with a component can perform many different tasks. In particular, it can
update other components. For example, you can create a plot component that returns certain
values displayed in TextArea components or makes changes to other plots when the plot
component is clicked.

When code is run as a result of a mouse event that updates other components, those updates
occur after that code runs successfully. While this process is efficient, in some cases, you
might want these updates to occur immediately. In such cases, you can use the optional re-
fresh = true parameter, or simply refresh.

Using the Do Command to Retrieve and Update Component Properties

TheDocumentTools:-Do command is a convenient interface to both theDocumentTools:-
GetProperty andDocumentTools:-SetProperty commands. Components can be referenced
as variables in expressions. For example, suppose that you have a math container component,
two text area components, a button, and a plot component. You can enter a math expression
in the variable x in the math container, numbers in each of the text areas and click the button,
causing the expression to be plotted over the range specified by the numbers. Assuming the
components that you inserted in your document are named MathContainer0, TextArea0,
TextArea1, Button0, and Plot0, respectively, you can accomplish this task by using the
single command DocumentTools:-Do( %Plot0 = plot( %MathContainer0, 'x' = %TextArea0
.. %TextArea1 ) ).

Consider the following points when deciding whether to use the DocumentTools:-Do
command to retrieve or update components.

• The embedded component type determines the default property retrieved or set by the
Do command. For most components, the value property is the default property that is
retrieved or set. This means that theDo command must query the GUI to determine which
information to retrieve. The GetProperty and SetProperty commands avoid this step
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by requiring you to specify which property to retrieve. However, if you are working with
a small number of components, this extra step will usually be insignificant.

• The names of components appearing in the first argument to Do must be literal names
prefixed by%. That is, you cannot use theDo command to access or update a component
with a name that is determined programmatically.

13.3 Programming Maplets
You can use Maplet technology to build custom interfaces for any Maple functionality.
Maplets can be run in the Maple standard interface. In Windows, you can also run Maplets
in the Maplet Viewer, which is an application that you can run outside of the Maple standard
interface. For more information about the Maplet Viewer, refer to the MapletViewer help
page.

Maplets support standard UI elements including buttons, drop lists, text fields, and sliders.
Some of the available UI elements are specific to Maple, for example, math fields and plot
regions. For more information about these elements, refer to the Maplets,Elements help
page.

Before creating a Maplet, familiarize yourself with the features of the various layout
managers, which define how the elements of your Maplets are positioned and laid out.

This section describes basic information related to laying out elements in Maplets. For ad-
vanced information, refer to the examples,AdvancedMapletsLayout worksheet.

Layout Managers

A layout manager defines the locations and positions of the UI elements in a Maplet window.
Three layout managers are available.

• Box layout (BoxLayout): this layout manager can be used to create boxes that contain
elements positioned horizontally or vertically relative to other elements.

• Grid layout (GridLayout): this layout manager positions elements in a specific cells in
a grid, similar to a spreadsheet.

• Border layout (BorderLayout): this layout manager allows you to lay out elements in
specific regions, according to compass directions.

For simple Maplets, using a layout manager is often sufficient; however, for more complex
Maplets, you may need to use multiple layout managers or nest layout managers one inside
the other.

Note: For clarity, the full command for each layout control is used in this chapter.

The three layout managers are available in the Maplets,Elements subpackage of theMaplets
package. In this chapter, assume that the following command has been run.
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with(Maplets:-Elements):>

This command allows the Maplets:-Elements package commands to be used without pre-
fixing them with Maplets:-Elements:-....

Box Layout

The box layout is the most commonly used layout manager. It is a nested construct of
containers where elements can be displayed either horizontally or vertically in the Maplet
window. For example,

mlet := Maplet(BoxLayout(border=true, caption="outer",
BoxColumn(border=true, caption="inner1",

>

Button("OK1", onclick=Shutdown()),
Button("OK2", onclick=Shutdown())
),

BoxColumn(border=true, caption="inner2",
TextBox("Misc. Text", height=5)
)

)):
Maplets:-Display(mlet);

As shown in the example above, you can use a BoxColumn element to specify a column
in a box layout. You can also use a BoxRow element to specify a row in a box layout.

For detailed information about box layouts, refer to the Maplets,Elements,BoxLayout help
page.

Controlling the Spacing in a Box Layout

In a box layout, box row, or box column you can use the inset option to specify the amount
of spacing between the border of the box element and its contents.

In a row or column of a box layout, you can also use the spacing option to specify the
amount of spacing that separates individual elements in that row or column.

The following examples demonstrate the use of these options.(Note: In both cases, the
outer BoxLayout element has the inset option set to 0 so that the formatting of the Box-
Column element can be displayed more easily):

Example 1: Using the inset Option

In this example, the spacing option is set to 0, so the buttons are positioned close to each
other in the generated Maplet window. The buttons are positioned in the center of the Maplet
because the inset value displays space between the buttons and the border of the box element.
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mlet := Maplet(BoxLayout(inset=0,
BoxColumn(inset=10, spacing=0,

>

Button("OK1", onclick=Shutdown()),
Button("OK2", onclick=Shutdown())
)

)):
Maplets:-Display(mlet);

Example 2: Using the spacing Option

In this example, the spacing option displays space between the buttons in the generated
Maplet window. Also, since the inset option is set to 0, no spacing is displayed between
the border of the box element and the buttons. As a result, the buttons are closely aligned
with the top and bottom borders of the box element.

mlet := Maplet(BoxLayout(inset=0,
BoxColumn(inset=0, spacing=10,

>

Button("OK1", onclick=Shutdown()),
Button("OK2", onclick=Shutdown())
)

)):
Maplets:-Display(mlet);

Displaying Elements Vertically and Horizontally in a Box Layout

The vertical option can be specified for box layouts only. When the vertical option is set
to false, elements are displayed horizontally in the Maplet window; when the vertical option
is set to true, elements are displayed vertically. For more control over the spacing of the
elements in a box layout, use the box layout with either a BoxRow element (when the ver-
tical option is set to false) or a BoxColumn element (when the vertical option is set to
true).

The following example shows two buttons that are positioned vertically and closely spaced.

mlet := Maplet(BoxLayout(inset=0, vertical=true,
Button("OK1", onclick=Shutdown()),

>

Button("OK2", onclick=Shutdown())
)):

Maplets:-Display(mlet);

In the following example, the spacing has been removed by nesting the buttons in a Box-
Column element.

mlet := Maplet(BoxLayout(inset=0,
BoxColumn(inset=0, spacing=0,

>

Button("OK1", onclick=Shutdown()),
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Button("OK2", onclick=Shutdown())
)

)):
Maplets:-Display(mlet);

Grid Layout

In a grid layout, all of the elements are displayed in a rectangular grid.

Each grid layout must contain one or more GridRow elements which must, in turn, contain
one or more GridCell elements.

Note: Each row or column of the grid is sized according to the maximum height or width
of all the elements in that row or column. By default, no spacing is displayed between the
largest elements in a grid layout.

The following is a simple example of a grid layout.

mlet := Maplet(GridLayout(border=true, caption="grid",
GridRow(

>

GridCell(Label("Button1:")),
GridCell(Button("OK1", onclick=Shutdown()))
),

GridRow(
GridCell(Label("Button2:")),
GridCell(Button("OK2", onclick=Shutdown()))
)

)):
Maplets:-Display(mlet);

For detailed information about grid layouts, refer to the Maplets,Elements,GridLayout help
page.

Specifying the Width and Height of Grid Cells

You can specify the width and height of a GridCell element. The GridCell element must
be added in the top-left cell in the grid. For example, if you want to create aGridCell element
with a height of two grid cells, the element must appear in the first GridRow that contains
it, and the GridRow element that follows it will be adjusted to allow it to fit.

mlet := Maplet(GridLayout(
GridRow(

>

GridCell(height=2,
Button("2h", width=52, height=2*25,

onclick=Shutdown())
),
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GridCell(
Button("1a", width=52, height=25,

onclick=Shutdown())
),

GridCell(
Button("1b", width=52, height=25,

onclick=Shutdown())
)

),
GridRow(

# This is where the button above extends into
GridCell(

Button("1c", width=52, height=25,
onclick=Shutdown())

),
GridCell(

Button("1d", width=52, height=25,
onclick=Shutdown())

)
),

GridRow(
GridCell(

Button("1e", width=52, height=25,
onclick=Shutdown())

),
GridCell(width=2,

Button("2w", width=2*52, height=25,
onclick=Shutdown())

)
)

)):
Maplets:-Display(mlet);

In the following example, the full alignment option is used, so it is not necessary to specify
a size for each button.

mlet := Maplet(GridLayout(halign=full, valign=full,
GridRow(

>

GridCell(height=2,
Button("2h", onclick=Shutdown())
),

GridCell(
Button("1a", onclick=Shutdown())
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),
GridCell(

Button("1b", onclick=Shutdown())
)

),
GridRow(

# This is where the button above extends into
GridCell(

Button("1c", onclick=Shutdown())
),

GridCell(
Button("1d", onclick=Shutdown())
)

),
GridRow(

GridCell(
Button("1e", onclick=Shutdown())
),

GridCell(width=2,
Button("2w", onclick=Shutdown())
)

)
)):

Maplets:-Display(mlet);

Border Layout

Unlike the other layout managers, the border layout is a container element for other layout
managers, though, it can be used for simple Maplets.

Five positions in the layout can be filled: north, south, west, east, and center, each of
which has its own layout rules. See Figure 13.2.
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Figure 13.2: Border Layout Diagram

In terms of resizing, north and south extend horizontally, east and west extend vertically,
and center extends in both directions.

Positioning Elements in a Border Layout

The constraint option can be used in GridCell elements to indicate where its elements
should be placed in the Maplet window. Valid options are north, south, west, east, and
center.

The following is a simple example of a border layout.

mlet := Maplet(BorderLayout(
GridCell2(constraint=north,

>

Label("This is a long title")),
GridCell2(constraint=south,

Label("This could be a status bar")),
GridCell2(constraint=east,

Button("East", onclick=Shutdown())),
GridCell2(constraint=west,

Button("West", onclick=Shutdown())),
GridCell2(constraint=center,

Button("Center", onclick=Shutdown()))
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)):
Maplets:-Display(mlet);

Not all constraint options need to be specified; however, including more than one of the
same constraint returns an error.

Example:

mlet := Maplet(BorderLayout(border=true, caption="borderlayout",
GridCell2(constraint=north,

>

Label("This is a long title")),
GridCell2(constraint=south,

Label("This could be a status bar")),
GridCell2(constraint=east,

Button("East", onclick=Shutdown())),
GridCell2(constraint=west,

Button("West", onclick=Shutdown())),
GridCell2(constraint=center,

Button("Center", onclick=Shutdown()))
)):

Maplets:-Display(mlet);

For detailed information about border layouts, refer to the Maplets,Elements,BorderLayout
help page.

Aligning Elements in a Border Layout

In a BorderLayout the north, south, and center cells can extend horizontally, and the east,
west, and center cells can extend vertically. As a result, the elements in the border layout
can be stretched. Unlike the other layout managers, the elements are stretched to fit within
the layout, so alignment must occur in the elements themselves. Note that horizontal align-
ment options (halign) can only be specified for the elements in the north, south, and center
GridCell2 elements, and vertical alignment options (valign) can only be specified for the
elements in the east, west, and center GridCell2 elements.

Examples

The following example is the same as the example above, except that the halign option has
been specified for the north and south labels (note the alignment is specified in the Label
elements):

mlet := Maplet(BorderLayout(
GridCell2(constraint=north,

>

Label("This is a long title", halign=left)),
GridCell2(constraint=south,

Label("This could be a status bar", halign=left)),
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GridCell2(constraint=east,
Button("East", onclick=Shutdown())),

GridCell2(constraint=west,
Button("West", onclick=Shutdown())),

GridCell2(constraint=center,
Button("Center", onclick=Shutdown()))

)):
Maplets:-Display(mlet);

In the following example, the element in the center cell stretches to fit a larger layout.

mlet := Maplet(BorderLayout(
GridCell2(constraint=north,

>

Label("This is a very long title which causes "
"the center to stretch")

),
GridCell2(constraint=east, Button("East", onclick=Shutdown())),

GridCell2(constraint=west, Button("West", onclick=Shutdown())),

GridCell2(constraint=center, Button("Center",
onclick=Shutdown()))

)):
Maplets:-Display(mlet);
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14 Advanced Connectivity
This chapter describes how to connect Maple to other applications. Maple can be connected
as the main interface (for example, to a database), as a hidden engine (for example, as part
of a Microsoft® Excel® plug-in), or side-by-side with another application (for example, a
CAD application). You can also use Maple to generate code.

14.1 In This Chapter
• Connecting to the Maple engine

• Embedding external libraries in Maple

• Connecting Maple to another program

• Code generation

Connecting to the Maple Engine

There are several ways to use the Maple computation engine in other applications. For ex-
ample, you can create a financial application that runs calculations using the MapleNet web
service API; create a plug-in for Microsoft Excel in both Visual Basic and C++ to perform
Maple computations in a spreadsheet; and create an engineering process to generate and
batch process scripts using the Maple command-line interface. These are examples of real
situations where you can use Maple as a calculation engine embedded in an external interface.

For more information, see MapleNet (page 480), OpenMaple (page 482), and The Maple
Command-line Interface (page 493).

Using External Libraries in Maple

Most dynamic link-libraries (.dlls) that contain mathematical functions written in another
programming language can be linked directly in Maple. Using the commands in these lib-
raries usually requires you to translate the Maple data into a format that the external library
can interpret. Maple provides an extensive API for data conversions, evaluation, and process
control. You can, therefore, use a custom library of functions in Maple as if it were a regular
Maple package. You can also use the Maple external API to connect Maple to a hardware
device for data acquisition, link with an open source suite of utilities, or to avoid rewriting
legacy code.

For more information, see External Calling: Using Compiled Code in Maple (page 495).

Connecting Maple to Another Program

You can set up Maple to communicate with another program by using the Maple external
API. For example, by using the CAD package, you can set up Maple to communicate with
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CAD applications. Other methods are available, such as setting up a communication channel
to the other program using the Sockets package.

For more information, seeCADConnectivity (page 520),Maple Plug-in for Excel (page 521),
Connecting MATLAB® and Maple (page 522), and Accessing Data over a Network with
TCP/IP Sockets (page 507).

Code Generation

The Maple programming language and the worksheet environment are ideal for creating
prototypes. They are also ideal for error-free algebraic manipulations and long calculations.
When you create a prototype that includes various formulas, you can easily write that program
in the native language that is used by your application. The generated code can then be
compiled and embedded directly in your application.

The CodeGeneration package provides commands for translating Maple code into other
programming languages such as C, Visual C#, Fortran, Java, MATLAB®, and Visual Basic.
The resulting code can be compiled and used in applications other than Maple.

For more information, see Code Generation (page 508).

14.2 MapleNet
You can use MapleNet to publish your Maple applications on the web. Two key features
are provided by MapleNet: in-browser interfaces and the ability to connect to a Maple
computation engine over the Internet or an intranet.

MapleNet is a Maple add-on product. For more information, visit
http://www.maplesoft.com/products/maplenet/index.aspx.

Computation on Demand

A web service is software on a web server that listens for requests and waits to perform a
specific job. The MapleNet web service, in particular, waits to run Maple commands.

A desktop application that has a network connection can communicate with the MapleNet
web service to perform computations. The client computer that runs the desktop application
does not require Maple, a Maple license, or specific software to communicate with the web
service.

The server-side infrastructure for Maple web services is provided by the MapleNet API.
You can build client applications to use the MapleNet web service by using tools such as
the Microsoft C# toolkit, Apache™ Axis plug-in for Eclipse, IBM® WebSphere®, and the
NetBeans IDE.
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Web services are defined by using a file containing the Web Services Description Language
(WSDL). Before creating a client application, download the definition of the MapleService
by using the WSDL file located at the following URL.

http://yourserver.com:port/maplenet/services/MapleService?wsdl

This URL points to a link on your server where MapleNet is installed. yourserver.com is
the name or IP address of your MapleNet server and port is the HTTP port on which your
server listens for requests (for example, 80 or 8080).

This URL can be used in your web services toolkit so that you can create the code to connect
to the MapleService web service.

The following language-independent APIs are the most commonly used methods in the web
service.
String result = evaluate(String expression);
String[] results = callMaple(String[] expressions);

The evaluate method accepts a string that is a valid Maple expression and returns a string
corresponding to the results generated by Maple after evaluating that expression.

The callMaple method accepts an array of strings of valid Maple expressions and returns
an equivalent number of strings corresponding to the results generated by Maple after each
expression is evaluated.

When a call to the web service is complete, the Maple kernel is released. In other words,
the state (for example, variable assignments) is not preserved.

Results are returned from the web service call as text. The text can either be a 1-D Maple
output expression or a Base64-encoded plot. Plot results take the following form.
"_Base64GIF(width,height,data)"

In this example, _Base64GIF is a literal text string, which indicates that the result is an
encoded plot. Following this string are two integers indicating the width and height of the
output plot. Finally, data is the binary plot data, which is a Base64-encoded .gif image. A
Base64 decoder must be used to translate the data into binary data that can either be rendered
by your client application or written out to form the bytes of a .gif file.

For more information and examples, refer to the MapleNet Publisher's Guide.

Embedding a Maple Application in a Web Application

Embedding a Maple application is easy: save your Maple document on a MapleNet server,
open a web browser, and point to the saved .mw file. Your worksheet is not only visible,
but also interactive if you included buttons, plots, or other embedded components in the
.mw file.
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Maplet applications are also easy to publish over the web.

Maple can also be embedded in larger web applications and used as the underlying compu-
tation engine for your application. For example, by using MapleNet functionality, you can
use Maple as the graphics engine for scientific or business plots; you can also create an
equation editor to read formula input or display formatted equations.

You can also use two other technologies to include Maple as part of your web applications:
Java applets and JavaServer Pages (JSP).

Java applets, in conjunction with the MapleNet Java API, extend the browser capabilities
beyond those provided by HTML alone. For example, the Maple equation editor is an applet
that you can use to capture input using natural math notation. Another applet allows you to
embed 3-D plots with controls for rotation, zooming, and changing properties such as con-
strained access and color shading. By using the Java API, you can create custom applets,
for example, an applet that plots points in-place where you click, and uses Maple to compute
a smooth curve that interpolates the points. To run applets, you require a Java-enabled
browser.

JSP provides an alternate technology. Unlike applets, JSP pages are resolved on the server;
the client computer only processes HTML code. Therefore, no special requirements are
needed for the browser or computer running the browser to display the JSP results.

JSP is an extension to HTML. An HTML file can be extended by adding <maple> tags.
When the web server displays one of these pages, it replaces the <maple> tags with the
result of the specified computation. The result is an embedded image, text, or any other
element that you want to include.

MapleNet comes with complete documentation and detailed examples. For more information
on the Java applet and JSP APIs, refer to the MapleNet Publisher's Guide.

14.3 OpenMaple
OpenMaple is an interface that lets you access the Maple computation engine by referencing
its dynamic-link library (.dll) file.

Note: The OpenMaple interface is available on all platforms supported by Maple. The
convention in this guide is to use the terminology related to .dll files, in place of .so or
.dylib on other systems.

You can use this interface to embed calls to Maple in other applications.

Interfaces to access the OpenMaple API are provided for use with C, C++, Java, Fortran,
C#, and Visual Basic. All of these interfaces are built on the C API, so they all reference
the primary library,maplec.dll, which is located in your Maple binary directory. This library
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can be accessed from other languages by following the protocol established in themaplec.dll
file.

Complete example programs are available in the samples/OpenMaple subdirectory of your
Maple installation. In conjunction with reading this section, you may want to try extending
one or more of those examples before creating your own programs.

Application-specific header files can be found in the extern/include subdirectory of your
Maple installation. If you are developing a Java application, you can find the jopenmaple.jar
file in the java subdirectory of your Maple installation.

Runtime Environment Prerequisites

To run your application, two paths must be set up in your local environment.

• the path to the maplec.dll file

• the path to the top-level directory in which Maple is installed

In Windows, depending on the source programming language, calls to initialize the Open-
Maple interface will locate these paths automatically so that the Maple commands will work
without additional configuration steps.

Note: If your application does not initialize, set your Windows %PATH% environment
variable to include the Maple bin.win or bin.X86_64_WINDOWS directory. To find out
which path to use, run the kernelopts(bindir) command in Maple.

In Linux and Mac OS X, the MAPLE, and LD_LIBRARY_PATH or DYLD_LIB-
RARY_PATH environment variables must be set before starting your application. To set
these environment variables, add the following lines to the start-up script of your calling
application, where $MAPLE is your Maple installation directory.
#!/bin/sh
export MAPLE="/usr/local/maple"
. $MAPLE/bin/maple -norun
myapp $*

These commands run the maple launch script to configure your environment without
starting Maple. The period (.) prefix in a Bourne shell causes the commands to be sourced,
thus, applying the settings to future sessions. Starting the application would be done via the
above script rather than calling the executable directly.

Interface Overview

Each OpenMaple application contains the following components:

• a text callback to display or hide the output generated by Maple when an expression is
evaluated
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• commands to initialize the Maple engine

• calls to API commands to compute with Maple

The examples in this section show how to run a Maple computation using the OpenMaple
API. Each example evaluates an expression and then exits. The examples in this section are
intended to help you get started using the API. For detailed examples and descriptions, refer
to the OpenMaple help page.

Text Callbacks

In each example, a text callback is defined. Output that would normally be displayed after
an expression is evaluated in a Maple session is routed through callbacks. This output in-
cludes the following:

• results from evaluated commands that are terminated with a semicolon

• output from the print command, the printf command, and other display-related commands

• userinfo and warning messages

• diagnostic output from the debugger, high settings from printlevel, and trace output

• error messages if no error callback is defined

• resource status messages if no status callback is defined

• displayed help pages

The text callback is not the only way to control output in your OpenMaple application. For
more control, individual results can be converted to strings, which can be displayed in text
boxes or directed in any way you want. When using this method of controlling output, the
text callback can be defined as a procedure that does not perform any operations (that is,
does not direct the output anywhere). Note that the Java example below uses the predefined
EngineCallBacksDefault class, which configures a method to print output using the Sys-
tem.out method. In general, if the text callback is left undefined by setting it to 0 or null,
the output is directed to the console.

Initializing the Maple Engine

You can initialize the Maple engine by calling the StartMaple function in most versions of
the API, or by creating an Engine class in the Java version of the API. In all cases, the ini-
tialization process loads themaplec.dll file and sets up the initial state so that the OpenMaple
interface can evaluate commands. Despite the name StartMaple, this is only an initialization
step; no separate Maple process is started.

The initialization process follows standard Maple start-up steps, including reading and
running initialization files, setting library paths, and setting default security options. The
startup state can be controlled by using the first parameter passed to the StartMaple function.
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This parameter is an array of strings that specify options accepted by the command-line
interface. For more information about these options, refer to the maple help page.

Calling API Commands to Compute with Maple

When the OpenMaple interface is initialized, a kernel vector handle (or engine class), can
be used to access all of the other methods in the API. The most common method lets you
parse and evaluate arbitrary Maple commands. If a command is terminated with a semicolon,
the display output is directed to your defined callbacks. This command also returns the
result as a Maple data structure. The return value can be passed to other API commands for
further analysis.

The OpenMaple interface manages Maple internal data structures and performs garbage
collection. The data structures that are returned by an API function are automatically pro-
tected from garbage collection. The Maple command unprotect:-gcmust be called to clean
the memory reserved for these tasks. The OpenMaple Java interface is the only exception
to this rule. Because the OpenMaple Java interface implements Maple structures as native
objects, it manages object references by using a weak hash map, and therefore Maple data
does not need to be unprotected.

Maple data structures are all declared as a single black box ALGEB, IntPtr, or similar type.
Methods for inspecting and manipulating these data structures are provided. The API
methods should be used, rather than dereferencing them directly in the data.

C/C++ Example

#include <stdio.h>
#include <stdlib.h>

#include "maplec.h"

/* callback used for directing result output */
static void M_DECL textCallBack( void *data, int tag, const char *output )
{

printf("%s\n",output);
}

int main( int argc, char *argv[] )
{

char err[2048]; /* command input and error string buffers */
MKernelVector kv; /* Maple kernel handle */
MCallBackVectorDesc cb = { textCallBack,

0, /* errorCallBack not used */
0, /* statusCallBack not used */
0, /* readLineCallBack not used */
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0, /* redirectCallBack not used */
0, /* streamCallBack not used */
0, /* queryInterrupt not used */
0 /* callBackCallBack not used */

};
ALGEB r; /* Maple data-structures */

/* initialize Maple */
if( (kv=StartMaple(argc,argv,&cb,NULL,NULL,err)) == NULL ) {

printf("Fatal error, %s\n",err);
return( 1 );

}

r = EvalMapleStatement(kv,"int(x,x);");

StopMaple(kv);

return( 0 );
}

This example can be entered in a file called "test.c".

Additional examples are available in the samples/OpenMaple directory of your Maple in-
stallation.

The method used to build this program depends on which compiler you are using. The fol-
lowing command is specific to the GCC compiler on a 64-bit version of Linux; it is useful
as a reference for other platforms.
gcc -I $MAPLE/extern/include test.c -L $MAPLE/bin.X86_64_LINUX -lmaplec
-lmaple -lhf -lprocessor64

In this example, $MAPLE is your Maple installation directory. Note that the C header files
can be found in the $MAPLE/extern/include directory and the library files can be found
in the $MAPLE/bin.$SYS directory. In this case,$SYS is X86_64_LINUX; check the
library path you need to specify by running the kernelopts(bindir) command in Maple.
The remaining -l options specify which libraries need to be linked. In Windows, you only
need to link to the maplec.lib library. Other platforms may require several libraries to be
linked, including libmaplec.so, libmaple.so, and libhf.so. If you do not specify a library
as required, the compiler returns a message indicating that undefined references to functions
exist, or a dependent library cannot be found.

When this example is built, a file called test.exe is created. Note: The file might be called
a.out or another name, depending on your compiler. Before this executable file can be run,
you must specify the path of the Maple dynamic libraries. For more information, see Runtime
Environment Prerequisites (page 483).
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After setting up your environment, run the binary file as you would run any other executable
file. For example, create a shortcut icon and double-click it, or enter the file name at a
command prompt.
test.exe

The following output is displayed.
1/2*x^2

C# Example
using System;
using System.Text;
using System.Runtime.InteropServices;

class MainApp {

// When evaluating an expression, Maple sends all of the displayed
// output through this function.
public static void cbText( IntPtr data, int tag, String output )
{

Console.WriteLine(output);
}

public static void Main(string[] args) {

MapleEngine.MapleCallbacks cb;
byte[] err = new byte[2048];
IntPtr kv;

// pass -A2 which sets kernelopts(assertlevel=2) just to show
// how in this example. The corresponding argc parameter
// (the first argument to StartMaple) should then be 2
// argv[0] should always be filled in with a value.
String[] argv = new String[2];
argv[0] = "maple";
argv[1] = "-A2";

// assign callbacks
cb.textCallBack = cbText;
cb.errorCallBack = null;
cb.statusCallBack = null;
cb.readlineCallBack = null;
cb.redirectCallBack = null;
cb.streamCallBack = null;
cb.queryInterrupt = null;
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cb.callbackCallBack = null;

try {
kv = MapleEngine.StartMaple(2,argv,ref

cb,IntPtr.Zero,IntPtr.Zero,err);
}
catch(DllNotFoundException e) {

Console.WriteLine(e.ToString());
return;

}
catch(EntryPointNotFoundException e) {

Console.WriteLine(e.ToString());
return;

}

// make sure we have a good kernel vector handle back
if( kv.ToInt64() == 0 ) {

// If Maple does not start properly, the "err" parameter will be
filled

// in with the reason why (usually a license error).
// Note that since we passed in a byte[] array, we need to remove
// the characters past \0 during conversion to string
Console.WriteLine("Fatal Error, could not start Maple: "

+
System.Text.Encoding.ASCII.GetString(err,0,Array.IndexOf(err,(byte)0))

);
return;

}

MapleEngine.EvalMapleStatement(kv,"int(x,x);");

MapleEngine.StopMaple(kv);
}
}

This example can be entered in a file called "test.cs".

To build this example, you can open a Microsoft .NET Framework SDK Command Prompt.
Browse to the directory that contains the test.cs file and enter the following command.
csc test.cs $MAPLE\\extern\\include\\maple.cs

$MAPLE is the directory in which Maple is installed. The maple.cs file contains the
MapleEngine class definition. and defines an interface to the maplec.dll file.
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When this example is built, a file called test.exe is created. This file can usually be run
without additional environment settings. For more information, see Runtime Environment
Prerequisites (page 483).

Run the binary file as you would run any other executable file. For example, create a
shortcut icon and double-click it, or enter the file name at a command prompt.
test.exe

The following output is displayed.
1/2*x^2

Java Example
import com.maplesoft.openmaple.*;
import com.maplesoft.externalcall.MapleException;
class test
{

public static void main( String args[] )
{

String a[];
Engine t;
int i;
a = new String[1];
a[0] = "java";
try
{

t = new Engine( a, new EngineCallBacksDefault(), null, null );
t.evaluate( "int( x,x );" );

}
catch ( MapleException e )
{

System.out.println( "An exception occurred" );
return;

}
System.out.println( "Done" );

}
}

This example can be entered in a file called test.java.

This example and others are available in the samples/OpenMaple/Java/simple subdirectory
of your Maple installation.

To build this program, enter the following at a command prompt, where $JDKBINDIR is
the directory in which your Java development tools are installed, and $MAPLE is the dir-
ectory in which Maple is installed.
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$JDKBINDIR/javac -classpath
"$MAPLE/java/externalcall.jar;$MAPLE/java/jopenmaple.jar" test.java

Note: The same command can be used to build the example in Macintosh; however, use
a colon (:) to separate the directories in the classpath instead of a semicolon.

When this example is built, a test.class file is created in the current directory. Before this
file can be run, the path of the Java OpenMaple native library must be specified for your
Java Virtual Machine. For more information, see Runtime Environment
Prerequisites (page 483). In Windows, Java OpenMaple applications also require the
%PATH% environment variable to be set.

You can use the Java Virtual Machine to run the generated class file by entering the following
command. Note that the third entry in the classpath is a period (.) indicating the current
directory.
$JDKBINDIR/java -classpath
"$MAPLE/java/externalcall.jar;$MAPLE/java/jopenmaple.jar;." test

Note: The same command can be used to build the example in Macintosh; however, use
a colon (:) to separate the directories in the classpath instead of a semicolon.

The following output is displayed.
1/2*x^2
Done

Visual Basic 6 Example

Public kv As Long
Public cb As MapleCallBack

Public Sub TextCallBack(data As Long, ByVal tag As Integer, ByVal output As
Long)

Dim OutputString As String

OutputString = MaplePointerToString(output)
MainForm.OutputText.Text = MainForm.OutputText.Text + vbCrLf +

OutputString
End Sub

Private Sub Form_Load()
Dim error As String
Dim args(0 To 1) As String

'init callbacks
cb.lpTextCallBack = GetProc(AddressOf TextCallBack)
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cb.lpErrorCallBack = 0
cb.lpStatusCallBack = 0
cb.lpReadLineCallBack = 0
cb.lpRedirectCallBack = 0
cb.lpQueryInterrupt = 0
cb.lpCallBackCallBack = 0

' start Maple
kv = StartMaple(0, args, cb, 0, error)
If kv = 0 Then

MsgBox "Error starting Maple: " + StrConv(error, vbUnicode),
vbCritical, ""

Unload Me
End

End If

dim result as Long = EvalMapleStatement(kv, "int(x,x);" )

End Sub

This example can be entered in a file called "test.bas".

Other examples are available in the samples/OpenMaple/msvb directory of your Maple
installation.

To build this example, create a new project, and add both the test.bas and $MAPLE/ex-
tern/include/maple.bas files to your project. $MAPLE is the directory in which Maple is
installed. Create a form called "MainForm" and add a text box named "OutputText" to the
form.

Build and run this example by pressing F5. When this example is built, a form that shows
a text box filled with the value 1/2*x^2 is displayed.

Visual Basic .NET Example

Friend Class MainForm
Inherits System.Windows.Forms.Form

Public kv As IntPtr
Public cb As MapleCallBack

Public Sub MyTextCallBack(ByRef data As Integer, ByVal tag As Short,
ByVal output As String)

tbOutput.Text = tbOutput.Text & vbCrLf & " (" & tag & ") " & output
End Sub

14.3 OpenMaple • 491



Public Sub MyErrorCallBack(ByRef data As Integer, ByVal Offset As Short,
ByVal output As String)

MsgBox(" at offset " & Str(Offset) & " " & output,
MsgBoxStyle.Information, "")

End Sub

Private Sub MainForm_Load(ByVal eventSender As System.Object, ByVal
eventArgs As System.EventArgs) Handles MyBase.Load

Dim args(1) As String

'init callbacks
cb.lpTextCallBack = AddressOf MyTextCallBack
cb.lpErrorCallBack = AddressOf MyErrorCallBack
cb.lpStatusCallBack = 0
cb.lpReadLineCallBack = 0
cb.lpRedirectCallBack = 0
cb.lpQueryInterrupt = 0
cb.lpCallBackCallBack = 0

' start Maple
Try

args(1) = "-A2"
kv = StartMaple(1, args, cb, 0)

Catch e As StartMapleException
MsgBox("Error starting Maple: " & e.Message, "")
Me.Close()

End Try

Dim result As IntPtr
result = EvalMapleStatement(kv, "int( x,x );" )
If result = 0 Then

tbOutput.Text = "invalid expression"
Else

tbOutput.Text = MapleToString(kv, MapleALGEB_SPrintf1(kv, "%a",
result))

End If

End Sub
End Class

This example can be entered in a file called "test.bas".

To build this example, create a new project, and add both the test.bas and $MAPLE/ex-
tern/include/maple.vb files to your project. $MAPLE is the directory in which Maple is
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installed. Create a form called "MainForm" and add a text box named "tbOutput" to the
form.

Build and run the example by pressing F5. When this example is built, a form that shows
a text box filled with the value 1/2*x^2 is displayed.

Memory Usage

Maple allocates memory from the operating system in large portions. On most platforms,
this process is performed by the C malloc function; 64KB of memory is allocated during a
Maple session. This memory is not returned to the operating system (that is, by free) until
the Maple session ends.

When Maple no longer requires a block of memory, that memory block is added to an in-
ternal list of free storage. Maple has several storage lists for different sizes of memory blocks
so that it can quickly find blocks of the required size. For example, Maple uses three-word
blocks, so it maintains a list of blocks of that size that are free. Maple allocates additional
memory from the operating system only when it cannot respond to a request using its storage
lists.

The more memory Maple is allocated by the operating system, the less it is allocated in the
future because it reuses memory. For most applications, 4MB of memory must be available
for allocation.

14.4 The Maple Command-line Interface
When considering how to use the Maple engine as part of another application, interface, or
automatic process, several options are available. One of the simplest options is to use the
Maple command-line interface.

The command-line version of Maple is a simple interface that, when used interactively,
displays an input prompt (>), runs commands, and displays the output as text-based results.
You can use this interface in batch mode to direct input to an application, specify a text file
to run, or evaluate a command using the -c option.

In Windows, the command-line interface is called cmaple.exe. You can run this file from
either the bin.win or bin.X86_64_WINDOWS directory of your Maple installation, depend-
ing on your platform. On other platforms, you can start the command-line interface by
running the maple script located in the bin directory of your Maple installation.

Starting the Maple command-line interface, automatically executing a command file, and
stopping the Maple session can take about one tenth of a second, depending on which
commands are run and the speed of your system. The quick start-up time and the minimal
amount of processing required make the Maple command-line interface suitable to be called
from other applications, even for quick calculations.
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Batch Files

A batch file is a Maple script that can run in the Maple command-line interface, run state-
ments, and exit. The results can be displayed or directed to a file.

One method of using the command-line interface to solve a problem is to create an .mpl
script, which includes the input data. If this script is called solve.mpl, you could run the
script as follows.
cmaple solve.mpl > solve.output

In this example, the output is redirected to a file named solve.output. You can configure
an application to read this output file to capture the result.

Note: .mpl is the standard file extension for a Maple language file, which is a text file that
can contain Maple statements. For more information, refer to the file help page.

You can use the -q option to hide extra output that interferes with parsing results automat-
ically. For more options on the Maple command-line interface, refer to the maple help page.

Directing Input to a Pipeline

To avoid using the file system, input to the command-line interface can be directed to a
pipeline. The following example shows how to perform this task at a command prompt.
echo "int(x,x);" | cmaple

Specifying Start-up Commands

You can use the -c option to specify start-up commands to be run by the Maple command-
line interface. Although the -c option can be followed by any valid Maple statement, the
syntax must be carefully quoted to avoid being interpreted by the shell of the calling system.
For example, the following syntax can be entered at a Windows command prompt.
cmaple -c "datafile := `c:/temp/12345.data`" -c N:=5;

The equivalent command in a UNIX shell requires different quoting.
/usr/local/maple/bin/maple -c 'datafile:="/tmp/12345.data";' -c N:=1;

Statements that do not use characters that are special to the system interpreter can be left
unquoted, as with the case of -c N:=1; above. This statement does not use spaces, pipe
characters, redirect symbols, quotes, or other characters that have meaning to the interpreter.
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14.5 External Calling: Using Compiled Code in Maple
In Maple, you can load a dynamic-link library (.dll) file that contains functions written in
a programming language other than Maple, and then use those functions in Maple as you
would use any other commands.

External functions that accept and return basic types (for example, integers and floats) can
be called directly in Maple after defining the calling sequence of the external function. Al-
ternatively, if you want to call functions that use complicated types, or if you require more
control over the conversion of data structures you want to access, you can use the Maple
external function interface to create and compile a wrapper file.

Calling a Function in a Dynamic-link Library

Most external functions that are compiled in a .dll file use standard hardware types such as
integers, floating-point numbers, strings, pointers (to strings, integers, and floating-point
numbers), matrices, and vectors. Maple can translate the hardware representation of these
external functions so that the external functions are recognized in Maple. This method is
efficient and easy to use because it does not require the use of a compiler. This method of
directly calling the external code allows you to use an external library without modifying
the Maple library.

To understand the Maple external calling facility, consider the following C code, which
adds two numbers and returns the result.
int add( int num1, int num2 )
{

return num1+num2;
}

Three basic steps are required to call a function in a .dll library.

• Create or obtain a .dll file

• Create a function specification in Maple

• Call the external function from within Maple

Create or Obtain a .dll file

The external functions that you want to call from Maple must be compiled in a .dll file. You
can either create the code and compile the .dll file yourself or obtain an existing .dll file
that contains the functions you want to use in Maple.

The external library functions in a .dll file must have been compiled using the _stdcall
calling convention, which is the default convention used by most compilers in Macintosh
and 64-bit Windows, but must be specified when using most 32-bit Windows compilers.
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Options are also available for calling .dll files created by Fortran compilers and classes
created in Java.

Create a Function Specification

Before using an external function in Maple, you must provide a description (or function
specification), which includes the following information.

• Name of the function in the .dll file. In the example above, the name is add.

• Type of parameters the function passes and returns. In the example above, all of the
parameters are of type int.

• Name of the .dll file that contains the function. In the example above, assume that the C
code has been compiled into a .dll file called mylib.dll.

A function specification translates the external function into a form that can be recognized
and interpreted by Maple.

At a Maple prompt, you can define the function specification by calling define_external
as follows.

myAdd := define_external(
'add',

>

'num1'::integer[4],
'num2'::integer[4],
'RETURN'::integer[4],
'LIB'="mylib.dll"

);

Examine this function and note the following characteristics.

• The first argument of the define_external function (in this example, add) is the name
of the external function as exported by the .dll file. In the C code, the function is called
add. However, because the define_external function is assigned to the name myAdd
above, the Maple procedure that will be generated after you define the function specific-
ation will be called myAdd. This is the command that you will use to call the external
function within Maple.

• If Java or Fortran was used to create the external function, you must specify JAVA or
FORTRAN as the second argument to indicate the programming language. The default
language is C, so this parameter does not need to be specified in the example above since
the add function was written in C.

• The parameters num1 and num2, which are both of type int, describe the arguments of
the function to be called. These values should be specified in the order in which they
appear in your documentation or source code for the external function, regardless of issues
such as the passing order (left to right versus right to left). By doing so, the Maple pro-
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cedure returned by the define_external function has the same calling sequence as the
external function when it is used in the language for which it was written. The only ex-
ception is that one argument can be assigned the nameRETURN. This argument specifies
the type returned by the function rather than a parameter passed to the function. In the
example above, the return type does not have a name, so the keyword RETURN is used.

For information on specifying parameter types, see Specifying Parameter Types for Function
Specifications (page 498).

• Specifying the parameter types is independent of the compiler. The specification is always
defined in the same way, regardless of the method used to compile the .dll file. The ex-
ample above uses the C type int, which is specified as integer[4] in Maple. The 4 in the
square brackets indicates the number of bytes used to represent the integer. Some C
compilers use 4-byte (32-bit) long data types, but other compilers use 8-bytes (64-bit)
for the same data structure. If you are using the long data type, the specification in Maple
will need to be either integer[4] or integer[8], depending on the way your .dll file was
built. For more information about common type relations, see Table 14.2.

• The name of the .dll file containing the external function is specified by defining the LIB
parameter. In the example above,mylib.dll specifies the file name of the library in which
the function is located. The format of this name is system-dependent and certain systems
require a full path to the file. In general, the name should be in the same format as you
would specify for a compiler on the same system. If you are calling a Java method, dll-
Name is the name of the class containing the method.

Important: Specify the function exactly and make sure that the arguments are in the correct
order. Failure to do this will not cause any problems when you are defining the specification;
however, unexpected results may be produced or your program may stop responding when
the external function is called within Maple.

Calling the External Function

Calling the define_external function for myAdd returns a Maple procedure that translates
the Maple types to hardware types that can work with an external function. This procedure
can be used in the same way as other Maple commands.

myAdd(1,2);>

(14.1)

a := 33:>

b := 22:>

myAdd(a,b);>

(14.2)
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r:= myAdd(a,11);>

(14.3)

Specifying Parameter Types for Function Specifications

Maple uses its own notation to provide a generic well-defined interface for calling compiled
code in any language. The format of each type descriptor parameter is as follows.
argumentIdentifier :: dataDescriptor

The return value description is also defined by using a data descriptor, with the name RE-
TURN as the argumentIdentifier. If the function returns no value, no RETURN parameter
is specified. Also, if no parameters are passed, no argument identifiers are required.

Scalar Data Formats

External libraries generally handle scalar data formats that are supported by your platform.
All array, string, and structured formats are created from these. The data descriptors used
to represent scalar formats usually contain a type name and size. The size represents the
number of bytes needed to represent the given hardware type. Table 14.1 lists the basic
type translations for standard C, Fortran, and Java compilers.

Table 14.1: Basic Data Types

Java TypeFortran

Type

C TypeMaple Data

Descriptor

byteBYTEcharinteger[1]

shortINTEGER2shortinteger[2]

intINTEGER or

INTEGER4

int or

long^1

integer[4]

longINTEGER8long^1 or

long long

integer[8]

floatREAL or

REAL4

floatfloat[4]

doubleDOUBLE

PRECISION

or REAL8

doublefloat[8]

charCHARACTERcharchar[1]

booleanLOGICAL1charboolean[1]
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Java TypeFortran

Type

C TypeMaple Data

Descriptor

LOGICAL2shortboolean[2]

LOGICAL or

LOGICAL4

int or

long^1

boolean[4]

LOGICAL8long^1 or

long long

boolean[8]

Note: The C type long is typically 4 bytes on 32-bit systems and 4 or 8 bytes on 64-bit
systems. Use the sizeof operator or consult your compiler documentation to verify
sizeof(long).

Structured Data Formats

In addition to the basic types listed in Table 14.1, Maple also recognizes certain compound
types that can be derived from the basic types, such as arrays and pointers. These compound
types are listed in Table 14.2. For a complete list and a detailed specification, refer to the
define_external,types help page.

Table 14.2: Compound Data Types

Java TypeFortran TypeC TypeMaple Data

Descriptor

type[] Atype Atype AARRAY(

datatype =

float[8], ...

)

stringCHARACTER2char x[n]string[n]

NACOMPLEX or

COMPLEX8

struct{ float

re, im; }

complex[4]

NADOUBLE COMPLEX

or COMPLEX16

struct{ double

re, im; }

complex[8]

NANATYPENAMEREF(typename)

External Function Interface

Alternatively, you may want to call a .dll file that directly manipulates Maple data structures,
rather than converting them automatically to standard data types. By doing so, you can
either write custom applications that are integrated with Maple or provide custom conversions
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for data passed to prebuilt .dll files. Maple provides an API for directly managing Maple
data structures and operations performed on them.

This API, or external function interface, is a subset of the API provided by theOpenMaple
interface. Unlike the OpenMaple interface, you do not need to define stream callbacks be-
cause Maple is the primary interface. Also, the kernel-vector handle returned from a call to
the StartMaple function in the OpenMaple API is, instead, passed as an argument to the
external function defined in your .dll file.

Currently, the API is defined for C/C++ and Fortran, and certain portions of the API can
be used for external functions written in Java. Other languages such as Visual C# and
Visual Basic can interface through a small C++ layer.

The API function prototypes for manipulating Maple data structures are located in the
$MAPLE/extern/include directory where $MAPLE is the directory in which Maple is
installed. The header filemaplec.hmust be included when writing custom C wrappers. One
of the header files, maplefortran.hf or maplefortran64bit.hf, must be included when
writing custom Fortran wrappers. Other header files, mplshlib.h, and mpltable.h contain
macros, types, and data structures that are needed for direct manipulation of Maple data
structures.

In your C code, Maple uses the following lines as an entry point to call the external function
directly with no argument conversion.
ALGEB myExternalFunction(

MKernelVector kv,
ALGEB args

);

Two parameters are in the external function declaration. The first is a handle that will be
required to call any Maple API function. The second is a Maple expression sequence of all
the arguments passed when the external function is called. The API functionMapleNumArgs
can be used to determine the number of elements in the expression sequence. This variable
can be treated as an array of DAGs starting at index 1 (not 0). Therefore, args[1] is the first
parameter passed to the external function.

myFunc := define_external('myExternalFunction', 'MAPLE', 'LIB'=
"myStuff.dll"):

>

When using the define_external function to declare an interface to an external function
that directly manipulates Maple structures, you do not need to provide a description of the
arguments and their types. Instead, add the keyword option, MAPLE.

Again, consider the simple example that adds two numbers passed by Maple. This time,
with explicit data type conversions using the API, and defining the external function proto-
type, as described above, the C function appears as follows.
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/* Program to add two numbers from Maple */
#include <stdio.h>
#include <stdlib.h>
#include <maplec.h>

ALGEB myAdd( MKernelVector kv, ALGEB args )
{

int a1, a2, r;

if( MapleNumArgs(kv,args) != 2 )
MapleRaiseError(kv,"Incorrect number of arguments");

a1 = MapleToInteger32(kv,((ALGEB*)args)[1]);
a2 = MapleToInteger32(kv,((ALGEB*)args)[2]);
r = a1 + a2;

return( ToMapleInteger(kv,(M_INT) r) );
}

This program first checks if the Maple function call passes exactly two arguments. It then
converts the two arguments to hardware integers and adds them. The result is converted to
a Maple integer and returned.

This program can be compiled into a .dll file using a C compiler of your choice. Ensure that
you link with the Maple API .dll file. The .dll file can be placed in the Maple binary directory,
as given by kernelopts(bindir), or a subdirectory within the directory specified by the
PATH environment variable. If you are using .dll files outside of the Maple binary directory,
you may need to specify the full path to the .dll file in the LIB argument to the define_ex-
ternal function.

To complete the example, themyAdd function can be linked in Maple and used as any other
Maple procedure.

myAdd := define_external('myAdd', 'MAPLE', 'LIB'= "myAdd.dll"):>

myAdd(2,3);>

(14.4)

myAdd(2.2,1);>
Error, (in myAdd) integer expected for integer[4] parameter

myAdd(2^80,2^70);>
Error, (in myAdd) integer too large in context

The equivalent Fortran wrapper is as follows.
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Program to add two numbers from Maple
INTEGER FUNCTION myAdd(kv, args)
INCLUDE "maplefortran.hf"
INTEGER kv
INTEGER args
INTEGER arg
INTEGER a1, a2, r
CHARACTER ERRMSG*20
INTEGER ERRMSGLEN
ERRMSGLEN = 20
IF ( maple_num_args(kv, args) .NE. 2 ) THEN

ERRMSG = 'Incorrect number of arguments'
CALL maple_raise_error( kv, ERRMSG, ERRMSGLEN )
myAdd = to_maple_null( kv )
RETURN

ENDIF
arg = maple_extract_arg( kv, args, 1 )
a1 = maple_to_integer32(kv, arg)
arg = maple_extract_arg( kv, args, 2 )
a2 = maple_to_integer32(kv, arg)
r = a1 + a2
myAdd = to_maple_integer( kv, r )
END

Once compiled into a .dll file, the same syntax can be used in Maple to access the function.
The only difference is the additional keyword 'FORTRAN' in the define_external call.

myAdd := define_external('myAdd','MAPLE','FORTRAN','LIB'=
"myAdd.dll"):

>

myAdd(2,3);>

(14.5)

For more examples, refer to the define_external,CustomWrapper help page.

Specifying Parameter Passing Conventions

Each programming language uses a specific convention for parameter passing. For example,
C uses the pass-by-value convention; passing parameters by reference must be performed
explicitly by passing an address. Fortran uses the pass-by-reference convention. Pascal uses
either, depending on how the parameter was declared.

The Maple external calling mechanism supports C, Fortran, and Java calling conventions.
There is an external API for writing custom wrappers for C and Fortran, but not for Java.
The default convention used is C. To use Fortran calling conventions, specify the name
FORTRAN as a parameter to the define_external function.
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f := define_external(`my_func`,`FORTRAN`, ...);>

To use Java calling conventions, specify the name JAVA as a parameter to the define_ex-
ternal command. Also, specify the CLASSPATH= option to point to the classes used.

f := define_external(`my_func`,`JAVA`, CLASSPATH="...", ...);>

Some other compiler implementations, such as Pascal and C++, can work with C external
calling by using the correct definitions and order of passed parameters.

Generating Wrappers Automatically

When you specify the keyword WRAPPER in the call to the define_external function,
Maple generates code for data translations. Maple compiles this code into a .dll file and
dynamically links to the new library. Subsequently invoking the procedure that is returned
by the define_external function calls the newly generated conversion command before
calling the external function in the library you provided.

The C code generated by Maple wraps the Maple data structures by translating them to
hardware equivalent types. Therefore, the code file is called the wrapper, and the library
generated by this code is called the wrapper library.

Generating wrappers can provide an easy way to start writing custom code that references
the Maple external function interface. The term wrapper also refers to the code you write
to communicate with existing .dll files, as it does for the code Maple generates for the same
reason. Your code is sometimes called a custom wrapper.

Consider the original add function that was introduced at the beginning of this chapter. In
the following example, the WRAPPER option is used to generate a wrapper using the
define_external function. As shown, you can also use theNO_COMPILE option to prevent
the generated wrapper from compiling. The name of the generated file is returned instead.

myAdd := define_external(
'add',

>

'WRAPPER',
'NO_COMPILE',
'num1'::integer[4],
'num2'::integer[4],
'RETURN'::integer[4]

);

myAdd := "mwrap_add.c"

The file mwrap_add.c resembles the following.
/* MWRAP_add Wrapper

Generated automatically by Maple
Do not edit this file. */
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#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mplshlib.h>
#include <maplec.h>
MKernelVector mapleKernelVec;
typedef void *MaplePointer;
ALGEB *args;
/* main - MWRAP_add */
ALGEB MWRAP_add( MKernelVector kv,

INTEGER32 (*fn) ( INTEGER32 a1, INTEGER32 a2 ),
ALGEB fn_args )

{
INTEGER32 a1;
INTEGER32 a2;
INTEGER32 r;
ALGEB mr;
int i;
mapleKernelVec = kv;
args = (ALGEB*) fn_args;
if( MapleNumArgs(mapleKernelVec,(ALGEB)args) != 2 )

MapleRaiseError(mapleKernelVec,"Incorrect number
of arguments");

/* integer[4] */
a1 = MapleToInteger32(mapleKernelVec,args[1]);
/* integer[4] */
a2 = MapleToInteger32(mapleKernelVec,args[2]);
r = (*fn)(a1, a2);
mr = ToMapleInteger(mapleKernelVec,(long) r);
return( mr );

}

The generated wrapper is a good starting point for writing your own code. Some extra
variables and declarations may be used because the wrapper generation is generic. For ex-
ample, the use of args rather than fn_args avoids the need for a cast with args[1], but it is
also a static global variable which is useful when working with callbacks that need access
to the argument sequence outside the main entry point.

Passing Arguments by Reference

External functions follow normal Maple evaluation rules in that the arguments are evaluated
during a function call. It therefore may be necessary to enclose assigned names in right
single quotes (unevaluation quotes) when passing arguments by reference. For example,
consider the following function that multiplies a number by two in-place.
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void double\_it( int *i )
{

if( i == NULL ) return;
*i *= 2;

}

In Maple, the definition of this function could appear as follows.

double_it := define_external('double_it', i::REF(integer[4]),
LIB="libtest.dll");

>

When running this function, the argument 'i' is converted from the Maple internal repres-
entation of an integer to a 4-byte hardware integer. A pointer to the hardware integer is then
passed to the external function, 'double_it'. Although 'i' is declared as a pointer to an integer,
you can call 'double_it' with non-pointer input.

double_it(3);>

In this case, a pointer to the hardware integer 3 is sent to 'double_it'. The modified value
is not accessible from Maple. To access the modified value, the parameter must be assigned
to a name. The name must be enclosed in unevaluation quotes to prevent evaluation.

n:=3;>

double_it(n); # n is evaluated first, so 3 is passed>

n;>

(14.6)

double_it('n'); # use unevaluation quotes to pass 'n'>

n;>

(14.7)

For numeric data, the string "NULL" can be passed as a parameter to represent the address
0 (the C NULL). For strings, because "NULL" is a valid string, the integer 0 represents
the address 0.

double_it("NULL");>

concat := define_external('concat',
RETURN::string, a::string, b::string,
LIB="libtest.dll"):

concat("NULL","x");

(14.8)

14.5 External Calling: Using Compiled Code in Maple • 505



concat(0,0);>

(14.9)

In the concat example, the C code might look like the following. Note that this function
does not clean the memory as it should.
char * concat( char* a, char *b )
{

char *r;
if( !a \\ !b ) return( NULL );
r = (char*)malloc((strlen(a)+strlen(b)+1)*sizeof(char));
strcpy(r,a);
strcat(r,b);
return( r );

}

External API

An external API is provided if you want to expand existing wrappers or write custom
wrappers. Because this API is the same as that of OpenMaple, most of the internal docu-
mentation is referenced in the OpenMaple help pages. In particular, refer to the Open-
Maple,C,API and OpenMaple,VB,API help pages and related pages.

Additional examples can be found in the examples,ExternalCalling page. Sample code is
provided in the samples/ExternalCall directory of your Maple installation. In particular,
all of the external calling sample code provided in the individual help pages in Open-
Maple,C,API can be found in the samples/ExternalCall/HelpExamples directory. This
code is precompiled in the HelpExamples.dll file provided with Maple so that you can run
the examples in your Maple session.

System Integrity

The Maple kernel cannot control the quality or reliability of external functions. If an external
function performs an illegal operation, such as accessing memory outside of its address
space, that operation may result in a segmentation fault or system error. The external function
may stop responding and cause Maple to stop responding as well.

If an external function accesses memory outside of its address space but within the Maple
address space, the external function will likely not stop responding, but certain parts of
Maple may not function correctly, resulting in unexpected behavior or a crash later in the
Maple session. Similarly, an external function that directly manipulates Maple data structures
can produce unexpected results by misusing the data structure manipulation facilities.

Therefore, use external calling at your own risk. Whether an external function is one that
you have written, or supplied by a third party to which you have declared an interface (that
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is, by using the define_external function), Maple must rely on the integrity of the external
function when it is called.

14.6 AccessingData over a Networkwith TCP/IP Sockets
The Sockets package allows Maple to communicate with data sources over the Internet,
such as web sites and remote Maple sessions running on a network.

You can create a Maple server in a Maple session and configure the server to send a message
to that session.

Socket Server

A socket server can be a public web service such as a stock quote service. The following
example shows how to create a Maple procedure that acts as a service that listens for a
socket connection and sends a message when a connection is found.

The server action is defined in the following procedure.

myServer := proc( sid )
uses Sockets;

>

Write( sid, sprintf( "Hello %s on port %d, from %s\r\n",
GetPeerHost( sid ), GetPeerPort( sid ),

GetHostName() ) )
end proc:

The following commands cause the Maple session in which they are called to start the ser-
vicing requests. This call is not returned. To run the code, enter the procedure definition
above and the Serve command below in a Maple worksheet. (Remove the comment character
(#) before running the code.)

#Sockets:-Serve( 2525, myServer );>

Socket Client

To write a simple client, the socket must first be opened. To do so, specify the name of the
host and the port number of the host to which you want to connect.

sid := Sockets:- Open ( "localhost", 2525 );>

To get information from the server, the socket must be read.

Sockets:-Read(sid);>

When you are finished, close the socket.

Sockets:-Close(sid);>
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14.7 Code Generation
In Maple, code generation is one of several powerful tools for deploying results to other
systems. Maple can translate formulas, numerical procedures, data sets, and matrices to
compiled languages. Maple supports translation to C, C#, MATLAB®, Java, JavaScript,
Perl, Python, R, Visual Basic, and Fortran.

with( CodeGeneration );>

(14.10)

Calling CodeGeneration Commands

You can call the CodeGeneration commands using the following syntax, where L is one
of the supported languages, for example, C.
CodeGeneration[*L*]( *expression*, *options* )

The expression can take one of the following forms.

• A single algebraic expression: Maple generates a statement in the target language assigning
this expression to a variable.

• A list of equations of the form *name*=*expression*: Maple interprets this list as a se-
quence of assignment statements and generates the equivalent sequence of assignment
statements in the target language.

• A list, array, or rtable: Maple generates a statement or sequence of statements assigning
the elements to an array in the target language.

• A Maple procedure or module: Maple generates an equivalent structure in the target
language. For example, to translate a procedure to C, Maple generates a function along
with any necessary directives for library inclusion. To translate a module to Java, Maple
generates a Java class declaration with exports translated to public static methods and
module locals translated to private static methods. For more information on translating
code to a specific language, refer to the CodeGeneration help page and browse to the
help page for the target programming language that you want to use.

You can use many options with the CodeGeneration commands. For more information,
refer to the CodeGenerationOptions help page. Some of the commonly used options are
listed below.

• optimize=value: This option specifies whether the Maple code is optimized before it is
translated. The default value is false. When this option is set to true, the codegen[optim-
ize] function is used to optimize the Maple code before it is translated.
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• output=value: This option specifies the form of the output. By default, the formatted
output is printed to the console. If a name (different from the name string) or a string is
specified as the value, the result is appended to a file of that name. If the value is the
name string, a string containing the result is returned. This string can then be assigned
and manipulated.

• declare=[declaration(s)]: This option specifies the types of variables. Each declaration
has the form varname::vartype where varname is a variable name and vartype is one
of the Maple type names recognized by the CodeGeneration package, as described in
the TranslationDetails help page. Declarations specified using this option override any
other type declarations in the input code.

Notes on Code Translation

Because the Maple programming language differs from the target languages supported by
the CodeGeneration package, the generated output may not be completely equivalent to
the input code. The CodeGeneration/Details help page provides more information on the
translation process and hints on how to take full advantage of the facilities. In addition,
some help pages contain notes that are relevant to specific languages. For more information,
refer to the help pages for the corresponding target language, for example, CodeGenera-
tion/General/CDetails.

Translation Process

The CodeGeneration commands recognize a subset of the Maple types, which are listed
in the CodeGeneration/Details help page. The Maple types are translated to appropriate
types in the target language. Compatibility of types is checked before operations are trans-
lated, and type coercions are performed if necessary. The CodeGeneration commands at-
tempt to determine the type of any untyped variables. You can control type analysis and
deduction by using the coercetypes, declare, deducetypes, and defaulttype options. For
more information, refer to the CodeGenerationOptions help page.

The CodeGeneration commands can translate a subset of the Maple commands, which are
listed on the CodeGeneration/Details help page. Some commands are translated only to
certain target languages. For more information about a specific language, refer to its detailed
help page, for example, CodeGeneration/General/CDetails.

The return type of a procedure is determined automatically if you do not declare it. If more
than one return statement is specified, the types of all objects returned must be compatible
in the target language. If a return statement contains a sequence of objects, the sequence is
translated into an array. Implicit returns are recognized in some cases, but translations to
explicit returns can be suppressed by using the deducereturn=false option. When necessary,
an automatically generated return variable is used to store a return value.
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Lists, Maple data structures of the type array, and rtables are translated to arrays in the
target languages such as C which do not have a built-in list type. It is recommended that
you declare the type and ranges for all arrays. In some target languages, arrays are reindexed
to begin at index 0.

Example 1: Translating a Procedure to Java
f := proc(x)

local y;
>

y := ln(x)*exp(-x);
printf("The result is %f", y);

end proc:

CodeGeneration[Java](f);>
import java.lang.Math;

class CodeGenerationClass {
public static void f (double x)
{
double y;
y = Math.log(x) * Math.exp(-x);
System.out.print("The result is " + y);

}
}

Example 2: Translating a Procedure to C

In this example, the defaulttype option sets the default type to integer and the output option
specifies that a string is returned. In this case, the output is assigned to the variable s.

g := proc(x, y, z)
return x*y+x*z-y*z;

end proc:

>

s := CodeGeneration[`C`](g, defaulttype=integer, output=string);>

(14.11)
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Example 3: Translating a Procedure to Fortran

In this example, because Fortran 77 is not case-sensitive, the variableX is renamed to avoid
a conflict with the variable x.

h := proc(X::numeric, x::Array(numeric, 5..7))
return X+x[5]+x[6]+x[7];

end proc:

>

CodeGeneration[Fortran](h);>
Warning, the following variable name replacements were made: x -> cg

doubleprecision function h (X, cg)
doubleprecision X
doubleprecision cg(5:7)
h = X + cg(5) + cg(6) + cg(7)
return

end

Example 4: Translating an Expression to MATLAB®

In this example, the optimize option is used to minimize the number of arithmetic operations
called in the exported code. The default exported code would have recomputed a value for
(3 - c * b + a * b), which appears many times. To avoid recomputing the value, common
subexpressions are evaluated once and stored in variables so that other expressions can refer
to the value.

M := 1 / < a,3,c; 1,b,2; -1,0,-1 >;>

(14.12)

CodeGeneration:-Matlab(M, optimize = true);>
t1 = -729 + 22 * c;
t1 = 1 / t1;
t2 = 22 * t1;
t3 = 3 * t1;
cg = [-t2 t3 (-22 * c + 6) * t1; -t1 (c - 33) * t1 (c - 66) * t1; t2
-t3 723 * t1;];
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Example 5: Translating an Expression to Perl

In this example, the fact that the Perl language has a built-in primitive for list construction
is exploited to provide a natural translation of the Maple input.

f := proc(L::list)
local x, s := "";

>

for x in L do
s := cat(s, x);

end do;
end proc:

CodeGeneration[Perl](f);>
#!/usr/bin/perl

sub f
{
local($L) = @_;
local($x, $s, $cgret);
$s = "";
foreach $x (@{$L})
{
$s = $s . $x;
$cgret = $s;

}
return($cgret);

}

Example 6: Translating an Expression to Python

In addition to the core Python language, the output of the Python translator includes refer-
ences to several standard Python libraries used in scientific computation. In this example,
Maple input making use of the number-theoretic function ithprime is translated to an equi-
valent using the Python sympy package.

AddFirstMPrimes := m->add( ithprime(i), i = 1..m ):>
Warning, `i` is implicitly declared local to procedure
`AddFirstMPrimes`
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CodeGeneration:-Python( AddFirstMPrimes );>
import sympy

def AddFirstMPrimes (m):
r = 0
for i in range(1, m + 1):

r = r + sympy.prime(i)
return(r)

Example 7: Translating Commands to R

When a statistics command outside of a procedure is translated to R, unevaluation quotes
are required so that the commands are not automatically simplified. When translating stat-
istics commands that occur inside of a procedure, the use of unevaluation quotes is optional.

CodeGeneration:-R(Statistics:-Mean([1,3,5,7]));>
cg0 <- 0.4e1

CodeGeneration:-R('Statistics:-Mean'([1,3,5,7]));>
cg1 <- mean(c(1,3,5,7))

f := proc( x ) return sprintf("Mean = %.1f\n Standard Deviation
= %.1f", Statistics:-Mean(x), 'Statistics:-StandardDeviation'(x)
); end proc:

>

CodeGeneration:-R( f );>
f <- function(x)
return(sprintf("Mean = %.1f\n Standard Deviation = %.1f", mean(x),
sd(x)))

Example 8: Translating a Procedure to Visual Basic

In the following example, all of the parameters are assigned a floating-point type by default.
The defaulttype option determines how to interpret variables that do not have a type.

f := proc(x, y, z) return x*y+x*z-y*z; end proc:>
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CodeGeneration:-VisualBasic(f,defaulttype=integer);>
Public Module CodeGenerationModule
Public Function f( _
ByVal x As Integer, _
ByVal y As Integer, _
ByVal z As Integer) As Integer
Return y * x + x * z - y * z

End Function
End Module

Example 9: Using the defaulttype and deducetypes Options

Maple attempts to determine the types of variables that do not have a type automatically.
The default type is assigned only to those variables that do not have a type after the auto-
matic type deduction process. In the following example, the parameters y and z are assigned
a floating-point type because they are in an expression involving the float variable x.
Therefore, the default type, integer, is not assigned.

f := proc(x::float, y, z) x*y+x*z-y*z; end proc:>

CodeGeneration:-C( f, defaulttype=integer );>
double f (double x, double y, double z)
{
return(y * x + x * z - y * z);

}

You can turn off the automatic type deduction process by setting the deducetypes option
to false. In the following example, the parameters y and z are now assigned the default type.

CodeGeneration:-C(f, defaulttype=integer, deducetypes=false);>
double f (double x, int y, int z)
{
return((double) y * x + x * (double) z - (double) (y * z));

}

You can turn off the explicit type coercion process by setting the coercetypes option to
false.

CodeGeneration:-C(f, defaulttype=integer, deducetypes=false,
coercetypes=false);

>

double f (double x, int y, int z)
{
return(y * x + x * z - y * z);

}
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Example 10: Using the declare Option

You can control how types are assigned by specifying the parameter, local variable, and
return types explicitly in procedures or by using the declare option with expressions.

CodeGeneration:-C(1+x+y, declare=[x::float, y::integer]);>
cg2 = 0.1e1 + x + (double) y;

The Intermediate Code

All Maple input to the CodeGeneration translators is processed and converted to an inert
intermediate form called intermediate code. The intermediate code is the basic object on
which allCodeGeneration translators operate. For information about the intermediate code,
refer to the CodeGeneration/General/IntermediateCodeStructure help page.

The names that appear in intermediate code expressions are part of the CodeGeneration:-
Names subpackage.

Error and warning messages displayed fromCodeGeneration package commands sometimes
refer to the intermediate form of the Maple expression that triggered the message.

When determining the cause of an error message or writing and debugging custom language
definitions, it is recommended that you determine the intermediate form of a Maple expres-
sion input. In general, you can determine the intermediate form by using the CodeGenera-
tion:-IntermediateCode translator. However, because some aspects of the intermediate
code are specific to the language to which you are translating, it may help to see the inter-
mediate code for a specific translator. This can be done by setting the command infolevel[Co-
deGeneration] to a value greater than 3 and performing a translation.

The following example shows the intermediate code for the expression 2x^2-1. The first
argument of the Scope structure is the name of a type table used internally during the
translation process.

CodeGeneration[IntermediateCode](2*x^2-1);>
Scope( nametab,
StatementSequence(
Assignment(GeneratedName("cg3"), Sum(Product(Integer(2),

Power(Name("x"), Integer(2))), Negation(Integer(1))))
)

)

Extending the CodeGeneration Translation Facilities

The CodeGeneration package is distributed with translators for several programming lan-
guages. In addition, you can define new translators to enable the CodeGeneration package
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to generate code for other languages. Tools for this task are available in theLanguageDefin-
ition subpackage of CodeGeneration.

Custom translators can define a complete language, extend existing language definitions,
overriding and extending only those language components that need to be changed.

To view a list of languages that are currently supported by the CodeGeneration package,
and thus available for extending, use the CodeGeneration:-LanguageDefinition:-
ListLanguages command.

The Printing Phase

As described previously, the CodeGeneration package first processes the Maple input and
translates it to an intermediate form. This step is followed by the printing phase, which
translates the intermediate form to a Maple string according to transformation rules specific
to the target language.

For each name used in the intermediate form, there is a print handler procedure. During the
printing phase, Maple traverses the intermediate form recursively. For each subexpression
of the intermediate form, Maple invokes the print handler associated with that class of ex-
pressions.

Defining a Custom Translator

This section explains the process of defining a translator for a target language.

Using a Printer Module

For each CodeGeneration language definition, there is an associated Maple module called
a Printer module, which contains language-specific print handlers and data. A Printer
module has several functions, which set and reference language-specific printing data.

There are two ways to obtain aPrintermodule: theLanguageDefinition:-GenericPrinter()
returns a generic Printer module containing no language-specific data, and the Lan-
guageDefinition:-Get(language_name):-Printer command returns a copy of the Printer
module used for a previously defined language language_name.

The most frequently used Printer package command is Print. When it is given a string,
thePrint command prints the string to a buffer. When given an intermediate-form expression,
the Print command invokes the print handler appropriate for the expression. In this manner,
Print recurses through the intermediate form until it is printed in its entirety to the buffer.
At this point, the translation process is complete.

Table 14.3 lists the important Printer commands. For a complete list and more detailed
information, refer to the CodeGeneration/LanguageDefinition/Printer help page.
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Table 14.3: Printer Commands

Define a translation for a command
name and type signature

AddFunction

Define a translation for a unary or
binary operator

AddOperator

Set a procedure to be the print
handler for an intermediate form
name

AddPrintHandler

Get a translation for a command
name and type signature

GetFunction

Get a translation for a unary or
binary operator

GetOperator

Get the current print handler'
procedure for an intermediate form
name

GetPrintHandler

Indent a printed line when supplied
as an argument to Print

Indent

Print arguments to bufferPrint
Initiate printing of an intermediate
form

PrintTarget

The following commands illustrate how data is stored and retrieved from a Printermodule.

with(CodeGeneration:-LanguageDefinition):>

Printer := GenericPrinter():>

Printer:-AddOperator( Addition = "+" );>

(14.13)

Printer:-AddFunction( "sin", [numeric]::numeric, "sine" );>

(14.14)

Printer:-GetOperator( Addition );>

(14.15)

Printer:-GetFunction( "sin", [numeric]::numeric );>

(14.16)

Within a language definition, the Printer module associated with the language definition
can be referenced by the name Printer.Note: This applies to both of the language definition
methods described in the next section.
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Language Translator Definition

There are two distinct methods of defining a language translator for use by the CodeGen-
eration package: using theLanguageDefinition:-Define command and creating a language
definition module.

For simple languages or small extensions of existing languages, use the LanguageDefini-
tion:-Define command. To create a translator that preprocesses or postprocesses the generated
output, or makes frequent use of a utility function in translations, create a language definition
module. The language definition module approach is used for all translators supplied with
the CodeGeneration package.

Using the Define Command

TheDefine command takes a series of function call arguments f1, f2, ... where the command
names are, for example,AddFunction,AddFunctions,AddOperator,AddPrintHandler,
AddType, and SetLanguageAttribute.

These function calls accept identical syntax and perform the same actions as the Printer
commands of the same name. That is, they define print handlers and other data specific to
the language translation you are defining. For more information on these commands, refer
to the CodeGeneration/LanguageDefinition/Printer help page.

The Define command automatically creates a Printer module for the language. You do not
need to create one using theLanguageDefinition:-GenericPrinter orLanguageDefinition:-
Get commands.

This example illustrates a C translator, in which the translated code uses a specialized library
function mymult for multiplication instead of the built-in * operator.

CodeGeneration:-LanguageDefinition:-Define("MyNewLanguage",
extend="C",

>

AddPrintHandler(
CodeGeneration:-Names:-Product = proc(x,y)

Printer:-Print("mymult(", args[1], ", ", args[2],
")");

end proc
)

):

Note that in the previous example, one of the arguments of theLanguageDefinition:-Define
command is the function call AddPrintHandler, which takes a name and a procedure as
arguments. The supplied procedure therefore prints any Product subexpression of the inter-
mediate form. The call to Printer:-Print specifies that the translator uses the automatically
generated Printer module.
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Creating a Language Definition Module

A language definition module is a Maple module with the exportsPrintTarget andPrinter.
The module exports must satisfy the following criteria.

• Printer: A Printer module, that is, either a generic Printer module returned by the Co-
deGeneration:-LanguageDefinition:-GenericPrinter command or a Printer module
obtained from another language definition module using the LanguageDefinition:-
Get("language_name"):-Printer command.

• PrintTarget: Returns the translated output as a string. In most cases, the PrintTarget
command calls the Printer:-PrintTarget command.

The body of the module definition must contain a sequence of calls to Printer commands
that define language-specific data and utility procedures.

Once defined, a language definition module can be added to to the set of languages recog-
nized by the CodeGeneration package by using the CodeGeneration:-LanguageDefini-
tion:-Add command.

When creating your language definition module, you must delay the evaluation of the
module by using unevaluation quotes before adding it using theLanguageDefinition:-Add
command. That is, the language definition module must be added as a module definition
and not as a module.

The following example adds a definition module. Note the use of unevaluation quotes around
the module definition to delay its evaluation.

UppercaseFortran77 := 'module()
export Printer, PrintTarget;

>

Printer := eval(CodeGeneration:-LanguageDefinition:-Get(
"Fortran")):-Printer;

PrintTarget := proc(ic, digits, prec, func_prec, namelist)
Printer:-SetLanguageAttribute("Precision" = prec);
StringTools:-UpperCase(Printer:-PrintTarget(args));

end proc:
end module':

CodeGeneration:-LanguageDefinition:-Add("UppercaseFortran",
UppercaseFortran77);

>

Using a New Translator

After creating the language definition using either the LanguageDefinition:-Define or
LanguageDefinition:-Add commands, translate your code to the new language using the
CodeGeneration:-Translate command.
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The following example demonstrates the use of a new translator. Compare the output of the
Fortran command with that of the new translator.

p1 := proc() sin(x+y*z)+trunc(x); end proc:>

CodeGeneration:-Fortran(p1);>
doubleprecision function p1 ()
p1 = sin(y * z + x) + dble(int(aint(x)))
return

end

CodeGeneration:-Translate(p1, language="UppercaseFortran");>
DOUBLEPRECISION FUNCTION P1 ()
P1 = DSIN(Y * Z + X) + DBLE(INT(DINT(X)))
RETURN

END

14.8 CAD Connectivity
If Autodesk Inventor®, NX®, or SolidWorks® software is installed on your computer, you
can set up Maple to communicate with your computer aided design (CAD) application. By
connecting your CAD application to Maple, you can retrieve parameters from a CAD
drawing, work with those values in Maple, and send the new values to the CAD application
to incorporate them in your drawing.

The commands available to the interface depends on the CAD application that you are using.
Each application uses a different naming convention for parts and hierarchies of parts in a
CAD drawing. In Maple, you can use the CAD Link Assistant as a starting point to find
out about the information available from your CAD application and how to reference it.
For more information, refer to the CADLink help page.

The Maple CAD package contains subpackages that are specific to individual CAD applic-
ations. After selecting the relevant subpackage to use, the first step is to establish a connection
to the CAD system. TheOpenConnection command opens the CAD application, or connects
to a session that is already running on your computer. Both Maple and the CAD application
can run side-by-side; updates in either system are automatically reflected in the other system.

The next step is to connect to a particular part or assembly within the CAD application. The
GetActiveDocument,OpenPart, or another related command will establish this connection.

When a connection is established with the CAD application and part of the CAD drawing
is opened, Maple can extract parameter values, properties, and in some cases the geometry
of the part. Maple can then be used to analyze these values to optimize the configuration
or test aspects of the design (for example, whether the part can withstand applied force or
heat). If necessary, modified parameters can be saved in the CAD application.

520 • 14 Advanced Connectivity



14.9 Maple Plug-in for Excel
Maple is available as an add-in to Microsoft Excel for Windows. The Maple Excel link allows
you to use Maple commands, including commands that generate Maple plots, as formulas
in Microsoft Excel spreadsheets.

Figure 14.1: Maple in Excel

In the following example, an Excel formula forms a quadratic polynomial from the coeffi-
cients in cells C1, D3, and B6. You can enter this formula in cell A1 of the Excel spreadsheet.
=Maple( "&1*x^2 + &2*x + &3;", $C$1, $D$3, $B$6 )

In the Excel spreadsheet, enter a string containing the Maple code that you want to return,
substituting any parameters contained in spreadsheet cells using an ampersand character
(&) followed by a number. Include a semicolon (;) after the Maple command. After the
string, list the cell references that should be substituted into the string in the order of the
numbers you entered.

For more examples, refer to the Excel help page.
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14.10 Connecting MATLAB® and Maple
If MATLAB® is installed on your computer, you can access the MATLAB® computation
engine to perform computations in Maple and you can access the Maple computation engine
to perform computations in MATLAB®.

You must first configure Maple to communicate with MATLAB®. For more information,
refer to the Matlab,setup help page.

Accessing the MATLAB® Computation Engine from Maple

If you have a MATLAB® .m file file with legacy code that you want to run as a step in a
longer calculation within Maple, you can run the following commands in Maple.

with(Matlab);>

(14.17)

a := <1,2,3 ; 4,5,6; 7,8,9>;>

(14.18)

b := <3,2,5 ; 1,8,2; 7,3,4>;>

(14.19)

setvar("ma",a)>

setvar("mb",b)>

evalM("result = yourmfile(ma,mb)")>

getvar("result")>

The example above illustrates how Maple and MATLAB® maintain separate name spaces,
and the specific commands for transferring data between both applications. The matrices a
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and b are initially defined as Maple variables. By using the setvar command, they are copied
into MATLAB® data structures and assigned to the MATLAB® variables ma and mb. By
using the evalM command, you specify a command for MATLAB® to parse and run. The
result can be copied into a Maple data structure by using the getvar command.

For more information, refer to the Matlab help page.

Accessing the Maple Computational Engine from MATLAB®

Maple provides the Maple Toolbox, which contains hundreds of MATLAB® commands
to communicate directly with the Maple engine. To perform a computation, you enter Maple
Toolbox commands in MATLAB®, for example,
>> syms x y
>> f = x^2+3*y^2-5*x*y+2*x-7*y-12
f =

2 2
x + 3 y - 5 y x + 2 x - 7 y - 12

>> P = solve( diff(f,x), diff(f,y) );

>> P.x
ans =

-23
---
13

>> P.y
ans =

-4
--
13

In MATLAB®, the variables x and y are declared as symbolic by using the syms command.
These variables can then be used with normal MATLAB® operators to create larger sym-
bolic expressions. The Maple Toolbox provides commands, such as solve and diff, to ma-
nipulate the Maple expressions you created. In addition to these commands you can use a
generic maple command to evaluate arbitrary Maple commands.
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15 Parallel Programming
Computers with multicore processors are now commonplace. To take advantage of the
power of multicore computers, Maple provides tools for parallel programming. This chapter
provides a basic introduction to parallel programming in Maple.

15.1 In This Chapter
• The two forms of parallel programming available in Maple, shared memory and multiple

process.

• An introduction to shared memory programming using the Task Programming Model.

• An introduction to multiple process programming using the Grid Programming Model

15.2 Introduction
Maple provides tools for two different types of parallel programming. The Task Programming
Model enables parallelism by executing multiple tasks within a single process. The second
type of parallelism comes from the Grid package, which enables parallelism by starting
multiple processes.

Each type of parallelism has advantages and disadvantages. The Task Programming Model
is a high level programming tool that simplifies many aspects of parallel programming. In
the Task Programming Model, tasks share memory thus they can work closely together,
sharing data with low overhead. However because they share memory, code running one
task must be careful not to interfere with code running in other tasks. As the Task Program-
ming Model is very new to Maple, much of the Maple library has not been verified to work
correctly with tasks. This means that much of Maple's core functionality cannot be used in
task-based code.

As Grid uses multiple process parallelism it does not suffer from this problem, each process
has its own independent memory. Thus you can use all of Maple's library routines in multiple
process execution. Further, with the addition of the Grid Computing Toolbox, you can execute
multiple process parallelism across multiple computers which can allow you to access far
more computing power. However because the processes are independent the cost of com-
munication between processes can be quite high. As well, balancing the computation evenly
across all the available processors, especially those on remote computers, can be difficult.
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15.3 Introduction to Parallel Programming with Tasks
Parallel Execution

Consider two procedures, f and g. f contains a sequence of statements, , , ..., , and

g contains the sequence, , , ..., . If these two procedures are run in serial, they can

be run in two possible orders: f followed by g, or g followed by f. In other words, the order
in which the statements are run can be either , , ..., , , , ..., or , ,

..., , , , ..., . The programmer defines the order in which the statements are run.

For example, if must run before for the code to execute correctly, the programmer

can call f before g to make sure that the statements run in the correct order.

f := proc()
local i;

>

for i from 1 to 5
do

print( procname[i] );
end do;

end proc:
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g := eval(f):
f();
g();

>

(15.1)

If f and g are called in parallel (that is, at the same time), different sequences can be gener-
ated. Although will run before , the order in which runs relative to cannot be

controlled. Therefore, the order could be , , , , , , .... or it could be , ,

, , , , ... or any other valid order. Also, the statements can be ordered differently

each time these procedures are run; every possible order will eventually happen, given
enough iterations.

The following example uses functions from the Task Programming Model. These functions
are described in the Task Programming Model (page 534) section of this chapter. For now,
consider these functions as a way to start tasks, which are functions that can run in parallel.
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Threads:-Task:-Start( null, Task=[f], Task=[g] );>

(15.2)

Running the statement above multiple times generates different sequences.

If the code requires to execute before to run correctly, running these functions in

parallel may produce errors, even if is the first statement of f and is the last statement

of g. Every possible order will eventually occur; therefore, to write correct parallel code,
you must guarantee that every possible order of execution leads to a correct result.

f := proc( n )
local i, tmp;

>

global shared;

for i from 1 to n
do

tmp := shared;
shared := tmp+1;

end do;
NULL;

end proc:

g := eval(f):>
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shared := 0:>

Threads:-Task:-Start( null, Task=[f,1000], Task=[g,1000] ):>

shared;>

(15.3)

In the example above, f and g increment the global variable shared 1000 times. You might
expect the final value of shared to be 2000; however, this is not the case. The for loop
contains two statements:

- :

- :

When f and g are running in parallel, these statements could run in the following order:

- :

- :

- :

- :

and the increment performed by g is lost.

In some orders, the total will be 2000 and, in fact, every value from 1000 to 2000 could
occur. Therefore, even for this simple example, there are 1001 different possible outcomes
and even more possible orders.

In sequential programs, the order in which statements are run are defined by the programmer.
In parallel code, the order in which statements run is not defined exclusively by the code.
In other words, a programmer who writes parallel code must consider all of the different
possible orders to determine if the code is correct.

Functions that work correctly when run in parallel with other code are called safe. Functions
that do not work correctly when run in parallel with other code are called unsafe.

How the Ordering Is Determined

The operating system can interrupt and pause a task that is running for many reasons. If the
task tries to access a memory location, the operating system may need to transfer the value
into a register. This process could take hundreds, thousands, or even millions of cycles. If
the task tries to access a system resource (for example, by reading or writing data, allocating
memory, and so on), the operating system may need to pause the task while it waits for the
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resource to become available. Also, the operating system may move a task from a core to
allow another process to run.

Therefore, many factors may cause a task to pause for a brief or long time period. In some
cases, the task may pause as a result of the action that is being performed; however, other
factors are beyond the task's control.

Issues Caused by Multiple Orders

These multiple potential orders may cause other issues when developing parallel code. For
example, parallel code can be difficult to test because orders that cause issues may not occur
during testing. This is particularly true if you are developing code on a single-core computer.
Many orders that are possible on multiple-core computers may never occur on a single-core
computer.

Controlling Parallel Execution

The previous section provided a simple example of parallel code with 1001 possible out-
comes. Each outcome can result from multiple statement orders and there are numerous
potential statement orders for even simple code. The only way to write correct parallel
programs is to get a handle on all of these orders.

Execution Orders That Do Not Matter

Many of the possible orders will not cause problems. Consider the following example, which
is similar to the previous one.

f := proc( n )
local i, tmp;

>

global shared;

shared[procname] := 0;
for i from 1 to n
do

tmp := shared[procname];
shared[procname] := tmp+1;

end do;

NULL;
end proc:

g := eval(f):>

shared := table():>

Threads:-Task:-Start( null, Task=[f,1000], Task=[g,1000] ):>
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shared[f]+shared[g];>

(15.4)

In this case, the result is 2000 each time you run the code. The difference between this ex-
ample and the example above is that although there are just as many statement orders, the
orders do not cause conflicts. In this example the two tasks are not writing to the same loc-
ation in memory. In general, statements that cause issues are statements that access shared
data. In the first example, the two tasks share the value stored by the variable, shared. As
the two tasks modify shared, conflicts occur. In this example, both threads write to different
variables, so no conflicts occur. The regions of code that contain statements that cause
conflicts are called critical sections.

By understanding this concept, you can limit yourself to worrying about the orderings that
involve critical sections. This also implies that if you have fewer critical sections in your
parallel code, it will be easier to make the code work properly.

Shared Data in Maple

Since sharing data may cause issues in parallel programming, it is useful to consider how
data can be shared in Maple. A piece of data is shared if it is accessible from multiple tasks
that are running in parallel. Also, data that can be accessed from a shared value is also
shared. In particular, if a shared variable is assigned a module, all of the data in the module
is also shared, including the module locals. Similarly, remember tables of shared procedures
are also shared.

The most common way data is shared is using global variables. A global variable can be
accessed from anywhere in the code, so whenever a procedure uses a global variable, it
could conflict with another procedure running in parallel. In a similar way, lexically scoped
variables that are used in tasks that run in parallel are also shared. Another way to share
data is to pass the same value into multiple tasks as an argument.

For more information, see Variables in Procedures (page 227).

Sharing Data Safely

It is often necessary to share data to implement a parallel algorithm, so you must consider
how to share data safely.

The simplest method for sharing data safely is to treat the shared data as read-only. If the
tasks do not modify the shared data, no conflicts will occur. However, if even one task
modifies the shared data, all of the tasks (even the ones that simply read data) must access
shared data carefully.

Another method is to share a data structure, such as an Array, but limit which elements of
the structure are accessible by certain tasks. For example, two tasks can share an Array if
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each task only accesses one half of the Array. In such an example, the tasks share a structure,
but not the data within the structure.

In the following example, an Array is shared between two tasks.

task := proc( A, lo, hi )
local i, x;

>

for i from lo to hi
do

x := A[i];
A[i] := x^4+4*x^3+6*x^2+4*x+1;

end do;
end proc:

N := 10^5:>

N2 := floor(N/2):>

A := Array( 1..N, x->(Float(x)/N) ):
Threads:-Task:-Start( null, Task=[task,A,1,N2],
Task=[task,A,N2+1,N] ):

>

Protecting Critical Sections

If you can't avoid creating critical sections using techniques like the ones described in the
previous section, you will need to protect them by creating mutual exclusion sections of
your code. These sections guarantee that at most one task can execute code in the protected
sections at a time.

To create a mutual exclusion zone, use a Mutex. A mutex can be in one of two states: locked
or unlocked. If a mutex is unlocked, any task can lock it. If a mutex is locked and a task at-
tempts to lock it, the task waits until the mutex is unlocked, and then it attempts to lock the
mutex again. This means that only one task can lock the mutex.

If all of the tasks only access the critical section while holding the lock, there will never be
more than one task accessing the shared data at a time. Therefore, by using a mutex, multiple
tasks can run in parallel and share data without conflicting with other tasks.

The following example takes the unsafe code from the first example and adds a mutex to
make it safe.

task := proc(m, n)
local i, tmp;

>

global common_variable;

for i to n do
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Threads:-Mutex:-Lock(m);
tmp := common_variable;
common_variable := tmp + 1;
Threads:-Mutex:-Unlock(m)

end do;
NULL

end proc:

common_variable := 0:>

m := Threads:-Mutex:-Create():>

Threads:-Task:-Start( null, Task=[task,m,1000], Task=[task,m,1000]
):

>

common_variable;>

(15.5)

Note: The excessive use of mutexes may cause performance issues. First, simply having to
lock and unlock a mutex will add processing time to your code. However, more significantly,
if a thread tries to lock a mutex that is already locked, it must wait. This waiting period re-
duces the parallelism of the algorithm.

The mutex example shown above falls into this category. The body of the task runs while
holding a lock, which means that, at most, one task can run that code at a time. To fix this,
limit the access to the global variable. For this example, a local variable can be used and
the local results can be combined once at the end of the execution.

task := proc(m, n)
local i, local_sum;

>

global common_variable;

local_sum := 0;
for i to n do

local_sum := local_sum + 1;
end do;

Threads:-Mutex:-Lock(m);
common_variable := common_variable + local_sum;
Threads:-Mutex:-Unlock(m)

end proc:

common_variable := 0:>

m := Threads:-Mutex:-Create():>
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Threads:-Task:-Start( null, Task=[task,m,1000], Task=[task,m,1000]
):

>

common_variable;>

(15.6)

15.4 Task Programming Model
The Task Programming Model is a high-level parallel programming interface. It is designed
to make parallel programming easier.

Tasks

Consider the following Maple procedure.

f := proc() fc( f1(args1), f2(args2), ..., fn(argsn) ); end proc;>

To evaluate , the values are evaluated and their return values are computed. These return
values are then passed to as arguments. When completes, its return value is passed
as the return value of . The Task Programming Model takes this pattern, but creates tasks
for the values and . A task is a piece of executable code. In Maple, a task is a procedure
combined with a set of arguments to that procedure. Once a task is created, the Maple kernel
can run it. By allowing the kernel to schedule tasks, Maple can automatically distribute
them to available processors of your computer.

In the example above, a function call, , can be replaced by a task, , in a straightforward
way: the procedure is and the arguments are . However, the task, , corresponding
to the function call is more complex. The function call will not run until all the
calls have completed, thus supplying their return values to as arguments. Similarly, the
task must wait for values from before it can run. The procedure of is , and its
arguments are the values returned by the other tasks. These other tasks are called the child
tasks of . Similarly, is called the parent of the tasks. The task is called the con-
tinuation task.

In the example code above, the value returned by is the return value of . Similarly,
when a task, , creates a continuation task, the value returned by the continuation task is
given to the parent of . When this happens, any value returned by the task is discarded.

is effectively replaced by . This occurs because, in the Task Programming Model, tasks
always run until they are complete. A task , does not need to stop in the middle of its exe-
cution to wait for child tasks to complete; instead it can finish and the continuation task will
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handle the return values of the child tasks. If does not create any tasks, its return value is
given to its parent.

The Task Tree

In the Task Programming Model, any task can replace itself with child tasks and a continu-
ation task. Therefore, these newly created tasks can also create additional tasks. This process
creates a tree of tasks. Leaf nodes are the tasks that do not have child tasks and internal
nodes are the tasks that have child tasks. A leaf task does not have child tasks, so it can run
at any time. As leaf tasks complete, their parent tasks may become leaf tasks, allowing them
to run.

Starting Tasks

To create the first task, call the Threads:-Task:-Start function.

Start( task, arg1, arg2, ..., argn ):>

task is the procedure to run as the first task and arg1, arg2, ..., argn are the arguments to
task.

task := proc( )
`+`( _passed );

end proc:

>

Threads:-Task:-Start( task, 1,x^3,q/3 );>

(15.7)

This procedure creates one task. After the task runs and returns a value (or a continuation
function returns a value), that value is the returned by the Start function. Starting a task by
itself is not as useful as starting multiple tasks that run in parallel.

To start child tasks and a continuation function, call the Threads:-Task:-Continue function.

Continue( cont, arg1, arg2, ..., argn ):>

cont is the procedure to use for the continuation task. arg1, arg2, ..., argn are either argu-
ments to cont or child task specifiers of the form
Task=[task, targ1, targ2, ..., targn ]
Tasks=[task, [targs1], [targs2], ..., [targsm] ]

The first task specifier creates one task with the procedure task and arguments targ1, targ2,
..., targn. The second task specifier creates m tasks, each using task as the procedure and
the sequence of expressions targsi as arguments to task i.
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As Continue replaces a running task with child tasks and a continuation task, it can only
be called from within a running task. In addition, it can only be called once per task. However
Continue can be called from any running task, including a continuation task.

When a child task completes, its return value is passed to its parent as a parameter. The
position of the parameter corresponds to the position the task was specified in the call to
the Continue function. The following example illustrates how this passing works.

task := proc(i)
cat( t, i );

end proc:

>

start := proc( )
Threads:-Task:-Continue( print, 1, Task=[task,2], 3,

>

Tasks=[task,[4],[5]], 6 );
end proc:

Threads:-Task:-Start( start );>

(15.8)

The simple example shown earlier can be modified to use the Task Programming Model.

task := proc(n)
local sum, i;

>

sum := 0;
for i from 1 to n
do

sum := sum+1;
end do;

sum;
end proc:

start := proc( )
Threads:-Task:-Continue( `+`, Task=[task,1000],

>

Task=[task,1000] );
end proc:

Threads:-Task:-Start( start );>

(15.9)

By using the value passing behavior of the Task Programming Model, this problem can be
solved without using global variables or a mutex. The return values of the two child tasks
are passed to the continuation function, +. It adds them together and returns the computed
value. This value is then returned by the Start function.
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Task Management

Now that you have the functions to create tasks, you must determine how many tasks to
start. To understand this, a few parallel programming concepts must be considered. Parallel
algorithms are said to scale if they get faster when they run on more cores. A good parallel
algorithm will scale linearly with the number of available processors.

To achieve linear scaling, a parallel algorithm must consider load balancing. Load balancing
refers to techniques used to distribute the work evenly over all the cores of your computer.
If you want to use n cores, you would want to divide the work into n even parts. However,
you may not be able to determine how to divide the work evenly. Dividing the input into n
evenly sized parts may not divide the work evenly. It is possible that one task will require
more time to evaluate than the others. Once the other tasks complete, their cores will be
idle while the remaining task runs.

One way to solve this problem is to create a large number of small tasks. This way, each
task is relatively small. However, even if one task requires more time to run, the other cores
can run many other tasks while one core is running the long task. Another advantage is that
you can create the tasks without considering the number of cores. Thus your code does not
need to know about the underlying hardware.

One limitation is that creating tasks requires resources. If the tasks are too small, the resources
required to create the tasks may dominate the running time. Consider the following example,
which is run on a computer with four cores.

add_range := proc(lo, hi)
local i;

>

add( i, i = lo..hi );
end proc:

The add_range function adds the numbers from lo to hi.

N := 3*10^7:>

start := time[real]():
add_range( 1, N );
time[real]()-start;

>

(15.10)

parallel_add_range := proc( lo, hi, n )
local i,step,d;

>

d := hi-lo+1;
step := floor( d/n );
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Threads:-Task:-Continue( `+`, Tasks=[ add_range,
seq( [i*step+lo,(i+1)*step], i=0..n-2 ),

[ (n-1)*step+lo,hi ] ] );
end proc:

The parallel_add_range function also adds the numbers from lo to hi, but it distributes the
work over n tasks.

start := time[real]():
Threads:-Task:-Start( parallel_add_range, 1, N, 2 );
time[real]()-start;

>

(15.11)

start := time[real]():
Threads:-Task:-Start( parallel_add_range, 1, N, 4 );
time[real]()-start;

>

(15.12)

start := time[real]():
Threads:-Task:-Start( parallel_add_range, 1, N, 100 );
time[real]()-start;

>

(15.13)

Increasing the number of tasks from 2 to 4 increases the performance, as you would expect
on a 4 core computer. However further increasing the number of cores from 4 to 100 also
increases the performance. By using a larger number of tasks, Maple is better able to
schedule the work onto available cores.

start := time[real]():
Threads:-Task:-Start( parallel_add_range, 1, N, 10000 );
time[real]()-start;

>

(15.14)
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However, running 10000 tasks introduces a slowdown. The overhead of managing the tasks
begins to become significant. The Task Programming Model is a relatively new feature in
Maple, so this overhead will be reduced in future versions of Maple.

Coarse-grained Versus Fine-grained Parallelism

Consider the following example.

work := proc(n) # do O(n) "work"
local i;

>

for i from 1 to n
do
end do;
n;

end proc:

N := 100000000: # the total amount of work
M := 100:

>

n := N/M:
A := [ seq( M, i=1..n ) ]: # evenly distributed work

t:=time[real]():
add( work( A[i] ), i=1..nops(A) );
time[real]()-t;

>

(15.15)

In this example, the time taken by the work function depends on the input value n. This
process can be parallelized at a high level by subdividing over the input Array until a base
case is reached.

task := proc( A, low, high )
local i, count, mid;

>

mid := high-low;

if ( mid > 10000 ) then
mid := floor(mid/2) + low;
Threads:-Task:-Continue( `+`,

Task=[ task, A, low, mid ],
Task=[ task, A, mid+1, high ] );

else
count := 0;
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for i from low to high
do

count := count + work(A[i]);
end do;

count;
end if;

end proc:

t:=time[real]():
Threads:-Task:-Start( task, A, 1, nops(A) );
time[real]()-t;

>

(15.16)

You can see that this provides a reasonable speedup. High-level parallelism, as shown in
the example above, is called coarse-grained parallelism. Generally, coarse-grained parallel-
ism refers to dividing a problem into subproblems at a high level, and then running the
subproblems in parallel with each other.

However, if a different input is specified, the weakness of coarse-grained parallelism can
be seen. For example, if work is distributed unevenly, the speedup is not as significant.

N2 := N/2:
n := N2/M:
A2 := [ N2, seq( M, i=1..n ) ]:

>

t:=time[real]():
Threads:-Task:-Start( task, A2, 1, nops(A2) );
time[real]()-t;

>

(15.17)

This happens because subdividing over the range does not take into account the actual
amount of work necessary to compute the subranges. In the example above, the first subrange
contains over half the work. Therefore, it may be difficult to divide the work into equal
subsections, by only looking at the input.

Another approach to parallelizing a problem like this is to parallelize the work function.

workTask := proc(n)
local i, m;

>
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if ( n > 10000 ) then
m := floor( n/2 );
Threads:-Task:-Continue( `+`,

Task=[ workTask, m ],
Task=[workTask, n-m ] );

else
for i from 1 to n
do
end do;

n;
end if;

end proc:

work := proc(n) # do O(n) "work"
local i;

>

if ( n > 10000 ) then
Threads:-Task:-Start( workTask, n );

else
for i from 1 to n
do
end do;

n;
end if;

end proc:

t:=time[real]():
add( work( A2[i] ), i=1..nops(A2) );
time[real]()-t;

>

(15.18)

Low-level parallelism, as shown in the example above, is called fine-grained parallelism.
Simply using the parallelwork function gives a speedup in this case. However, fine-grained
parallelism also has flaws. In particular, although thework function is faster for large inputs,
it is not faster than the sequential version for small inputs. Thus, when you have an even
distribution of work, there is no advantage to using this approach.
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t:=time[real]():
add( work( A[i] ), i=1..nops(A) );
time[real]()-t;

>

(15.19)

The best solution is to use both coarse and fine-grained parallelism.Note: Thework function
has been redefined, so task will now use the new definition.

t:=time[real]():
Threads:-Task:-Start( task, A2, 1, nops(A2) );
time[real]()-t;

>

(15.20)

Using both coarse and fine-grained parallelism combines the best of both of these approaches.

15.5 Examples
The N Queens Problem

On an N by N chess board, find the positions for N queens such that no two queens can
capture each other. A queen can capture other chess pieces in the row and column in which
it is positioned, and along the two diagonals that pass through the queen's position.

We will represent the board position by an Array of length N. Each element of the Array
is an integer in the range 1..N, and each integer only appears once. The combination of the
Array index and the element stored at that index specify the position of a queen.

This representation is sufficient because only one queen can be in each row and column at
a time. These restrictions can be specified while creating the positions, so when the chess
board layouts are checked for valid solutions, we only need to look for conflicts along the
diagonals.
nQueens := module()

local checkBoard,
completeBoardAndCheck,
searchTask,
continuation,
subInit;

export ModuleApply;

(* Check a board layout to see if it is a valid solution. Row
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and column conflicts have already been filtered out based on
how the board was constructed, so we only need to look for
conflicts along the diagonals. *)

checkBoard := proc( n, board::Array )
local i, j, index;

for i from 1 to n-1
do

index := board[i]+1;

for j from i+1 to n while index <= n
do

if ( index = board[j] ) then
return NULL;

end if;

index := index + 1;
end do;

index := board[i] - 1;

for j from i+1 to n while index >= 0
do

if ( index = board[j] ) then
return NULL;

end if;

index := index - 1;
end do;

end do;

return Array(board); # return a copy with this instance
end proc;

(* Given an incomplete board, fill in all the remaining possibilities
and

then test them. This is the main sequential part of the algorithm.
*)

completeBoardAndCheck := proc( n, board, i, unused )
local j;

if ( i < n ) then
return op( map( proc( j )
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board[i] := j;
completeBoardAndCheck( n, board, i+1,

unused minus {j} )
end proc, unused ) );

else
board[n] := unused[1];
return checkBoard( n, board );

end if;
end proc;

(* This is the high-level search. We create partial layouts
and either create tasks to create additional layouts or perform
the deep searches. *)

searchTask := proc( i::posint, n::posint, m::nonnegint, board::list )
local j, k, boards, a, used, unused;

unused := { $1..n } minus convert( board[1..i-1], set );

if ( i <= m ) then
Threads:-Task:-Continue( passed,

Tasks = [ searchTask,
seq( [i+1, n, m, [ op(board), j] ], j in unused ) ]

);
else

# Turn lists into Arrays because we work in-place to save memory

return completeBoardAndCheck( n,
Array( 1..n, board, datatype=integer[8]), i, unused );

end if;

return NULL;
end proc;

(* The main entry point. n is the size of the board and m is
how deep to create new tasks *)

ModuleApply := proc( n::posint, m::nonnegint )
local board;

Threads:-Task:-Start( searchTask, 1, n, m, [] );
end proc;

end module:
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By passing 0 as the second argument, child tasks are not actually created. The following is
the running time for sequential execution.

time[real]( nQueens( 9, 0 ) );>

(15.21)

New tasks are created for all of the permutations for the first two rows of the chess board.

time[real]( nQueens( 9, 2 ) );>

(15.22)

15.6 Limitations of Parallel Programming
Parallel programming in Maple is a relatively new feature. Maple has some limitations that
affect the performance of parallel code. As new versions of Maple are released, these limit-
ations will change. For more details about the following limitations, refer to the multithreaded
help page.

Library Code

Only certain Maple library commands are thread-safe. If a Maple command is thread-safe,
a note is included in its help page. If a Maple command that is not thread-safe is used in
parallel code, may not work correctly.

A list of all the thread safe functions is available in the Maple help system on the index/thread-
safe help page.

Maple Interpreter

The Maple interpreter executes all the code written in Maple. It is able to execute most
Maple statements in parallel, however there are some internal systems that can reduce par-
allelism.

For a description of the performance issues in your version of Maple, see the multith-
readed/performancelimitations help page.

15.7 Avoiding Common Problems
This section provides a list of hints and common mistakes that will help you understand
and avoid common errors made in parallel programming.

Every Execution Order Will Happen

In parallel code, all possible execution orders will eventually occur. Therefore, never assume
that a statement of one task will complete before another statement in another task, no
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matter how unlikely it seems that the other statement could run first. Always use the parallel
programming tools in Maple (that is, the task dependencies in the Task Programming
Model or mutexes) to enforce the order of execution.

Lock around All Accesses

It is common to think that if you have shared data, you only need to lock when modifying
the data, but not when reading from the data. In general, this is not correct. If one task is
reading data and another task starts writing data, the task that writes data can interfere with
the parallel task that reads data. (Do not forget that tasks can pause at any time.) The only
way to keep the task that writes data from interfering with the task that reads data is by
having the task that reads data acquire the lock.

Debugging Parallel Code

Debugging parallel code can be difficult in many ways. The multiple possible orders can
make bugs difficult to find. In particular, running your parallel code on a single-core machine
may not produce orders that occur on a multicore machine.

Sometimes, the best way to debug parallel code is to do careful code inspections (that is,
reading over the code) with the implications of parallel execution in mind. In the most ex-
treme case, you can consider the shared data as the state in a state machine and the critical
sections as transitions. This can allow you to see potential states and transitions that you
did not consider.

15.8 Introduction to Grid Programming
The Grid package allows the user to launch multiple copies of Maple's computation engine.
Each copy of the engine is independent, thus they do not share memory as in the Task Pro-
gramming Model. This means if the engines need to share data they must communicate by
sending messages back and forth.

Starting a Grid-Based Computation

To start a new computation using the Grid package, use the Grid:-Launch command. This
starts new copies of computation engine, calledNodes, and passes a command to each node.

hello := proc()
printf("I'm node %d of %d\n",Grid:-MyNode(),Grid:-NumNodes());

>

Grid:-Barrier();
end:
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Grid:-Launch(hello);>
I'm node 2 of 4
I'm node 0 of 4
I'm node 1 of 4
I'm node 3 of 4

This example creates a number of nodes, and executes the hello function on each node. The
Grid:-NumNodes command returns the number of nodes that were started by Launch. Grid:-
MyNode returns an integer in the range 0 to NumNodes()-1 which can be used to identify
the executing node. The Grid:-Barrier command creates a synchronization point. All the
nodes must execute the Barrier command before any of them can proceed past it.

Node 0 is given special significance in Grid programming. The value returned by the function
executing in node 0 is returned by the Launch command. Thus when node 0 returns a value,
the whole Grid computation is considered complete. Nodes that are still running are termin-
ated. This is why the call to Barrier is necessary in the previous example, without it node
0 could exit before the other threads have completed executing their commands.

Communicating between Nodes

As nodes are independent processes, to share data you need to explicitly send data from
one node to another.

Launch

Launch allows you to specify data that will be passed to the given functions as arguments.
Additionally, Launch can automatically import global names to each node when nodes are
started. As well, Launch can export global names from node 0 when it exits. In the following
example, we pass two arguments into func, arg1 and arg2, and import the global variable
data1 into each node using the imports argument. We also set the value of data2 in node
0 and use the exports argument to update the value in the main context.

func := proc(arg1, arg2)
global data1, data2;

>

printf( "%d: %a %a %a\n", Grid:-MyNode(), arg1, arg2, data1 );

Grid:-Barrier();

if ( Grid:-MyNode() = 0 ) then
data2 := 1;

end;
end:
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Grid:-Launch( func, 10, 20, imports=[ 'data1'=30 ], exports=[
'data2' ] ):

>

1: 10 20 30
0: 10 20 30
3: 10 20 30
2: 10 20 30

data2;>

(15.23)

One important use of the imports option is the ability to pass user defined functions that
are needed on the nodes. These functions will not be available on the nodes if they are not
explicitly imported to the nodes.

The Grid package also contains two commands for explicitly sending data from one node
to another, Grid:-Send and Grid:-Receive.

Send

Send allows one node to send a Maple expression to another node. Send accepts two argu-
ments, an integer that identifies the destination node and the expression to send. Send does
not wait for the target node to receive the message before returning.

Receive

Receive receives an expression that was sent from another node. Receive has one optional
argument, an integer, that identifies the sender from whom an expression should be read.
Without the argument Receive will return an expression from any sender. If there is no ex-
pression available, a call to Receive will wait until an expression is received. Some care
should be taken as it is possible to cause a deadlock if all nodes are waiting to receive a
message and no one is sending.

An Example Using Send and Receive
circ := proc()
local r, me := Grid:-MyNode(), n := Grid:-NumNodes();

>

if me = 0 then
Grid:-Send(1,0);
r := Grid:-Receive(n-1);

else
r := Grid:-Receive(me-1);
Grid:-Send(me+1 mod n, r, me);

end if;
end:
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[ Grid:-Launch( circ ) ];>

(15.24)

The next section includes a more complex example using Send and Receive.

15.9 Grid Examples
Computing a Mandelbrot Set

Here is a simple function for computing the Mandelbrot set. It creates a 2 dimensional Array
that stores the computed values.
Mandelbrot := module()

local MandelLoop,
ModuleApply;

MandelLoop := proc( X, Y, imageArray, i_low, i_high, j_low, j_high,
iter, bailout )

local i, j, Xc, Yc, Xtemp, Ytemp, Xold, Yold, k, t;
option hfloat;

for i from i_low to i_high do
for j from j_low to j_high do

Xtemp := X[i];
Ytemp := Y[j];
Xc := Xtemp;
Yc := Ytemp;
k := 0;
while k < iter do

Xold := Xtemp;
Yold := Ytemp;
Xtemp := Xold^2-Yold^2+Xc;
Ytemp := 2*Xold*Yold+Yc;
t := Xtemp^2+Ytemp^2;
if Xtemp^2+Ytemp^2 >= bailout then

imageArray[i, j, 1] := k - ln( ln( t ) )/ln(2.);
imageArray[i, j, 2] := imageArray[i, j, 1];
imageArray[i, j, 3] := imageArray[i, j, 1];
break;

end if;
k := k+1;

end do
end do;

end do;
end proc:
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ModuleApply := proc ( ptsY, ptsX, iter, X1, X2, Y1, Y2, bailout )
local X, Y, imageArray, i:

X := Vector(ptsX, i->X1+(X2-X1)*(i-1)/(ptsX-1) , datatype =
float[8]);

Y := Vector(ptsY, i->Y1+(Y2-Y1)*(i-1)/(ptsY-1) , datatype =
float[8]);

imageArray := Array(1 .. ptsY, 1 .. ptsX, 1 .. 3, datatype =
float[8]);

MandelLoop( X, Y, imageArray, 1, ptsX, 1, ptsY, iter, bailout );

return imageArray;
end proc:

end:

N := 500:
s := time[real]():

>

points := Mandelbrot( N, N, 100, -2.0, .7, -1.35, 1.35, 10.0 ):
time[real]()-s;

(15.25)

We can implement a Grid-based implementation by dividing the input range into evenly
sized chunks. In the following example a node uses its node identifier to determine which
chuck of the final Array it should use. Once a node has completed its computation, it sends
the computed Array to node 0. Node 0 collects all the results and returns them. These results
are then combined into a single output Array.
Mandelbrot := module()

local MandelLoop,
MandelGrid,
ModuleApply;

MandelLoop := proc( X, Y, imageArray, i_low, i_high, j_low, j_high,
iter, bailout )

local i, j, Xc, Yc, Xtemp, Ytemp, Xold, Yold, k, t;
option hfloat;

for i from i_low to i_high do
for j from j_low to j_high do

Xtemp := X[i];
Ytemp := Y[j];
Xc := Xtemp;
Yc := Ytemp;
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k := 0;
while k < iter do

Xold := Xtemp;
Yold := Ytemp;
Xtemp := Xold^2-Yold^2+Xc;
Ytemp := 2*Xold*Yold+Yc;
t := Xtemp^2+Ytemp^2;
if t >= bailout then

imageArray[i, j, 1] := k - ln( ln( t ) )/ln(2.);
imageArray[i, j, 2] := imageArray[i, j, 1];
imageArray[i, j, 3] := imageArray[i, j, 1];
break;

end if;
k := k+1;

end do
end do;

end do;
end proc:

MandelGrid := proc( X, Y, iter, bailout )
local i, n, step, imageData, start, endp;

n := Grid:-NumNodes();
i := Grid:-MyNode();
step := floor( numelems( X )/n );

if ( i = 0 ) then
start := 1;
endp := step;

elif ( i = n-1 ) then
start := step*(n-1)+1;
endp := numelems(X);

else
start := step*i+1;
endp := step*(i+1);

end;

imageData := Array( start..endp, 1..numelems(Y), 1..3,
datatype=float[8] );

MandelLoop( X, Y, imageData, start, endp, 1, numelems(Y), iter,
bailout );

if ( i > 0 ) then
Grid:-Send(0,imageData);

else
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[ imageData, seq( Grid:-Receive(i), i = 1..n-1 ) ];
end;

end proc:

ModuleApply := proc ( ptsX, ptsY, iter, X1, X2, Y1, Y2, bailout )
local X, Y, imageData, ret, i, l, u:

X := Vector(ptsX, i->X1+(X2-X1)*(i-1)/(ptsX-1) , datatype =
float[8]);

Y := Vector(ptsY, i->Y1+(Y2-Y1)*(i-1)/(ptsY-1) , datatype =
float[8]);

ret := Grid:-Launch( MandelGrid, X, Y, iter, bailout,
imports=[ ':-MandelLoop'=eval(MandelLoop)

] );
imageData := Array( 1..ptsX, 1..ptsY, 1..3, datatype=float[8] );

for i in ret
do

l := lowerbound( i );
u := upperbound( i );
imageData[l[1]..u[1], l[2]..u[2], 1..3] := i;

end;

imageData;
end proc:

end:

For this example we are executing on a four core machine.

Grid:-NumNodes();>

(15.26)

s := time[real]():
points := Mandelbrot( N, N, 100, -2.0, .7, -1.35, 1.35, 10.0 ):
time[real]()-s;

>

(15.27)

Although we do see a speed up, it is not a good as we'd expect. If you execute this example
and watch the CPU utilization, you'll notice that some nodes complete quite quickly, while
others run for longer. This indicates that the distribution of work is uneven between nodes.

We can improve this by using a Client/Server model for work distribution. In this model,
one node (node 0 in our case) acts as a server handing out work to clients as they request
it. As long as work is available the clients can continue computing. In the following example
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the server passes row indexes to the clients. The client then computes the entire row. The
computed row is sent back to the server, which collects all the rows and reconstructs them
into the final Array.

It is important to notice that the following example starts an extra node. The server node
does relatively little work, compared to the other nodes. Thus we create one client for each
processor. The server node does not need a complete processor for itself.
Mandelbrot := module()

local
ComputeLine,
GridFunction,
Server,
Client,
ModuleApply;

ComputeLine := proc( X, Y, imageArray, j_low, j_high, iter, bailout )
local j, Xc, Yc, Xtemp, Ytemp, Xold, Yold, k, t;
option hfloat;

for j from j_low to j_high do
Xtemp := X;
Ytemp := Y[j];
Xc := Xtemp;
Yc := Ytemp;
k := 0;

imageArray[j, 1] := 0.0;
imageArray[j, 2] := 0.0;
imageArray[j, 3] := 0.0;

while k < iter do
Xold := Xtemp;
Yold := Ytemp;
Xtemp := Xold^2-Yold^2+Xc;
Ytemp := 2*Xold*Yold+Yc;
t := Xtemp^2+Ytemp^2;
if t >= bailout then

imageArray[j, 1] := k - ln( ln( t ) )/ln(2.);
imageArray[j, 2] := imageArray[j, 1];
imageArray[j, 3] := imageArray[j, 1];
break;

end if;
k := k+1;

end do;
end do;
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end proc:

Server := proc( X, Y, iter, bailout )
local i, msg, imageData;

imageData := Array( 1..numelems(X), 1..numelems(Y), 1..3,
datatype=float[8] );

for i from 1 to numelems(X)
do

# get a request for work
msg := Grid:-Receive();
# send out work
Grid:-Send( msg[1], i );

if ( numelems( msg ) > 1 ) then
# if the request included a result, store it
imageData[ msg[2], 1..numelems(Y), 1..3 ] := msg[3];

end;
end;

# we've sent out all the data, receive the last results
for i from 1 to Grid:-NumNodes()-1
do

msg := Grid:-Receive();
imageData[ msg[2], 1..numelems(Y), 1..3 ] := msg[3];

end;

# send terminate messages out to the nodes.
for i from 1 to Grid:-NumNodes()-1
do

Grid:-Send( i, -1 );
end;

imageData;
end;

Client := proc( i, X, Y, iter, bailout )
local msg, imageData;

imageData := Array( 1..numelems(Y), 1..3, datatype=float[8] );

# send the initial request for data
Grid:-Send( 0, [i] );
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do
# wait for a reply
msg := Grid:-Receive( 0 );

# if it is a terminate message break out of the loop
if ( msg = -1 ) then

break;
end;

# calculate the row, send it back to the master
ComputeLine( X[msg], Y, imageData, 1, numelems(Y), iter, bailout

);
Grid:-Send( 0, [i,msg,imageData] );

end;

NULL;
end;

GridFunction := proc( X, Y, iter, bailout )
local i;

i := Grid:-MyNode();
if ( i = 0 ) then

Server( X, Y , iter, bailout );
else

Client( i, X, Y , iter, bailout );
end;

end proc:

ModuleApply := proc ( ptsX, ptsY, iter, X1, X2, Y1, Y2, bailout )
local X, Y, ret:

X := Vector(ptsX, i->X1+(X2-X1)*(i-1)/(ptsX-1) , datatype =
float[8]);

Y := Vector(ptsY, i->Y1+(Y2-Y1)*(i-1)/(ptsY-1) , datatype =
float[8]);

Grid:-Launch( GridFunction, X, Y, iter, bailout,
numnodes=Grid:-NumNodes()+1,
imports=[

':-ComputeLine'=eval(ComputeLine),
':-Server'=eval(Server),
':-Client'=eval(Client)
] );
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end proc:
end:

s := time[real]():
points := Mandelbrot( N, N, 100, -2.0, .7, -1.35, 1.35, 10.0 ):
time[real]()-s;

>

(15.28)

Using the client/server model to better distribute the work over the nodes, we get speed ups
that match our expectations, four processors leads to a four times speed up.

15.10 The Grid Computing Toolbox
In addition to the Grid package included in Maple, theGridComputing Toolbox is available
as an add-on for Maple. The Grid Computing Toolbox enables nodes to run on remote Grid
servers. These remote servers can support a much larger number of nodes distributed over
multiple computers.

An algorithm implemented on top of the Grid package that ships with Maple should work
on top of the Grid Computing Toolbox. The Grid Computing Toolbox does introduce new
functions, however these functions are mostly dedicated to managing remote servers.

There are a few differences between local and remote execution. First, local nodes may start
with local Maple libraries available. These libraries will generally not be available to remote
nodes. Instead of relying on sharing the libraries via libname, explicitly pass the routines
you need using the Launch command's imports parameter.

15.11 Limitations
There are a few situations where it may be difficult to effectively take advantage of the Grid
package.

Memory Usage

With the Grid package, multiple processes run on the local machine. If the original compu-
tation requires a significant amount of memory, then each Grid node may still require a
significant amount of memory, effectively multiplying the amount of memory needed by
the number of nodes. This could consume all the memory resources on the machine, which
can make the entire computation slower in the long run.

Cost of Communication

Passing data between nodes can be slow. Algorithms where each node needs to have access
to a large amount of data may be difficult to speed up using the Grid package. Minimizing
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the amount of data passed between nodes can be an effective way to optimize a Grid-based
computation.

Load Balancing

The Grid package currently does not have any built in load balancing. Therefore the pro-
grammer is responsible for making sure that all the nodes are kept busy. This can be difficult.
You need to balance the need to have work available for nodes to compute with the overhead
of excessive communication.

15.12 Troubleshooting
Deadlocking

Some care must be taken when using Send and Receive. A call to Receive will wait until a
message is received, so if all nodes call Receive when there are no messages to be read, the
execution will deadlock. In addition there are a few limitations on what types of expressions
can be used for messages. See the Grid:-Send help page for more information.

When an unhandled exception is raised on a node this will cause the node to exit prematurely.
This may cause a Send or Receive to be missed, leading to a deadlock.

libname and Other Engine Variables

The nodes started by the Grid package are independent from the main engine. Thus changes
in the state of the main engine will not be reflected in the other nodes. In particular the value
of libname on the nodes may not be the same as the value of libname in the main engine.
When running local grid, the local nodes will use the same libname as used in the main
engine when the first Grid computation is started. Later changes to libname will not effect
the nodes. In general, it is better to use the Launch command's imports argument to pass
values to the nodes instead of relying on libname.

With remote servers and the Grid Computing Toolbox, the value of libname in the main
engine will have no effect on the value of libname set in the remote nodes.

Missing Functions

Forgetting to send all the necessary functions to the nodes may lead to nodes exiting without
properly executing the work they have been given. This may occur without any exceptions
being raised.
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16 Testing, Debugging, and Efficiency
New programs, whether developed in Maple or any other language, sometimes work incor-
rectly. Problems that occur when a program is run can be caused by syntax errors introduced
during implementation, logic errors in the design of the algorithm, or errors in the translation
of an algorithm's description into code. Many errors can be subtle and hard to find by
visually inspecting your program. Maple provides error detection commands and a debugger
to help you find these errors.

Maple has several commands to help you find errors in procedures. Among these are com-
mands to trace procedure execution, check assertions, raise exceptions and trap errors, and
verify procedure semantics and syntax.

Additionally, the Maple debugger lets you stop in an executing Maple procedure, inspect
and modify the values of local and global variables, and continue the execution process,
either to completion, or one statement or block at a time. You can stop the execution process
when Maple reaches a particular statement, when it assigns a value to a specified local or
global variable, or when a specified error occurs. This facility lets you investigate the inner
workings of a program.

Even when a program is working correctly, you may want to analyze its performance to try
to improve its efficiency. Maple commands are available to analyze the time and memory
consumption involved in running a program.

16.1 In This Chapter
• Using the Maple debugger

• Detailed debugger information

• Additional commands for error detection

• Measuring and improving program efficiency

16.2 The Maple Debugger: A Tutorial Example
The Maple debugger is a tool that you can use to detect errors in your procedures. Using
this facility, you can follow the step-by-step execution of your code to determine why it is
not returning the results that you expect.

This section illustrates how to use the Maple debugger as a tool for debugging a Maple
procedure. The debugger commands are introduced and described as they are applied. For
more information about the debugger commands, seeMapleDebuggerCommands (page 571).

You can use the command-line Maple debugger or you can use the interactive Maple debug-
ger available in the standard interface.

559



Figure 16.1: The Maple Debugger in the Standard Interface

In the standard interface, the interactive Maple debugger is opened automatically by Maple
when a breakpoint or watchpoint is encountered during the execution of a program. An in-
teractive debugger window is displayed, which contains the following components:

• a main text box that displays a procedure name and the debugger output

• a field for entering commands and an associated Execute button

• buttons that perform common debugging functions

While the interactive debugger has a different user interface, it otherwise functions
identically to the command-line Maple debugger. For more information, refer to the Inter-
activeDebugger help page.

This section introduces various debugger commands. To present and describe all of the
options available for these commands, the command-line debugger will be used instead of
the interactive debugger. Note that the Common Debugger Commands buttons in the in-
teractive debugger always implement the corresponding commands with their default options.
To run a debugger command with non-default options in the interactive debugger, enter the
command and options in the Enter a debugger command: field and click the Execute
button.

Example

Consider the following procedure, sieve, which is used as a case study. It implements the
Sieve of Eratosthenes: given a parameter n, return a count of the prime numbers less than
or equal to n. To debug the sieve procedure, breakpoints and watchpoints will be used to
stop the the execution of the procedure at selected points or on selected events.

sieve := proc(n::integer)
local i, k, flags, count,twicei;

>
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count := 0;
for i from 2 to n do

flags[i] := true;
end do;
for i from 2 to n do

if flags[i] then
twicei := 2*i;
for k from twicei by i to n do

flags[k] = false;
end do;
count := count+l;

end if;
end do;
count;

end proc:

Numbering the Procedure Statements I

To use the Maple debugger, you can enter several debugger commands. Many of these de-
bugger commands refer to statements in the procedures that you are debugging. Statement
numbers allow such references. The showstat command displays a Maple procedure along
with numbers preceding each line that begins a new statement.

showstat(sieve);>

sieve := proc(n::integer)
local i, k, flags, count, twicei;

1 count := 0;
2 for i from 2 to n do
3 flags[i] := true

end do;
4 for i from 2 to n do
5 if flags[i] then
6 twicei := 2*i;
7 for k from twicei by i to n do
8 flags[k] = false

end do;
9 count := count+l

end if
end do;

10 count
end proc
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Note: The numbers preceding each line differ from line numbers that may be displayed
in a text editor. For example, keywords that end a statement (such as end do and end if)
are not considered separate Maple commands and are therefore not numbered.

Invoking the Debugger I

To invoke the Maple debugger, execute a procedure and then stop the execution process
within the procedure. To execute a Maple procedure, call it by using a Maple command at
the top level or call it from another procedure. The simplest way to stop the execution process
is to set a breakpoint in the procedure.

Setting a Breakpoint

Use the stopat command to set a breakpoint in the sieve procedure.

stopat(sieve);>

(16.1)

This command sets a breakpoint before the first statement in the procedure sieve. When
you subsequently execute the sieve procedure, Maple stops before executing the first state-
ment and waits for you to provide instructions on what to do next. When the execution
process stops, the debugger prompt is displayed (DBG>).

Note: If a procedure has a remember table or a cache table, you may have to run the restart
command before running a second or subsequent stopat command. For more information
about remember tables and cache tables, see The remember, cache, and system
Options (page 225) or refer to the remember or CacheCommand help pages.

In the following example, the sieve procedure is called.

sieve(10);>
sieve:

1* count := 0;

DBG>

Several pieces of information are displayed after the debugger prompt.

• The previously computed result. This particular execution process stopped at the first
statement before making any computations, so no result appears.

• The name of the procedure in which the execution process has stopped (sieve).

• The execution process stopped before statement number 1. An asterisk (*) follows this
statement number to indicate that a breakpoint was set before the statement.
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At the debugger prompt, you can evaluate Maple expressions and call debugger commands.
Maple evaluates expressions in the context of the stopped procedure. You have access to
the same procedure parameters, and local, global, and environment variables as the stopped
procedure. For example, since the sieve procedure was called with parameter value 10, the
formal parameter n has the value 10.
DBG> n
10
sieve:

1* count := 0;

For each expression that Maple evaluates,

• the result of the expression is displayed; if there is no result, the most recent previous
result is displayed (this output can be suppressed by using a colon to terminate the com-
mand entered at the DBG> prompt)

• the name of the stopped procedure

• the statement number where the procedure stopped followed by the statement, and

• a new debugger prompt.

Note: To remove a breakpoint from a procedure, use the unstopat command.

Controlling the Execution of a Procedure during Debugging I

Debugger commands control how the procedure is executed once the debugger is started.
Some commonly used debugger commands are next, step, into, list, outfrom, and cont.

The next command runs the next statement at the current nesting level. After the statement
is run, control is returned to the debugger. If the statement is a control structure (for example,
an if statement or a loop), the debugger runs any statements within the control structure that
it would normally run. It stops the execution process before the next statement after the
control structure. Similarly, if the statement contains calls to procedures, the debugger ex-
ecutes these procedure calls in their entirety before the execution process stops.
DBG> next
0
sieve:

2 for i from 2 to n do
...

end do;

DBG>

The 0 in the first line of the output represents the result of the statement that was run--that
is, the result of count := 0. A "*" does not appear next to the statement number because
there is no breakpoint set immediately before statement 2. The debugger does not show the
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body of the for loop, which itself consists of statements with their own statement numbers,
unless the execution process actually stops within its body. Maple represents the body of
compound statements by ellipses (...).

Running the next command again results in the following output.
DBG> next
true
sieve:

4 for i from 2 to n do
...

end do;
DBG>

The execution process now stops before statement 4. Statement 3 (the body of the previous
for loop) is at a deeper nesting level. The loop is executed n-1 times. The debugger displays
the last result computed in the loop (the assignment of the value true to flags[10]).

Tip: If you want to repeat the previous debugger command, as shown in the second next
command above, you can press Enter at the DBG> prompt. You can also view your recent
command history using the up and down arrow keys on your keyboard.

To step into a nested control structure (such as an if statement or for loop) or a procedure
call, use the step debugger command.
DBG> step
true
sieve:

5 if flags[i] then
...

end if
DBG> step
true
sieve:

6 twicei := 2*i;

DBG>

If you use the step debugger command when the next statement to run is not a deeper
structured statement or procedure call, it has the same effect as the next debugger command.
DBG> step
4
sieve:

7 for k from twicei by i to n do
...

end do;
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DBG>

At any time during the debugging process, you can use the showstat debugger command to
display the current status of the debugging process.
DBG> showstat

sieve := proc(n::integer)
local i, k, flags, count, twicei;

1* count := 0;
2 for i from 2 to n do
3 flags[i] := true

end do;
4 for i from 2 to n do
5 if flags[i] then
6 twicei := 2*i;
7 ! for k from twicei by i to n do
8 flags[k] = false

end do;
9 count := count+l

end if
end do;

10 count
end proc

DBG>

Maple displays a debugger prompt to indicate that you are still working within the Maple
debugger. The asterisk (*) indicates the unconditional breakpoint. An exclamation point (!)
that follows a statement number (see line 7) indicates the statement at which the procedure
is stopped.

To continue the debugging process, run another debugger command. For example, you can
use into or step to enter the innermost loop.

The behavior of the into debugger command is between that of the next and step commands.
The execution process stops at the next statement in the current procedure independent of
whether it is at the current nesting level or in the body of a control structure (an if statement
or a loop). That is, the into command steps into nested statements, but not procedure calls.
It executes called procedures completely and then stops.
DBG> into
4
sieve:

8 flags[k] = false
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DBG>

A debugger command that is related to showstat is the list command. It displays the previous
five statements, the current statement, and the next statement to indicate where the procedure
has stopped.
DBG> list

sieve := proc(n::integer)
local i, k, flags, count, twicei;

...
3 flags[i] := true

end do;
4 for i from 2 to n do
5 if flags[i] then
6 twicei := 2*i;
7 for k from twicei by i to n do
8 ! flags[k] = false

end do;
9 count := count+l

end if
end do;
...

end proc

DBG>

You can use the outfrom debugger command to finish the execution process at the current
nesting level or at a deeper level. Execution of the procedure is stopped once a statement
at a shallower nesting level is reached, that is, after a loop terminates, a branch of an if
statement executes, or the current procedure call returns.
DBG> outfrom
true = false
sieve:

9 count := count+l

DBG> outfrom
l
sieve:

5 if flags[i] then
...

end if

DBG>
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The cont debugger command continues the execution process until either the procedure
stops normally or encounters another breakpoint.
DBG> cont

(16.2)

The procedure does not give the expected output. Although you may find the reason obvious
from the previous debugger command examples, in other cases, it may not be easy to find
procedure errors. Therefore, continue to use the debugger. First, use the unstopat command
to remove the breakpoint from the sieve procedure.

unstopat(sieve);>

(16.3)

Invoking the Debugger II

The procedure sieve maintains the changing result in the variable count. Therefore, a logical
place to look during debugging is wherever Maple modifies count. The easiest way to do
this is by using awatchpoint, which starts the debugger whenever Maple modifies a variable
that you identify.

Setting a Watchpoint

Use the stopwhen command to set watchpoints. In this case, the execution process will stop
whenever Maple modifies the variable count in the procedure sieve.

stopwhen([sieve,count]);>

(16.4)

The stopwhen command returns a list of all the currently watched variables (that is, the
variables that you provided to the stopwhen command).

Execute the sieve procedure again.

sieve(10);>
count := 0
sieve:

2 for i from 2 to n do
...

end do;

DBG>
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The execution process stops because Maple modified count and the debugger displays the
assignment statement count := 0. Similar to breakpoints, the debugger then displays the
name of the procedure and the next statement to be run in the procedure. Note that the exe-
cution process stops after Maple assigns a value to count.

This first assignment to count is correct. Use the cont debugger command to continue the
execution process.
DBG> cont
count := l
sieve:

5 if flags[i] then
...

end if

DBG>

At first glance, this may look correct. Assume that the output is correct and continue the
execution process.
DBG> cont
count := 2*l
sieve:

5 if flags[i] then
...

end if

DBG>

This output appears to be incorrect because Maple should have simplified 2*1. Note that it
printed 2*l (two times the letter l) instead. By examining the source text for the procedure,
you can see that the letter "l" was entered instead of the number "1". Since the source of
the error has been discovered, you can stop the procedure. Use the quit debugger command
to stop the debugger, and then use the unstopwhen command to remove the watchpoint
from the procedure.
DBG> quit
Interrupted

unstopwhen();>

(16.5)

After correcting the source code for sieve, run the restart command, re-execute that source
code (for example, read it into your command-line session or re-execute that code region
in your worksheet), and execute the procedure again.
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restart;>

sieve := proc(n::integer)
local i, k, flags, count,twicei;

>

count := 0;
for i from 2 to n do

flags[i] := true;
end do;
for i from 2 to n do

if flags[i] then
twicei := 2*i;
for k from twicei by i to n do

flags[k] = false;
end do;
count := count+1;

end if;
end do;
count;

end proc:

sieve(10);>

(16.6)

This result is still incorrect. There are four primes less than 10, namely 2, 3, 5, and 7.
Therefore, start the debugger once more, stepping into the innermost parts of the procedure
to investigate. Since you do not want to start executing the procedure from the start, set the
breakpoint at statement 6.

stopat(sieve,6);>

(16.7)

sieve(10);>
true
sieve:

6* twicei := 2*i;

DBG> step
4
sieve:

7 for k from twicei by i to n do
...

end do;

DBG> step
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4
sieve:

8 flags[k] = false

DBG> step
true = false
sieve:

8 flags[k] = false

DBG>

The last step reveals the error. The previously computed result should have been false (from
the assignment of flags[k] to the value false), but instead the value true = falsewas returned.
An equation was used instead of an assignment. Therefore, Maple did not set flags[k] to
false.

Once again, stop the debugger and correct the source text.
DBG> quit
Interrupted

The following code represents the corrected procedure.

sieve := proc(n::integer)
local i, k, flags, count,twicei;

>

count := 0;
for i from 2 to n do

flags[i] := true
end do;
for i from 2 to n do

if flags[i] then
twicei := 2*i;
for k from twicei by i to n do

flags[k] := false;
end do;
count := count+1;

end if;
end do;
count;

end proc:

Execute the sieve procedure again to test the corrections.

sieve(10);>

(16.8)
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The sieve procedure returns the correct result.

16.3 Maple Debugger Commands
This section provides additional details about the commands used in The Maple Debugger:
A Tutorial Example (page 559) and a description of other debugger commands.

Numbering the Procedure Statements II

The showstat command has the following syntax. The procedureName parameter is optional.

showstat( procedureName );

If showstat is called with no arguments, all procedures that contain breakpoints are displayed.

You can also use the showstat command to display a single statement or a range of statements
by using the following syntax.

showstat( procedureName, number );

showstat( procedureName, range );

In these cases, the statements that are not displayed are represented by ellipses (...). The
procedure name, its parameters, and its local and global variables are always displayed.

f := proc(x)
if x <= 2 then

>

print(x);
end if;
print(-x);

end proc:

showstat(f, 2..3);>

f := proc(x)
...

2 print(x)
end if;

3 print(-x)
end proc

Invoking the Debugger III

This section provides additional information about breakpoints and watchpoints.
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Setting Breakpoints

The stopat command has the following syntax, where procedureName is the name of the
procedure in which to set the breakpoint, statementNumber is the line number of the
statement in the procedure before which the breakpoint is set, and condition is a Boolean
expression which must be true to stop the execution process. The statementNumber and
condition arguments are optional.

stopat( procedureName, statementNumber, condition );

The condition argument can refer to any global variable, local variable, or parameter of the
procedure. These conditional breakpoints are indicated by a question mark (?) if the showstat
command is used to display the procedure.

Since the stopat command sets the breakpoint before the specified statement, when Maple
encounters a breakpoint, the execution process stops and Maple starts the debugger before
the statement.

Note: This means that you cannot set a breakpoint after the last statement in a statement
sequence--that is, at the end of a loop body, an if statement body, or a procedure.

If two identical procedures exist, depending on how you created them, they may share
breakpoints. If you entered the procedures individually, with identical procedure bodies,
they do not share breakpoints. If you created a procedure by assigning it to the body of an-
other procedure, their breakpoints are shared.

f := proc(x) x^2 end proc:
g := proc(x) x^2 end proc:

>

h := op(g):
stopat(g);

(16.9)

showstat();>

g := proc(x)
1* x^2

end proc

h := proc(x)
1* x^2

end proc
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Removing Breakpoints

The unstopat command has the following syntax, where procedureName is the name of
the procedure that contains the breakpoint, and statementNumber is the line number of
the statement where the breakpoint is set. The statementNumber parameter is optional.

unstopat( procedureName, statementNumber );

If statementNumber is omitted in the call to unstopat, all breakpoints in the procedure
procedureName are cleared.

Setting Explicit Breakpoints

You can set an explicit breakpoint by inserting a call to the DEBUG command in the source
text of a procedure. The DEBUG command has the following syntax. The argument para-
meter is optional.

DEBUG( argument );

If no argument is included in the DEBUG command, execution in the procedure stops at
the statement following the location of the DEBUG command, and then the debugger is
started.

Note: The showstat command does not mark explicit breakpoints with an "*" or a "?".

f := proc(x,y) local a;
a:=x^2;

>

DEBUG();
a:=y^2;

end proc:

showstat(f);>

f := proc(x, y)
local a;

1 a := x^2;
2 DEBUG();
3 a := y^2

end proc

f(2,3);>
4
f:

3 a := y^2

DBG> quit
Interrupted
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If the argument of the DEBUG command is a Boolean expression, the execution process
stops only if the Boolean expression evaluates to true. If the Boolean expression evaluates
to false or FAIL, the DEBUG command is ignored.

f := proc(x,y) local a;
a:=x^2;

>

DEBUG(a<1);
a:=y^2;
DEBUG(a>1);
print(a);

end proc:

f(2,3);>
9
f:

5 print(a)

DBG> quit
Interrupted

If the argument of the DEBUG command is a value other than a Boolean expression, the
debugger prints the value of the argument (instead of the last result) when the execution
process stops at the following statement.

f := proc(x)
x^2;

>

DEBUG("This is my breakpoint. The current value of x is:",
x);

x^3;
end proc:

f(2);>
"This is my breakpoint. The current value of x is:",
2
f:

3 x^3

DBG>

Removing Explicit Breakpoints

The unstopat command cannot remove explicit breakpoints. You must remove breakpoints
that were set by using DEBUG by editing the source text for the procedure.
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DBG> unstopat
[f]
f:

3 x^3

DBG> showstat

f := proc(x)
1 x^2;
2 DEBUG("This is my breakpoint. The current value of x is:", x);
3 ! x^3

end proc

DBG> quit
Interrupted

Note: If you display the contents of a procedure by using the print command (or lprint)
and the procedure contains a breakpoint that was set by using stopat, the breakpoint appears
as a call to DEBUG.

f := proc(x) x^2 end proc:>

stopat(f);>

(16.10)

print(f);>

(16.11)

Setting Watchpoints

The stopwhen command can take the following forms.

stopwhen( globalVariableName );

stopwhen( [procedureName, variableName] );

The first form specifies that the debugger should be started when the global variable glob-
alVariableName is changed. Maple environment variables, such as Digits, can also be
monitored by using this method.

stopwhen(Digits);>

(16.12)

The second form starts the debugger when the (local or global) variable variableName is
changed in the procedure procedureName.

When any form of stopwhen is called, Maple returns a list of the current watchpoints.
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The execution process stops afterMaple assigns a value to the watched variable. The debug-
ger displays an assignment statement instead of the last computed result (which would
otherwise be the right-hand side of the assignment statement).

Clearing Watchpoints

The syntax to call unstopwhen is the same as that for stopwhen. Similar to the stopwhen
command, the unstopwhen command returns a list of all (remaining) watchpoints.

If no arguments are included in the call to unstopwhen, then all watchpoints are cleared.

Setting Watchpoints on Specified Errors

You can use an error watchpoint to start the debugger when Maple returns a specified error
message. When a watched error occurs, the procedure stops executing and the debugger
displays the statement in which the error occurred.

Error watchpoints are set by using the stoperror command. The stoperror command has the
following syntax

stoperror( "errorMessage" );

where errorMessage is a string or a symbol that represents the error message returned from
the evaluation of a Maple expression. If the argument is a string, the debugger will be started
when an error for which the given string is a prefix is encountered. A list of the current error
watchpoints is returned.

If no argument is entered in the call to stoperror, the list of current (error) watchpoints is
returned.

stoperror();>

(16.13)

stoperror( "numeric exception: division by zero" );>

(16.14)

stoperror();>

(16.15)

If the special name `all` is used instead of a specific error message as the parameter to the
stoperror command, a procedure stops executing when any error that would not be trapped
occurs.

Errors trapped by an error trapping construct (try...catch statement) do not generate an error
message. Therefore, the stoperror command cannot be used to catch them. For more inform-
ation about the try...catch structure, see Trapping Errors (page 195). If the special name
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`traperror` is used instead of a specific error message as the parameter to the stoperror
command, a procedure stops executing when any error that is trapped occurs. If the errorMes-
sage parameter is entered in the form traperror["message"] to stoperror, the debugger
starts only if the error specified by "message" is trapped.

When a procedure stops executing because of an error which causes an exception, continued
execution is not possible. Any of the execution control commands, such as next or step (see
Controlling the Execution of a Procedure during Debugging I (page 563) and Controlling
the Execution of a Procedure during Debugging II (page 579)), process the error as if the
debugger had not intervened. For example, consider the following two procedures. The first
procedure, f, calculates 1/x. The other procedure, g, calls f but traps the "division by zero"
error that occurs when x = 0.

f := proc(x) 1/x end proc:
g := proc(x) local r;

>

try
f(x);

catch:
infinity;

end try;
end proc:

If procedure g is executed at x=9, the reciprocal is returned.

g(9);>

(16.16)

At x=0, as expected, a value of infinity is returned.

g(0);>

(16.17)

The stoperror command stops the execution process when you call f directly.

stoperror("numeric exception: division by zero");>

(16.18)

f(0);>
Error, numeric exception: division by zero
f:

1 1/x
DBG> cont
Error, (in f) numeric exception: division by zero
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The call to f from g is within a try...catch statement, so the "division by zero" error does
not start the debugger.

g(0);>

(16.19)

Instead, try using the stoperror(traperror) command.

unstoperror( "numeric exception: division by zero" );>

(16.20)

stoperror( `traperror` );>

(16.21)

This time, Maple does not stop at the error in f.

f(0);>

However, Maple starts the debugger when the trapped error occurs.

g(0);>
Error, numeric exception: division by zero
f:

1 1/x

DBG> step
Error, numeric exception: division by zero
g:

3 infinity

DBG> step

(16.22)

In the case that a particular error message is specified in the form traperror["message"],
the debugger is started only if the error specified by "message" is trapped.

Clearing Watchpoints on Specified Errors

Error watchpoints are cleared by using the top-level unstoperror command. The syntax to
call the unstoperror command is the same as for the stoperror command. Like the stoperror
command, the unstoperror command returns a list of all (remaining) error watchpoints.

If no argument is included in the call to unstoperror, all error watchpoints are cleared.

578 • 16 Testing, Debugging, and Efficiency



unstoperror();>

(16.23)

Controlling the Execution of a Procedure during Debugging II

After stopping the execution of a procedure and starting the debugger, you can examine the
values of variables or perform other experiments (see the following section, Changing the
State of a Procedure during Debugging). After you have examined the state of the pro-
cedure, you can continue the execution process by using several different debugger com-
mands.

The most commonly used debugger commands are into, next, step, cont, outfrom, return,
and quit.

The return debugger command causes execution of the currently active procedure call to
complete. The execution process stops at the first statement after the current procedure.

The other commands are described in the tutorial in The Maple Debugger: A Tutorial
Example (page 559). For more information on these and other debugger commands, refer
to the debugger help page.

Changing the State of a Procedure during Debugging

When a breakpoint or watchpoint stops the execution of a procedure, the Maple debugger
is started. In the debugger mode, you can examine the state of the global variables, local
variables, and parameters of the stopped procedure. You can also determine where the exe-
cution process stopped, evaluate expressions, and examine procedures.

While in the debugger mode, you can evaluate any Maple expression and perform assign-
ments to local and global variables. To evaluate an expression, enter the expression at the
debugger prompt. To perform assignments to variables, use the standard Maple assignment
statement.

f := proc(x) x^2 end proc:>

stopat(f);>

(16.24)

f(10);>
f:
1* x^2

DBG> sin(3.0);
.1411200081
f:
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1* x^2

DBG> cont

(16.25)

The debugger evaluates any variable names that you use in the expression in the context of
the stopped procedure. Names of parameters or local variables evaluate to their current
values in the procedure. Names of global variables evaluate to their current values. Envir-
onment variables, such as Digits, evaluate to their values in the stopped procedure's envir-
onment.

If an expression corresponds to a debugger command (for example, your procedure has a
local variable named step), you can still evaluate it by enclosing it in parentheses.

f := proc(step) local i;
for i to 10 by step do

>

i^2
end do;

end proc:

stopat(f,2);>

(16.26)

f(3);>
f:

2* i^2

DBG> step
1
f:

2* i^2

DBG> (step)
3
f:

2* i^2

DBG> quit
Interrupted

When the execution process is stopped, you can modify local and global variables by using
the assignment statement (:=). The following example sets a breakpoint in the loop only
when the index variable is equal to 5.
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sumn := proc(n) local i, sum;
sum := 0;

>

for i to n do
sum := sum + i

end do;
end proc:

showstat(sumn);>

sumn := proc(n)
local i, sum;

1 sum := 0;
2 for i to n do
3 sum := sum+i

end do
end proc

stopat(sumn,3,i=5);>

(16.27)

sumn(10);>
10
sumn:

3? sum := sum+i

Reset the index to 3 so that the breakpoint is encountered again.
DBG> i := 3
sumn:

3? sum := sum+i

DBG> cont
17
sumn:

3? sum := sum+i

DBG> cont

(16.28)

Maple has added the numbers 1, 2, 3, 4, 3, and 4 and returned 17 as the result. By continuing
the execution of the procedure, the numbers 5, 6, 7, 8, 9, and 10 are added and 62 is returned
as the result.
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Examining the State of a Procedure during Debugging

You can use two debugger commands to return information about the state of the procedure
execution. The list debugger command shows you the location where the execution process
stopped within the procedure and the where debugger command shows you the stack of
procedure activations.

The list debugger command has the following syntax.

list procedureName statementNumber[..statNumber]

The list debugger command is similar to the showstat command, except that you do not
need to specify arguments. If no arguments are included in the call to list, only the five
previous statements, the current statement, and the next statement to be executed are dis-
played. This provides some context in the stopped procedure. In other words, it indicates
the static position where the execution process stopped.

The where debugger command shows you the stack of procedure activations. Starting from
the top level, it shows you the statement that is executing and the parameters it passed to
the called procedure. The where debugger command repeats this for each level of procedure
call until it reaches the current statement in the current procedure. In other words, it indicates
the dynamic position where execution stopped. The where command has the following
syntax.

where numLevels

To illustrate these commands, consider the following example. The procedure check calls
the sumn procedure from the previous example.

check := proc(i) local p, a, b;
p := ithprime(i);

>

a := sumn(p);
b := p*(p+1)/2;
evalb( a=b );

end proc:

There is a (conditional) breakpoint in sumn.

582 • 16 Testing, Debugging, and Efficiency



showstat(sumn);>

sumn := proc(n)
local i, sum;

1 sum := 0;
2 for i to n do
3? sum := sum+i

end do
end proc

When check calls sumn, the breakpoint starts the debugger.

check(9);>
10
sumn:

3? sum := sum+i

The where debugger command shows that

• check was called from the top level with argument 9,

• check called sumn with argument 23, and

• the execution process stopped at statement number 3 in sumn.

DBG> where
TopLevel: check(9)

[9]
check: a := sumn(p)

[23]
sumn:

3? sum := sum+i

DBG> cont

(16.29)

The next example illustrates the use of where in a recursive function.

fact := proc(x)
if x <= 1 then

>

1
else
x * fact(x-1)

end if;
end proc:
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showstat(fact);>

fact := proc(x)
1 if x <= 1 then
2 1

else
3 x*fact(x-1)

end if
end proc

stopat(fact,2);>

(16.30)

fact(5);>
fact:

2* 1

DBG> where
TopLevel: fact(5)

[5]
fact: x*fact(x-1)

[4]
fact: x*fact(x-1)

[3]
fact: x*fact(x-1)

[2]
fact: x*fact(x-1)

[1]
fact:

2* 1

DBG>

If you do not want to view the entire history of the nested procedure calls, use the numLevels
parameter in the call to the where debugger command to print a specified number of levels.
DBG> where 3
fact: x*fact(x-1)

[2]
fact: x*fact(x-1)

[1]
fact:

2* 1
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DBG> quit
Interrupted

The showstop command (and the showstop debugger command) displays a report of all the
currently set breakpoints, watchpoints, and error watchpoints. Outside the debugger at the
top level, the showstop command has the following syntax.

showstop();

The next example illustrates the use of the showstop command.

f := proc(x) local y;
if x < 2 then

>

y := x;
print(y^2);

end if;
print(-x);
x^3;

end proc:

In the following example, breakpoints are set.

stopat(f):>

stopat(f,2):>

stopat(int);>

(16.31)

In the following example, watchpoints are set.

stopwhen(f,y):>

stopwhen(Digits);>

(16.32)

In the following example, an error watchpoint is set.

stoperror( "numeric exception: division by zero" );>

(16.33)

The showstop command reports all the breakpoints and watchpoints.
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showstop();>

Breakpoints in:
f
int

Watched variables:
Digits
y in procedure f

Watched errors:
"numeric exception: division by zero"

Using Top-Level Commands at the Debugger Prompt

The showstat, stopat, unstopat, stopwhen, unstopwhen, stoperror, and showstop com-
mands can be used at the debugger prompt. The following list describes the syntax rules
for top-level commands used at the debugger prompt.

• Do not enclose the arguments of the command in parentheses.

• Do not separate the arguments of the command with a comma. The arguments must be
separated by a space character.

• Do not use colons or semicolons to end statements.

• The procedure name is not required by any command. Commands that use a procedure
name assume the currently stopped procedure if one is not specified.

• For the stoperror command, double quotes are not required.

Except for these rules, the debugger prompt call for each command is of the same form and
takes the same arguments as the corresponding top-level command call.

Restrictions

At the debugger prompt, the only permissible Maple statements are debugger commands,
expressions, and assignments. The debugger does not permit statements such as if,while,
for, read, and save. However, you can use `if` to simulate an if statement and seq to
simulate a loop.

The debugger cannot set breakpoints in, or step into, built-in commands, such as diff and
has. These commands are implemented inC and compiled into the Maple kernel. Debug-
ging information about these commands is not accessible to Maple. However, if a built-
in command calls a library command, for example, the diff command calling `diff/sin`,
you can use a breakpoint to stop in the latter.
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If a procedure contains two identical statements that are expressions, the debugger cannot
always determine the statement at which the execution process stopped. If this situation
occurs, you can still use the debugger and the execution process can continue. The debugger
issues a warning that the displayed statement number may be incorrect.

Note: This issue occurs because Maple stores all identical expressions as a single occur-
rence of the expression. The debugger cannot determine at which invocation the execution
process stopped.

16.4 Detecting Errors
This section describes some simple commands that you can use for detecting errors in pro-
cedures that are written in Maple. If you are not successful in finding the error by using
these commands, you can use the Maple debugger, which is discussed in The Maple
Debugger: A Tutorial Example (page 559) andMaple Debugger Commands (page 571), to
display the stepwise execution of a procedure.

Tracing a Procedure

The simplest tools available for error detection in Maple are the printlevel environment
variable, and the trace and tracelast commands. You can use these facilities to trace the ex-
ecution of both user-defined and Maple library procedures. However, they differ in the type
of information that is returned about a procedure.

The printlevel variable is used to control how much information is displayed when a program
is executed. By assigning a large integer value to printlevel, you can monitor the execution
of statements to selected levels of nesting within procedures. The default value of printlevel
is 1. Larger, positive integer values cause the display of more intermediate steps in a com-
putation. Negative integer values suppress the display of information.

The printlevel environment variable is set by using the following syntax, where n is the
level to which Maple commands are evaluated.

printlevel := n;

To determine what value of n to use, note that statements within a particular procedure are
recognized in levels that are determined by the nesting of conditional or repetition statements,
and by the nesting of procedures. Each loop or if condition increases the evaluation level
by 1, and each procedure call increases the evaluation level by 5. Alternatively, you can
use a sufficiently large value of n to ensure that all levels are traced. For example, printlevel
:= 1000 displays information in procedures up to 200 levels deep.

f := proc(x) local y; y := x^2; g(y) / 4; end proc:
g := proc(x) local z; z := x^2; z * 2; end proc:

>
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f(3);>

(16.34)

printlevel := 5;>

f(3);>
{--> enter f, args = 3

y := 9

81/2

<-- exit f (now at top level) = 81/2}
81/2

printlevel := 10;>

f(3);>
{--> enter f, args = 3

y := 9

{--> enter g, args = 9
z := 81

162

<-- exit g (now in f) = 162}
81/2

<-- exit f (now at top level) = 81/2}
81/2

The amount of information that is displayed depends on whether the call to the procedure
was terminated with a colon or a semicolon. If a colon is used, only the entry and exit points
of the procedure are printed. If a semicolon is used, the results of the statements are also
printed.

To reset the value of the printlevel variable, reassign its value to 1.

printlevel := 1;>

By assigning a large value to printlevel, the trace of all subsequent Maple procedure calls
is displayed. To display the trace of specific procedures, you can use the trace command.
The trace command has the following syntax, where arguments is one or more procedure
names.
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trace(arguments);

The trace command returns an expression sequence containing the names of the traced
procedures. To begin tracing, call the procedure.

trace(f, g);>

(16.35)

f(3):>
{--> enter f, args = 3
{--> enter g, args = 9
<-- exit g (now in f) = 162}
<-- exit f (now at top level) = 81/2}

Similar to printlevel, the amount of information that is displayed during tracing when trace
is used depends on whether the call to the procedure was terminated with a colon or a
semicolon. If a colon is used, only entry and exit points of the procedure are printed. If a
semicolon is used, the results of the statements are also printed.

To turn off the tracing of specific procedures, use the untrace command.

untrace(f, g);>

(16.36)

f(3);>

(16.37)

Note: You can use debug and undebug as alternate names for trace and untrace.

If running a procedure results in the display of an error message, you can use the tracelast
command to determine the last statement executed and the values of variables at the time
of the error. The tracelast command has the following syntax.

tracelast;

After an error message is displayed, the following information is returned from a call to
tracelast.

• The first line displays which procedure was called and what values were used for the
parameters.

• The second line displays the # symbol, the procedure name with the line number of the
statement that was executed, and the statement that was executed.

• Finally, if there are any local variables in the procedure, they are displayed with their
corresponding values.
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f := proc(x) local i, j, k;
i := x;

>

j = x^2;
seq(k, k=i..j);

end proc:

f(2, 3);>
Error, (in f) unable to execute seq

tracelast;>
f called with arguments: 2, 3
#(f,3): seq(k,k = i .. j)
Error, (in f) unable to execute seq
locals defined as: i = 2, j = j, k = k

You can find the error in this procedure by studying the results of the tracelast command--
the assignment to the local variable j incorrectly uses an equal sign (=) instead of an assign-
ment symbol ( := ).

The information provided by tracelast can become unavailable whenever Maple does a
garbage collection. Therefore, it is advisable to use tracelast immediately after an error occurs.
For more information about garbage collection in Maple, seeGarbage Collection (page 604).

Using Assertions

An assertion is a verification of the state of Maple at the time the assertion is made. You
can include assertions in your procedure to guarantee pre- and post-conditions, and loop
invariants during execution by using the ASSERT command. You can also use assertions
to guarantee the value returned by a procedure or the value of local variables inside a pro-
cedure. The ASSERT command has the following syntax.

ASSERT( condition, message );

If condition evaluates to false, an error is generated and message is printed. If the first ar-
gument evaluates to true, ASSERT returns NULL.

To check assertions, turn on assertion checking before executing a procedure that contains
an ASSERT command. To query the current state of assertion checking, or turn assertion
checking on or off, use the kernelopts command.

The default state for assertion checking is no assertion checking (assertlevel=0).

Programming note: You should use assertions to verify that your program is working as
intended. You should not use assertions to validate computations or values which are not
completely in the control of your program, such as user input.
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Turn assertion checking on:

kernelopts(assertlevel=1);>

(16.38)

Note that when you set a kernelopts variable, such as when you turn assertion checking on
or off, kernelopts returns its previous value.

At any time during the Maple session, you can check the setting for assertion checking by
entering the following command.

kernelopts(assertlevel);>

(16.39)

If assertion checking is on and a procedure that contains an ASSERT statement is executed,
the condition represented by the ASSERT statement is checked.

f := proc(x, y) local i, j;
i := 0;

>

j := 0;
while (i <> x) do
ASSERT(i > 0, "invalid index");
j := j + y;
i := i + 1;

end do;
j;

end proc;

(16.40)

f(2, 3);>
Error, (in f) assertion failed, invalid index

16.4 Detecting Errors • 591



Use the kernelopts command again to turn assertion checking off. (Again, kernelopts returns
its previous value.) When assertion checking is off, the overhead of processing an ASSERT
statement in a procedure is minimal.

kernelopts(assertlevel=0);>

(16.41)

For information on assertion checking and procedures, see Return Type (page 219)) and
Variables in Procedures (page 227).

Related to assertions are Maple warning messages. The WARNING command causes a
specified warning message to display. The warning is preceded by the string '"Warning, "'.
The WARNING command has the following syntax.

WARNING( msgString, msgParam1, msgParam2, ... );

The msgString parameter is the text of the warning message and msgParami are optional
parameters to substitute intomsgString, if any. For more information on message parameters,
see Handling Exceptions (page 593).

f := proc(x)
if x < 0 then

>

WARNING("sqrt(%1) is complex", x);
end if;
sqrt(x);

end proc;

(16.42)

f(-2);>
Warning, sqrt(-2) is complex

(16.43)

By default, warning messages are displayed. You can hide warning messages by using the
interface(warnlevel=0) command. In this case, the warning is not displayed and the call to
WARNING has no effect.
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interface(warnlevel=0);>

(16.44)

f(-2);>

(16.45)

Handling Exceptions

An exception is an event that occurs during the execution of a procedure that disrupts the
normal flow of instructions. Many kinds of actions can cause exceptions, for example, at-
tempting to read from a file that does not exist. Maple has two mechanisms available when
such situations occur:

• the error statement to raise an exception, and

• the try...catch...finally block to handle exceptions.

Raising Exceptions

The error statement raises an exception. Execution of the current statement sequence is in-
terrupted, and the block and procedure call stack is popped until either an exception handler
is encountered, or execution returns to the top level (in which case the exception becomes
an error). The error statement has the following syntax.

error msgString, msgParam1, msgParam2, ...

The msgString parameter is a string that gives the text of the error message. It can contain
numbered parameters of the form %n or %-n, where n is an integer. These numbered
parameters are used as placeholders for actual values. In the event that the exception is
printed as an error message, the actual values are specified by the msgParam values.

For example,

error "%1 has a %-2 argument, %3, which is missing", f, 4, x;>
Error, f has a 4th argument, x, which is missing

A numbered parameter of the form%n displays the nthmsgParam in line-printed notation
(that is, as lprint would display it). A numbered parameter of the form %-n displays the
nth msgParam, assumed to be an integer, in ordinal form. For example, the %-2 in the
previous error statement is displayed as "4th". The special parameter %0 displays all the
msgParams, separated by a comma and a space.

The error statement evaluates its arguments and then creates an exception object which is
an expression sequence with the following elements.
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• The name of the procedure in which the exception was raised. If the exception occurred
in a procedure local to a module, then the name of the innermost visible (non-local)
calling procedure is used. If the exception occurred at the top level (not within a proced-
ure), then the first element of the exception object will be the constant 0.

• The msgString.

• The msgParams, if any.

The created exception object is assigned to the global variable lastexception as an expression
sequence. For more information on lastexception, refer to the error help page.

Note: The actual arguments to the error statement are also assigned to lasterror for com-
patibility with older versions of Maple.

Note: To view the value of the lastexception variable within the debugger, use the
showexception debugger command.

The error statement normally causes an immediate exit from the current procedure to the
Maple session. Maple prints an error message of the following form.

Error, (in procName) msgText

In this case, msgText is the text of the error message (which is constructed from the
msgString and optional msgParams of the error statement), and procName is the name
of the procedure in which the error occurred, or the name of the innermost non-local proced-
ure in the current call stack if the procedure is a module local. If the procedure does not
have a name, procName is displayed as unknown. If the error occurs at the top level, outside
any procedure, the (in procName) part of the message is omitted.

The error statement is commonly used when parameter declarations are not sufficient to
check that the actual parameters to a procedure are of the correct type. The following pairup
procedure takes a list L of the form [x_1, y_1, x_2, y_2, ..., x_n, y_n] as input, and creates
from it a list of the form [[x_1, y_1], [x_2, y_2], ..., [x_n, y_n]]. A simple type check cannot
determine if list L has an even number of elements, so you must check this explicitly by
using an error statement.

pairup := proc(L::list)
local i, n;

>

n := nops(L);
if irem(n, 2) = 1 then

error "list must have an even number of "
"entries, but had %1", n;

end if;
[seq( [L[2*i-1], L[2*i]], i=1..n/2 )];

end proc:
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pairup([1, 2, 3, 4, 5]);>
Error, (in pairup) list must have an even number of entries, but had
5

pairup([1, 2, 3, 4, 5, 6]);>

(16.46)

For information on trapping errors using a try...catch statement, see Trapping
Errors (page 195).

Checking Syntax

The Maple maplemint command generates a list of semantic errors for a specified procedure,
if any. The semantic errors for which maplemint checks include parameter name conflicts,
local and global variable name conflicts, unused variable declarations, and unreachable
code. The maplemint command has the following syntax.

maplemint( procedureName );

In the case where the specified procedure is free of semantic errors, maplemint returns
NULL.

f := proc() local a, i; global c;
for i from 1 to 10 do

>

print(i);
for i from 1 to 5 do
if a = 5 then
a := 6;
return true;
print(`test`);

end if;
end do;

end do;
end proc:
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maplemint(f);>
Procedure f()
These variables were used as the same loop variable for nested loops:
i
These names were used as global names but were not declared: test
These global variables were declared, but never used: c
These local variables were used before they were assigned a value:
a
There is unreachable code following a RETURN or return statement at

statement 7: print(test)

Similar to maplemint, Maple also has an external program utility called mint. The mint
program is called from outside Maple; it is used to check both semantic and syntax errors
in an external Maple source file.

16.5 Creating Efficient Programs
After a Maple procedure is debugged, you would normally want to improve the performance
of the code. Maple commands are available to analyze the time and memory consumption
involved in executing individual statements. Maple also provides commands to monitor the
efficiency of procedures.

During the performance improvement phase, note that Maple is based on a small kernel
written in C and on large libraries of Maple code which are interpreted. Therefore,
whenever performance is critical, it is generally most efficient to perform computations by
using the built-in commands in the kernel. The phrase option builtin is used to identify the
built-in commands. For example, the add command is a built-in command in Maple. To
determine if a command is built-in, use the print command with the command name as its
argument.

print(add);>

(16.47)

The option builtin phrase identifies add as a built-in command, and the identifier following
builtin is either a name or number that identifies this particular command in the kernel.

For more information about efficiency in Maple programming, refer to the efficiency help
page.

Displaying Time and Memory Statistics

A simple way to measure the time requirements of an executed command at the interactive
level is to use the time command. The time command has the following syntax.
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time( expr )

The following statements all return the sum of the same sequence of numbers. However,
by using the time command, it is clear that the second expression, which uses the add
command, is the most efficient method with respect to time consumption.

time( `+`(seq(2^i, i=1..10^5) ) );>

(16.48)

time( add(2^i, i=1..10^5) );>

(16.49)

Two options are available to compare these expression with the equivalent for...do statement.
The first is to wrap the statement in an anonymous function call:

time( proc() local S, i; S:=0: for i from 1 to 10^5 do S := S +
2^i end do: end proc() );

>

(16.50)

Another solution is to use the other form of the time command with no arguments, which
returns the total CPU time used since the start of the Maple session. The time is reported
in seconds and the value returned is a floating-point number.

time()

To find the time used to execute a particular statement or group of statements, use the fol-
lowing statements.

st := time():

... statements to be timed ...

time() - st;

Therefore, you could use the following set of statements to calculate the amount of time (in
seconds) required to add the first 10,000 powers of 2 by using the add command.

st:=time(): S:=0: for i from 1 to 10^5 do S := S + 2^i end do:
time()-st;

>

(16.51)

CPU time is not the only important measure of efficiency. For most code, the amount of
memory used is equally important. This can be measured with the command

kernelopts(':-bytesused')
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For parallel code, the real or wall clock time is also important. The time command with the
index real measures real time used:

time[':-real']()

time[':-real']( expr )

A uniform interface to all of these metrics is available in the CodeTools package.

CodeTools:-Usage(expression, options)

By default, CodeTools:-Usage prints the time and memory usage in evaluating the expression.
If you want to save the results, you can specify an output option, which ensures that values
that can be saved are returned.

CodeTools:-Usage( `+`(seq(sign(i)*2^abs(i), i=-10^4..10^4)),
'output'='all');

>

(16.52)

CodeTools:-Usage( `+`(Threads:-Seq(sign(i)*2^abs(i),
i=-10^4..10^4)), 'output'='all');

>

(16.53)

CodeTools:-Usage( add(sign(i)*2^abs(i), i=-10^4..10^4),
'output'='all');

>

(16.54)

CodeTools:-Usage( Threads:-Add(sign(i)*2^abs(i), i=-10^4..10^4),
'output'='all');

>

(16.55)
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CodeTools:-Usage( proc() local S, i; S:=0: for i from -10^4 to
10^4 do S := S + sign(i)*2^abs(i) end do: end proc(),
'output'='all');

>

(16.56)

For most computers, the third expression above will have the lowest cputime and bytesused
values. Depending on the parallelism available, the fourth expression, which uses Threads:-
Add, may have the lowest realtime value. The first two expressions will have the highest
bytesused values since they both create large sequences of 2*10^4 numbers before adding
them to 1.

Profiling a Procedure

The Profiling subpackage of CodeTools can be used to display run-time information about
a procedure (or procedures). The run-time information is displayed in tabular form and it
contains the number of calls to the procedures, the CPU time used, and the number of bytes
used by each call. To turn on profiling, use the Profile command.

CodeTools:-Profiling:-Profile( procedureNames )

Then, to display the run-time information collected for the profiled procedures use the
SortBy command.

CodeTools:-Profiling:-SortBy( )

To display the line-by-line profiling information for the specified procedure, use the Print-
Profiles command. If no argument is given to PrintProfiles, the run-time information for all
profiled procedures is displayed.

CodeTools:-Profiling:-PrintProfiles( procedureName )

To illustrate the use of profiling in Maple, consider the following procedures that compute
the nth Fibonacci number. Both procedures contain the same code except that Fibonacci1
uses option remember.

For more information about option remember, see The remember, cache, and system
Options (page 225).

Fibonacci1:=proc(n)
option remember;

>

if n<2 then
n

else
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Fibonacci1(n-1)+Fibonacci1(n-2)
end if;

end proc:

Fibonacci2:=proc(n)
if n<2 then

>

n
else
Fibonacci2(n-1)+Fibonacci2(n-2)

end if;
end proc:

Turn on profiling for both procedures.

with(CodeTools:-Profiling):>

Profile(Fibonacci1);>

Profile(Fibonacci2);>

Execute the procedures.

Fibonacci1(25);>

(16.57)

Fibonacci2(25);>

(16.58)

Use the SortBy command to display the run-time information about Fibonacci1 and
Fibonacci2.

SortBy();>
function calls time time% words
words%
---------------------------------------------------------------------------
Fibonacci1 26 0.000 0.00 481

0.04
Fibonacci2 242785 1.349 100.00 1213923
99.96

---------------------------------------------------------------------------
total: 242811 1.349 100.00 1214404
100.00

Use PrintProfiles to display the line-by-line run-time information.
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PrintProfiles(Fibonacci1);>
Fibonacci1
Fibonacci1 := proc(n)

|Calls Seconds Words|
PROC | 26 0.000 481|

1 | 26 0.000 78| if n < 2 then
2 | 2 0.000 0| n

else
3 | 24 0.000 403| Fibonacci1(n-1)+Fibonacci1(n-2)

end if
end proc

PrintProfiles(Fibonacci2);>
Fibonacci2
Fibonacci2 := proc(n)

|Calls Seconds Words|
PROC |242785 1.349 1213923|

1 |242785 0.530 728355| if n < 2 then
2 |121393 0.095 0| n

else
3 |121392 0.724 485568| Fibonacci2(n-1)+Fibonacci2(n-2)

end if
end proc

By studying the run-time information, particularly the number of calls to each procedure,
you can see that it is more efficient to use option remember in a recursive procedure.

To turn off profiling, use the UnProfile command. If no argument is given to UnProfile, all
procedures currently profiled are returned to their original state.

UnProfile( procedureName )

When a procedure is unprofiled, all run-time information for that procedure is lost.

UnProfile();>

SortBy();>
Warning, total execution time is 0
Warning, total words used is 0
function calls time time% words
words%
---------------------------------------------------------------------------
---------------------------------------------------------------------------
total: 0 0.000 100.00 0
100.00
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The CodeTools:-Profiling package has several other useful commands, including LoadProfiles
and SaveProfiles, which can be used to save and load profile information to and from a file.
By using these commands, you can collect profiling information from commands run with
restart commands in between. In the following code, both calls to myproc will be profiled
and the data collected as if they had been executed right after each other.

CodeTools:-Profiling:-Profile(myproc);>

myproc( input1 );>

CodeTools:-Profiling:-SaveProfiles( "myproc.profile", 'overwrite'
);

>

restart;>

CodeTools:-Profiling:-LoadProfiles( "myproc.profile" );>

myproc( input2 );>

The older profile facility is also still available but it is slower and does not provide line-by-
line profiling information. It is still useful for profiling the use of built-in procedures, which
are not supported by CodeTools:-Profiling. For more information, refer to the profile help
page.

In some cases, it is useful to collect profiling information on every procedure which is in-
voked during the evaluation of a Maple expression. In this situation, use the exprofile
command with the profile kernel option. The output of exprofile can be verbose for moder-
ately complicated code.

a:=proc(); b(100); end proc:>

b:=proc(n);
if n>0 then c(n-2); end if;

end proc:

>

c:=proc(n);
if n>0 then b(n+1); end if;

end proc:

>

kernelopts(profile=true):>

writeto('output');>

a();>

kernelopts(profile=false);>

writeto(terminal);>

exprofile('output',alpha);>
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16.6 Managing Resources
Maple provides several commands for managing computer resources during computation.
In particular, the timelimit command controls the maximum amount of time available for
a computation, gc starts the garbage collection process, and kernelopts provides communic-
ation with the Maple kernel.

Setting a Time Limit on Computations

The timelimit command is used to limit the amount of CPU time for a computation. The
timelimit command has the following syntax, where time is the time limit (in seconds) to
evaluate expression.

timelimit( time, expression )

If the expression is successfully evaluated within the specified time, timelimit returns the
value of the expression. If the time limit is reached before the expression is evaluated,
timelimit raises an exception.

f := proc()
local i;

>

for i to 100000 do
2^i

end do
end proc:

timelimit(0.25, f());>

The exception raised by timelimit can be caught with a try...catch construct.

try
timelimit(0.25, f());

>

catch "time expired":
NULL;
end try;

Multiple calls to timelimit can be nested, causing both limits to be active at once.

g := proc(t)
try

>

timelimit(t, f());
catch "time expired":

error "time expired in g";
end try;

end proc:
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timelimit(10, g(0.25) );>

timelimit(0.25, g(10) );>

Note that in the second of these examples, the inner call, g(10) would normally have finished
without triggering the time limit exception. The outer time limit of 0.25 cpu seconds preven-
ted the inner call from completing. Thus, the time-out event did not occur inside g and so
is not trapped by the catch clause in g. This illustrates that a try-catch construct cannot
capture a time limit exception event generated by a timelimit call in a surrounding scope.

For more information on catching time expired exceptions and nested time limits, refer to
the timelimit help page.

Garbage Collection

Garbage collection deletes all objects that are no longer in use by the program and are oc-
cupying space in memory. In Maple, garbage collection will also recover storage from the
remember tables of procedures that use an option system or option builtin by removing
entries that have no other references to them.

For more information about procedure options, see Options (page 220).

Garbage collection is also used to clear cache tables that have temporary entries when a
memory usage threshold is reached.

The Maple garbage collection command is gc. It has the following syntax.

gc()

Garbage collection occurs automatically when the memory management system determines
that memory resources are low. Alternatively, the gc command explicitly schedules a garbage
collection cycle and returns a value of NULL. However, the use of gc is discourage since
the underlying memory management system attempts to balance memory usage and per-
formance by tracking the memory behavior of the program. The decision of when to initiate
a garbage collection can be skewed by directly calling gc.

The kernelopts command is used to query garbage collection information such as the number
of bytes returned after the last garbage collection and the number of times the garbage col-
lection process has run.

kernelopts( gcbytesavail );>

kernelopts( gcbytesreturned );>

kernelopts( gctimes );>
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Other Kernel Options for Managing Resources

The kernelopts command is provided as a mechanism of communication between the user
and the Maple kernel. You have already seen several uses of kernelopts in this guide, includ-
ing how to use kernelopts to check assertions in procedures. Specifically, this command is
used to set and query variables that affect kernel computations in Maple.

The following kernelopts options can be used to limit Maple's use of system resources.

The cpulimit, datalimit, and stacklimit options can be used to set limits on the resources
available to Maple and must be used carefully. Unlike the timelimit command, once one of
these limits is reached, Maple may shut down without warning without prompting you to
save your work. This makes these limit options most useful for running in non-interactive
sessions.

On some platforms, including all Windows platforms, the detection of limit violations is
tied to garbage collection and therefore the detection of limit violations will be inaccurate
for code that rarely starts the garbage collection process. If the garbage collection process
does not occur, Maple does not detect limit violations.

These options can also be set using the -T command-line option. For more information,
refer to the maple help page.

The filelimit and processlimit limit options can similarly be used to limit the number of
open files and external processes that Maple can use at one time. Some internal Maple
commands open files or run processes and thus will fail if these limits are too low.

If the option limitjvmheap is set to true then the Java external calling virtual machine is
limited to the amount of memory given in the limit option jvmheaplimit.

The option cacheclearlimit is used to set a threshold at which Maple is allowed to clear
temporary elements from cache tables during garbage collection.

An informational kernelopts option is memusage which will display how much memory is
currently in use, listed by DAG type.

kernelopts( memusage );>

Note: There is a Maplet application that provides a graphical user interface to a subset of
the kernel options. This Maplet can be opened by calling Maplets:-Examples:-KernelOpts().

16.7 Testing Your Code
Occasionally, code may be incorrect after it is first written or changed. For that reason, it
is very important that code is tested. In Maple, you can create tests for code in many ways.
This section introduces some useful Maple commands for testing and provides suggestions
on how to create useful tests.

16.7 Testing Your Code • 605



Verifying Results with verify

One common difficulty in producing good tests is verifying that the computed results match
the expected result. Maple provides the general and powerful command verify to make this
possible in many cases.

The default mode of the verify command is simple evalb equality checking.

verify(10, 20);>

verify(10, 10.00);>

More complicated objects require more complicated tests.

verify(10+x, 10.00+x);>

verify(Array(1..3,[1,2,3]), Array([1,2,3],'readonly'));>

The verify command called with a third argument provides numerous different structured
verifiers, many of which are similar to the structured type of the expressions being compared.
For full details, refer to the verify and verify/structured help pages.

verify(10+x, 10.00+x, 'float(10)' );>

verify(Array(1..3,[1,2,3]), Array([1,2,3],readonly), 'Array');>

verify({0.32}, {0.320002, 0.319996},'set(float(1e5))');>

A Simple Test Harness

An easy way to test code is to write a series of verify statements into a text file which can
then be read directly by the command-line interface or the read command.

For the sieve example introduced in The Maple Debugger: A Tutorial Example (page 559),
the following statements can be saved in a file called sieveTest.mpl:

Table 16.1: sieveTest.mpl

verify(sieve(1), 0);
verify(sieve(2), 1);
verify(sieve(10), 4);
verify(sieve(100), 25);
verify(sieve(1223), 200);
verify(sieve(-1), 0);
verify(sieve(-1000), 0);

If the sieve function works properly, reading or running this file from the command line
maple -s -q < sieveTest.mpl

should produce output that contains true values.
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true
true
true
true
true
true
true

This output is easy to inspect visually for correctness. If the number of tests in one file is
large, you may want to produce errors for failures, and let successful tests proceed without
further action. The command CodeTools:-Test is a front-end to verify that provides this
functionality as well as allowing you to test expected errors and customize verifications.
The output format is quite flexible. In the following example, we use the quiet option to
suppress output for passed tests, and the label option to give each test a unique identifier,
so we can easily identify failures. Here is the new version of the test harness:

Table 16.2: sieveTest2.mpl

with(CodeTools):
Test(sieve(1), 0, quiet, label=10);
Test(sieve(2), 1, quiet, label=20);
Test(sieve(10), 4, quiet, label=30);
Test(sieve(100), 25, quiet, label=40);
Test(sieve(1223), 200, quiet, label=50);
Test(sieve(-1), 0, quiet, label=60);
Test(sieve(-1000), 0, quiet, label=70);
Test(sieve(sqrt(2)), "invalid input", testerror, quiet, label=80);
Test(sieve(1), -1, quiet, label=90);

which should produce just one line of output:
Error, (in CodeTools:-Test) TEST FAILED: 90

This new test harness has the advantage that failures are highlighted as errors, so they stand
out visually. If you remove the quiet option, you will also get a short message for each test
that passes. That can be useful to ensure that false positive results are less likely to occur
due to tests being skipped.

Writing Good Tests

Much has been written on the subject of writing good sets of tests. In general, it is best to
test as many of the corner cases as possible in addition to a few typical cases.
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For example, if a procedure takes a list as input, there should be a test case for the empty
list.

For more comprehensive references on testing software, see for example:

- B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, second edition,
1990.

- C. Kaner, J. Falk, H.Q. Nguyen. Testing Computer Software. Wiley, second
edition, 1999.

- G.J. Myers. The Art of Software Testing. Wiley, second edition, 2004.

Test Coverage

Good suites of tests exercise every statement in the code that is being tested. Maple provides
a package to measure the coverage of a suite of tests in CodeTools:-Profiling:-Coverage.

To use this code, activate profiling of the procedure (or procedures) you want to test as de-
scribed in Profiling a Procedure (page 599). Then run your test suite and use the command
CodeTools:-Profiling:-Coverage:-Print to get a report on which lines in your procedures
were not run while running the test suite.

For example, we could add the following to the test file for sieve in the previous section:
Table 16.3: Modified sieveTest2.mpl

with(CodeTools):
Profiling:-Profile(sieve);
...
Profiling:-Coverage:-Print();

When run, in addition to the test output, this produces the message:
sieve (8): all statements covered

which informs us that the procedure was called 8 times and every statement in the procedure
was executed at least once. If statements had been missed, those missed statements would
be printed.

The command CodeTools:-Profiling:-Coverage:-Percent provides much more compact
output, and in this case would produce:
sieve 100.00%
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16.8 Exercises

1. The following procedure tries to compute .

f := proc(a::integer, x::anything)
if a<0 then

>

a := -a
end if;
1-x^a;

end proc:

Determine what is wrong with this procedure.

Hint: Use the Maple debugger described in The Maple Debugger: A Tutorial
Example (page 559) and Maple Debugger Commands (page 571) to isolate the error.

2. The following recurrence relation defines the Chebyshev polynomials of the first kind,
.

The following procedure computes in a loop for any given integer .

T := proc(n::integer, x) local t1, tn, t;
t1 := 1; tn := x;

>

for i from 2 to n do
t := expand(2*x*tn - t1);
t1 := tn; tn := t;

end do;
tn;

end proc:

This procedure has several errors. Which variables must be declared local? What happens
if is zero or negative? Identify and correct all errors, using the Maple debugger where
appropriate. Modify the procedure so that it returns unevaluated if is a symbolic value.
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Appendix A Internal
Representation

The table below lists the structures that are currently implemented in Maple.

Each structure, along with the constraints on its length and contents, is described in the
sections that follow.

Table A.1: Maple Structures

CATENATEBREAKBINARYASSIGNAND
EQUATIONDEBUGDCOLONCONTROLCOMPLEX
FOREIGNFORFLOATEXPSEQERROR
HFLOATHASHTABHASHGARBAGEFUNCTION
INTPOSINTNEGINEQUATIMPLIESIF
LOCALLISTLEXICALLESSTHANLESSEQ
NEXTNAMEMODULEMODDEFMEMBER
POWERPOLYPARAMORNOT
READRATIONALRANGEPRODPROC
SERIESSDPOLYSAVERTABLERETURN
SUMSTRINGSTOPSTATSEQSET
USEUNEVALTRYTABLEREFTABLE

ZPPOLYXOR

A.1 Internal Functions
The internal functions in Maple are divided into five groups:

Evaluators

The evaluators are the main functions responsible for evaluation. There are six types of
evaluations: statements, algebraic expressions, Boolean expressions, name forming, ar-
bitrary precision floating-point arithmetic, and hardware floating-point arithmetic. The
user interface calls only the statement evaluator, but thereafter there are many interactions
between evaluators. For example, the statement

if a > 0 then b||i := 3.14/a end if;

is first analyzed by the statement evaluator, which calls the Boolean evaluator to resolve
the if condition. Once completed (for example, a true result is returned), the statement
evaluator is invoked again to perform the assignment, for which the name-forming eval-
uator is invoked with the left-hand side of the assignment, and the expression evaluator
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with the right-hand side. Since the right-hand side involves floating-point values, the
expression evaluator calls the arbitrary precision floating-point evaluator.

Normally, you do not specifically call any of the evaluators. However, in some circum-
stances, when a nondefault type of evaluation is needed, you can directly call evalb (the
Boolean evaluator), evaln (the name-forming evaluator), evalf (the arbitrary precision
floating-point evaluator), or evalhf (the hardware floating-point evaluator).

Algebraic Functions

Algebraic functions are commonly called basic functions. Some examples are taking
derivatives (diff), dividing polynomials (divide), finding coefficients of polynomials
(coeff), computing series (series), mapping a function (map), expanding expressions
(expand), and finding indeterminates (indets).

Algebraic Service Functions

These functions are algebraic in nature, but serve as subordinates of the functions in the
previous group. In most cases, these functions cannot be explicitly called. Examples of
such functions are the internal arithmetic packages, the basic simplifier, and retrieval of
library functions.

Data Structure Manipulation Functions

These are similar to the algebraic functions, but instead of working on mathematical ob-
jects, such as polynomials or sets, they work on data structures, such as expression se-
quences, sums, products, or lists. Examples of such functions are operand selection (op),
operand substitution (subsop), searching (has), and length determination (length).

General Service Functions

Functions in this group are at the lowest hierarchical level. That is, they can be called by
any other function in the system. They are general purpose functions, and not necessarily
specific to symbolic or numeric computation. Some examples are storage allocation and
garbage collection, table manipulation, internal I/O, and exception handling.

A.2 Flow of Control
The flow of control does not need to remain internal to the Maple kernel. In many cases,
where appropriate, a decision is made to call functions that are written in Maple and are
a part of the Maple library. For example, many uses of the expand function are handled
in the kernel. However, if an expansion of a sum to a large power is required, the internal
expand function calls the external Maple library function 'expand/bigpow' to resolve
it. Functions such as diff, evalf, series, and type make extensive use of this feature.
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Therefore, for example, the basic function diff cannot differentiate any function. All of
that functionality is included in the Maple library in procedures named 'diff/function-
Name'. This is a fundamental feature of Maple since it permits:

• Flexibility (the ability to change the Maple library)

• Customization (by defining your refined handling functions)

• Readability (much of the Maple functionality is visible at the user level)

Maple allows the kernel to remain small by offloading nonessential functions to the library.

A.3 Internal Representations of Data Types
The parser and some internal functions build all of the data structures used internally by
Maple. All of the internal data structures have the same general format:

...Header

The header field, stored in one or more machine words, encodes the length of the structure
and its type. Additional bits are used to record simplification status, garbage collection
information, persistent store status, and various information about specific data structures
(for example, whether a for loop contains a break or next statement).

The length is encoded in 26 bits on 32-bit architectures, resulting in a maximum single
object size of 67,108,863 words (268,435,452 bytes, or 256 megabytes). On 64-bit archi-
tectures, the length is stored in 32 bits, for a maximum object size of 4,294,967,295 words
(34,359,738,360 bytes or 32 gigabytes).

Every structure is created with its own length, and that length does not change during the
existence of the structure. Furthermore, the contents of most (but not all) data structures
are never changed during execution because it is unpredictable how many other data
structures are referring to them and relying on them not to change. The normal process
for modifying a structure is to copy it and then to modify the copy. Structures that are no
longer used are eventually reclaimed by the garbage collector.

The following sections describe each of the structures currently implemented in Maple,
along with the constraints on their lengths and contents. The 6-bit numeric value identi-
fying the type of structure is of little interest, so symbolic names will be used.

The notation ^something in the data structure depictions indicates that the value stored
in that field of the structure is a pointer to the value (something), rather than being the
something itself.

AND: Logical AND
^expr2^expr1AND
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Maple syntax: expr1 and expr2

Length: 3

ASSIGN: Assignment Statement or Expression
^expr-seq^name-seqASSIGN

Maple syntax: name1, name2, ... := expr1, expr2, ...

Length: 3

The left-hand side name entries must evaluate to assignable objects:NAME,FUNCTION,
MEMBER or TABLEREF structures, or a sequence thereof. If the left-hand side is a
sequence, the right-hand side must be a sequence of the same length.

BINARY: Binary Object
...dataBINARY

Maple syntax: none

Length: arbitrary

The BINARY structure can hold any arbitrary data. It is not used directly as a Maple
object, but is used as storage for large blocks of data within other Maple objects (currently
only RTABLE structures). It is also sometimes used as temporary storage space during
various kernel operations.

BREAK: Break Statement
BREAK

Maple syntax: break

Length: 1

CATENATE: Name Concatenation
^expr^nameCATENATE

Maple syntax: name || expr

Length: 3

• If the name entry is one of NAME, CATENATE, LOCAL, or PARAM, and if the expr
entry evaluates to an integer, NAME, or STRING, the result is a NAME.

• If the name entry is a STRING or CATENATE that resolves to a STRING, and if the
expr entry evaluates to an integer, NAME, or STRING, the result is a STRING.
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• If expr is a RANGE, the result is to generate an EXPSEQ of the NAME or STRING
structures.

COMPLEX: Complex Value
^im^reCOMPLEX

^imCOMPLEX

Maple syntax: Complex(re,im), Complex(im), re + im * I or im * I

Length: 2 or 3

The re and im fields must point to INTPOS, INTNEG, RATIONAL, or FLOAT
structures, one of the NAMEs infinity or undefined, or a SUM structure representing
-infinity. In the length 3 case, if either re or im is a FLOAT, the other must be a FLOAT
as well.

CONTROL: Communications Control Structure
^integerCONTROL

Maple syntax: none

Length: 2

This is an internal structure used for communication between the kernel and user interface.
Such a structure never reaches the user level, or even the mathematical parts of the kernel.

DCOLON: Type Specification or Test
^type-expr^exprDCOLON

Maple syntax: expr :: typeExpr

Length: 3

This structure has three interpretations depending on the context in which it is used. When
it appears in the header of a procedure definition, it is a parameter declaration that has a
type. When it appears in the local section of a procedure or on the left-hand side of an
assignment, it is a type assertion. When it appears elsewhere (specifically, in a conditional
expression), it is a type test.

DEBUG: Debug
...^expr2^expr1DEBUG

Maple syntax: none

Length: 2 or more
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This is another structure that is only used internally. It is used by the kernel when printing
error traceback information to transmit that information up the call stack.

EQUATION: Equation or Test for Equality
^expr2^expr1EQUATION

Maple syntax: expr1 = expr2

Length: 3

This structure has two interpretations depending on the context in which it is used. It can
be either a test for equality, or a statement of equality (not to be confused with an assign-
ment).

ERROR: Error Statement
^exprERROR

Maple syntax: error "msg", arg, ... arg

Length: 2

This structure represents the Maple error statement. The expr is either a single expression
(if only a message is specified in the error statement), or an expression sequence (if ar-
guments are also specified). The actual internal tag used for the ERROR structure is
MERROR to prevent a conflict with a macro defined by some C compilers.

EXPSEQ: Expression Sequence
...^expr2^expr1EXPSEQ

Maple syntax: expr1, expr2, ...

Length: 1 or more

An expression sequence is an ordered sequence of expressions. It is most commonly used
to construct lists, sets, and function calls. Extracting an expression sequence from a list
or set L can be done by using the command op(L). This operation is very efficient as it
does not involve creation of a new structure. Similarly, if E is an expression sequence,
then constructing a list using [E] involves almost no work and is also very efficient.
Constructing a set using {E} requires E to be sorted. A function call data structure is
made up of the function name plus the expression sequence of arguments. During evalu-
ation of a function call, the argument sequence gets flattened into one expression sequence.
That is, f(E1,E2) is turned into f(e11,e12,...e1n,e21,e22,...e2m) where e1i constitutes the
members of the expression sequenceE1, and e2i constitutes the members of the expression
sequence E2. Thus it is not possible to pass raw expression sequences as arguments to
functions. Typically sequences are wrapped in lists, as f([E1],[E2]) in order to keep the
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element groupings intact. The special valueNULL is represented by an empty expression
sequence. Thus, [NULL] is equivalent to [], and f(NULL) is equivalent to f().

FLOAT: Software Floating-Point Number
^attrib-expr^integer2^integer1FLOAT

Maple syntax: 1.2, 1.2e3, Float(12,34), Float(infinity)

Length: 2 (or 3 with attributes)

A floating-point number is interpreted as integer1 * 10^integer2. A floating-point number
can optionally have attributes, in which case, the length of the structure is 3 and the third
word points to a Maple expression. This means that several floating-point numbers with
the same value but different attributes can exist simultaneously.

The integer2 field can optionally be one of the names, undefined or infinity, in which
case the FLOAT structure represents an undefined floating-point value (not-a-number,
or NaN, in IEEE terminology), or a floating-point infinity. When integer2 is undefined,
integer1 can accept different small integer values, allowing different NaN values to exist.
When integer2 is infinity, integer1 must be 1 or -1.

FOR: For/While Loop Statement
^until-expr^stat-seq^while-expr^to-expr^by-expr^from-expr^nameFOR

Maple syntax:
for name from fromExpr by byExpr to toExpr

while whileExpr do
statSeq

end do

Maple syntax:
for name from fromExpr by byExpr to toExpr

while whileExpr do
statSeq

until untilExpr

^until-expr^stat-seq^while-expr^in-expr^nameFOR

Maple syntax:
for name in inExpr

while whileExpr do
statSeq

end do

Appendix A Internal Representation • 617



Maple syntax:
for name in inExpr

while whileExpr do
statSeq

until untilExpr

Length: 8 or 6

The name follows the same rules as the name field of the ASSIGN structure, except that
it can also be the empty expression sequence (NULL), indicating that there is no con-
trolling variable for the loop.

The from-expr, by-expr, to-expr,while-expr, and until-expr entries are general expressions.
All are optional in the syntax of for loops and are therefore be replaced with default
values (1, 1, NULL, true, and false respectively) by the parser if omitted.

The stat-seq entry can be a single Maple statement or expression, a STATSEQ structure,
or NULL indicating an empty loop body. An additional bit in the header of the FOR
structure is used to indicate whether the stat-seq entry contains any break or next state-
ments.

FOREIGN: Foreign Data
...FOREIGN

Maple syntax: none

Length: 1 or more

This structure is similar to the BINARY structure, except that it is for use by Maple
components outside the kernel, such as the user interface. AFOREIGN structure is exempt
from garbage collection, and the external component is responsible for freeing this
structure when it is finished using it.

FOREIGN data structures can be created and managed in external code by using the
MaplePointer API functions. For more information, refer to the OpenMaple,C,Maple-
Pointer help page.

FUNCTION: Function Call
^attrib-expr^expr-seq^nameFUNCTION

Maple syntax: name( exprSeq )

Length: 2 (or 3 with attributes)

This structure represents a function invocation (as distinct from a procedure definition
that is represented by the PROC structure). The name entry follows the same rules as in

618 • Appendix A Internal Representation



ASSIGN, or it can be a PROC structure. The expr-seq entry gives the list of actual
parameters; this entry is always an expression sequence (possibly of length 1, which in-
dicates that no parameters are present).

GARBAGE: Garbage
...GARBAGE

Maple syntax: none

Length: 1 or more

This structure is used internally by the Maple garbage collector as a temporary object
type for free space.

HFLOAT: Hardware Float
floatwordHFLOAT

floatwordfloatwordHFLOAT

Maple syntax: none

Length: 2 on 64-bit architectures; 3 on 32-bit architectures

This structure is used to store a hardware floating-point value. The one or two words
(always 8 bytes) after the header store the actual double-precision floating-point value.
HFLOAT objects can appear as the result of floating-point computations, I/O operations,
or by extracting elements from hardware floating-point RTABLE structures. They look
like and are treated as indistinguishable from software FLOAT objects.

IF: If Statement
^stat-seqN......^stat-seq2^cond-expr2^stat-seq1^cond-expr1IF

Maple syntax:
if condExpr1 then

statSeq1
elif condExpr2 then

statSeq2
...
else statSeqN
end if

Length: 3 or more

This structure represents the if ... then ... elif ... else ... end if statements in Maple. If the
length is even, the last entry is the body of an else clause. The remaining entries are inter-
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preted in pairs, where each pair is a condition of the if or elif clause, followed by the as-
sociated body.

IMPLIES: Logical IMPLIES
^expr2^expr1IMPLIES

Maple syntax: expr1 implies expr2

Length: 3

INEQUAT: Not Equal or Test for Inequality
^expr2^expr1INEQUAT

Maple syntax: expr1 < > expr2

Length: 3

This structure has two interpretations, depending on the context in which it is used. It
can be either a test for inequality or an inequality statement.

INTNEG: Negative Integer
GMP-integerINTNEG

Maple syntax: -123

Length: 2 or more

This data structure represents a negative integer of arbitrary precision. For a complete
description of the integer representation, including positive integers, see the following
section.

INTPOS: Positive Integer
GMP-integerINTPOS

Maple syntax: 123

Length: 2 or more

This data structure represents a positive integer of arbitrary precision. Integers are repres-
ented internally in a base equal to the full word size of the host machine. On 32-bit archi-
tectures, this base is . On 64-bit architectures, the base is 2^64. Integers
in this range use the GNU Multiple Precision Arithmetic (GMP) library for integer
arithmetic.

Small integers are not represented by data structures. Instead of a pointer to an INTPOS
or INTNEG structure, a small integer is represented by the bits of what would normally
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be a pointer. The least significant bit is 1, which makes the value an invalid pointer (since
pointers must be word-aligned). Such an integer is called an immediate integer.

The range of integers that can be represented in this way is -1,073,741,823 to
1,073,741,823 (that is, about +-10^9) on 32-bit architectures, and -
4,611,686,018,427,387,903 to 4,611,686,018,427,387,903 (that is, about +-410^18) on
64-bit architectures. (Note that the maximum (non-immediate) integer magnitude in
Maple is about 2^2,147,483,488 on 32-bit architectures and 2^274,877,906,688 on 64-
bit architectures.)

LESSEQ: Less Than or Equal
^expr2^expr1LESSEQ

Maple syntax: expr1 <= expr2, expr2 >= expr1

Length: 3

This structure has two interpretations, depending on the context. It can be interpreted as
a relation (that is, an inequation) or as a comparison (for example, in the condition of an
if statement, or the argument to a call to evalb). Maple does not have a greater-than-or-
equal structure. Any input of that form is stored as a LESSEQ structure.

LESSTHAN: Less Than
^expr2^expr1LESSTHAN

Maple syntax: expr1 < expr2, expr2 > expr1

Length: 3

Similar to theLESSEQ structure above, this structure has two interpretations, depending
on the context. It can be interpreted as a relation (that is, an inequation), or as a compar-
ison (for example, in the condition of an if statement, or the argument to a call to evalb).

Maple does not have a greater-than structure. Any input of that form is stored as a LESS
structure.

LEXICAL: Lexically Scoped Variable within an Expression
integerLEXICAL

Maple syntax: name

Length: 2

This represents an identifier within an expression in a procedure or module that is not
local to that procedure, but is instead declared in a surrounding procedure or module
scope. The integer field identifies which lexically scoped variable of the current procedure
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is being referred to. The integer, multiplied by 2, is an index into the lexical-seq structure
referred to by the PROCDAG of the procedure. Specifically, |integer| * 2 - 1 is the index
to the NAME of the identifier, and |integer| * 2 is the index to a description (LOCAL,
PARAM, or LEXICAL) relative to the surrounding scope. The value of integer can be
positive or negative. If integer is a positive value, the original identifier is a local variable
of a surrounding procedure; if integer is a negative value, it is a parameter of a surrounding
procedure.

LIST: List
^attrib-expr^expr-seqLIST

Maple syntax: [ expr, expr, ... ]

Length: 2 (or 3 with attributes)

The elements of the expr-seq are the elements of the list. The list can optionally have at-
tributes.

LOCAL: Local Variable within an Expression
integerLOCAL

Maple syntax: name

Length: 2

This structure indicates a local variable when it appears within an expression in a procedure
or module. The integer is an index into the procedure local-seq. At procedure execution
time, it is also an index into the internal data structure storing the active locals on the
procedure activation stack, and stores private copies of theNAMEs of the local variables
(private copies in the sense that these NAMEs are not the same as the global NAMEs of
the same name).

MEMBER: Module Member
^name^moduleMEMBER

Maple syntax: module:-name

Length: 3

This structure represents a module member access in an expression. MEMBER objects
typically do not persist when a statement is simplified. Instead, they are replaced by the
actual member that they refer to (an instance of a NAME).
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MODDEF: Module Definition
desc-seqstat-seqexport-seqoption-seqlocal-seqparam-seqMODDEF

static name-seqstatic export-seqstatic local-seqmod-namelexical-seqglobal-seq

Maple syntax:
module modName ( )

description d1, d2, ...;
local l1, l2, ...;
local sl1::static, sl2::static, ...;
export e1, e2, ...;
export se1::static, se2::static, ...;
global g1, g2, ...;
option o1, o2, ...;
statSeq

end module

Length: 13

The parameter sequence (param-seq), which occurs between the parentheses after mod-
Name, points to an expression sequence describing the formal parameters of the module.
Currently, Maple does not support parameterized modules, so this field always points to
the sequence containing only an instance of the name thismodule.

The local sequence (local-seq) points to an expression sequence listing the explicitly and
implicitly declared local variables. Each entry is a NAME. The explicitly declared vari-
ables appear first. Within the module, locals are referred to by LOCAL structures, the
local variable number being the index into the local sequence. The instances of these
names appear in the MODULE structure.

The export sequence (export-seq) points to an expression sequence listing the exported
module members. Each entry is a NAME. Within the module, exports are referred to by
LOCAL structures, the local variable number being the number of elements in the local
sequence, plus the index into the export sequence. The instances of these names appear
in the MODULE structure.

The option sequence (option-seq) points to an expression sequence of options to the
module (for modules, options are the same as attributes). Each entry is a NAME or
EQUATION specifying an option. Typical options are package, load=... and unload=...

The statement sequence (stat-seq) field points to a single statement or a statement sequence
(STATSEQ). If the module has an empty body, this is a pointer to NULL instead.

The description sequence (desc-seq) field points to an expression sequence of NAMEs
or STRINGs. These sequences are meant to provide a brief description of what the
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module does and are displayed even when the value of interface(verboseproc) is less
than 2.

The global sequence (global-seq) field points to a list of the explicitly declared global
variables in the module (those that appeared in the global statement). This information
is never used at run time, but is used when simplifying nested modules and procedures
to determine the binding of lexically scoped identifiers (for example, an identifier on the
left-hand side of an assignment in a nested procedure can be global if it appears in the
global statement of a surrounding context). This information is also used at printing time,
so that the global statement contains exactly the global identifiers that were declared
originally.

The lexical sequence (lexical-seq) field points to an expression sequence of links to
identifiers in the surrounding scope, if any. The sequence consists of pairs of pointers.
The first pointer of each pair is to the globally unique NAME of the identifier; this is
needed at simplification and printing time. The second pointer is a pointer to a LOCAL,
PARAM, or LEXICAL structure which is understood to be relative to the surrounding
scope. When a module definition is evaluated, the lexical sequence is updated by replacing
each of the second pointers with a pointer to the actual object represented. The name
pointers are not modified, so that the actual identifier names are still available. The lexical-
seq for a module contains entries for any surrounding-scope identifiers used by that
module or by any procedures or modules contained within it.

The module name (mod-name) field points to the optional name of the module. If a
module name is specified when the module is declared, the name appears there. If no
module name is specified, this field will contain a value of NULL.

The static local-seq points to an expression sequence listing the local variables that were
explicitly declared as :static. Each entry is a NAME. Within the module, static locals are
referred to by LOCAL structures, the local variable number being the index into the
static local-seq minus the number of nonstatic locals and exports. A static local shares
its value among all instances of a class.

The static export-seq points to an expression sequence listing the exported module
members declared as static. Each entry is a NAME. Within the module, exports are re-
ferred to by LOCAL structures, the local variable number being the number of elements
in the local-seq, static local-seq, and export-seq, plus the index into the static export-seq.

The static name-seq stores the instances of the static locals and exports. It appears in the
MODDEF structure as these static variables are shared among all modules with the same
definition.

MODULE: Module Instance
^local-seq^mod-def^export-seqMODULE
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Maple syntax: none

Length: 4

Executing a module definition (MODDEF) results in a module instance. Each local or
exported member of the module is instantiated and belongs to that instance of the module.
The export-seq field points to an expression sequence of names of the instantiated exports
(as opposed to the global names, as stored in the module definition). The mod-def field
points back to the original module definition. The local-seq field points to an expression
sequence of names of the instantiated local variables of the module.

NAME: Identifier
...characterscharacters^attrib-expr^assigned-exprNAME

Maple syntax: name

Length: 4 or more

The assigned-expr field points to the assigned value of the name. If the name has no as-
signed value, this field is a null pointer (not a pointer to NULL). The next field points to
an expression sequence of attributes of the name. If there are no attributes, this field points
to the empty expression sequence (NULL). The remaining fields contain the characters
that form the name, stored 4 or 8 for each machine word (for 32-bit and 64-bit architectures
respectively). The last character is followed by a zero-byte. Any unused bytes in the last
machine word are also zero. The maximum length of a name is 268,435,447 characters
on 32-bit architectures and 34,359,738,351 characters on 64-bit architectures.

NEXT: Next Statement
NEXT

Maple syntax: next

Length: 1

NOT: Logical NOT
^exprNOT

Maple syntax: not expr

Length: 2

OR: Logical OR
^expr2^expr1OR

Maple syntax: expr1 or expr2
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Length: 3

PARAM: Procedure Parameter in an Expression
integerPARAM

Maple syntax: name

Length: 2

This structure indicates a parameter when it appears in a procedure. The integer is an
index into the procedure param-seq. Several special PARAM structures exist:

0PARAM

This structure represents the Maple symbol _npassed (formerly nargs), the number of
arguments passed when the procedure was called.

-1PARAM

This structure represents the Maple symbol _passed (formerly args), the entire sequence
of arguments passed when the procedure was called.

-2PARAM

This structure represents the Maple symbol procname, referring to the currently active
procedure.

-3PARAM

This structure represents the Maple symbol _nresults, the number of results expected to
be returned from the procedure.

-4PARAM

This structure represents the Maple symbol _params, the sequence of declared positional
arguments passed when the procedure was called.

-5PARAM

This structure represents the Maple symbol _nparams, the number of declared positional
arguments passed when the procedure was called.

-6PARAM

This structure represents the Maple symbol _rest, the sequence of undeclared arguments
passed when the procedure was called.

-7PARAM

This structure represents the Maple symbol _nrest, the number of undeclared arguments
passed when the procedure was called.
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-8PARAM

This structure represents the Maple symbol _options, the sequence of options in the
procedure.

-9PARAM

This structure represents the Maple symbol _noptions, the number of options in the
procedure.

-10PARAM

This structure represents the Maple symbol thisproc, referring to the instance of the
currently active procedure.

At procedure execution time, the integer (if positive) is used as an index into the internal
data structure Actvparams, which is part of the Maple procedure activation stack, and
stores pointers to the values (which are also Maple structures) of the actual parameters
passed to the procedure.

POLY: Multivariate Polynomials with Integer Coefficients
...m[i+1] coeffm[i+1] degreesm[i] coeffm[i] degrees^indet_seqPOLY

Maple syntax:
x^3 + 2*x*y + 1;

Length: 2*(number of monomials) + 2

This is an internal representation for multivariate polynomials of limited degree and integer
coefficients. SUM DAGs are automatically simplified to POLY DAGs if possible,
provided the polynomial has at least two terms and its total degree is greater than 1.

Each degree word stores the total degree of the monomial and the individual degrees.
For example, 5*x^2*y^3 + 1 is a two-variable polynomial whose first term has total degree
5: degree 2 in x, and degree 3 in y. The numbers 5, 2, and 3 are packed into a single degree
word. The packing depends on the number of variables in the polynomial and the machine
word length. Because the packing must fit in one word of memory, not all polynomials
can be represented in this way. But many polynomials are stored in this data structure,
which can be operated on efficiently.

Each coefficient word must be an integer data structure.

The indet_seq is the sequence of indeterminates that occur in the polynomial. The inde-
terminates must be Maple NAMEs or TABLEREFs. They are always sorted into des-
cending order under the ordering used for sets.
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The terms of the polynomial are always stored in graded lexicographical order. That is,
monomials are compared first by their total degree, with ties broken by degree in the first
variable, then degree the second variable, and so on.

If the sort command is used to sort a polynomial, and it would reorder either the terms
or the variables, then the POLY DAG is automatically converted to a SUM DAG in
place. Should this occur, it is not possible to convert the SUM back into a POLY.

The precise representation of monomials is as follows. For univariate polynomials, the
entire degree word is used and the maximum degree of a POLY is the largest immediate
integer kernelopts(maximmediate). For polynomials in n variables, we require n <
WORDSIZE/2, so the maximum number of variables is 31 on a 64-bit machine and 15
on a 32-bit machine. The total degree and all of the exponents are given floor(WORD-
SIZE/(n+1)) bits each, flush against the bottom of the word. For example, on a 64-bit
machine a polynomial in x,y will use the lowest 21 bits for y, the next 21 bits for x, and
the next 21 bits for the total degree. Any unused bits at the top of a word must remain
unset.

POWER: Power
^expr2^expr1POWER

Maple syntax: expr1 ^expr2

Length: 3

This structure is used to represent a power when the exponent is not an integer, rational,
or floating-point value. When the exponent is numeric, thePOWER structure is converted
to a length 3 PROD structure.

PROC: Procedure Definition
^desc-seq^stat-seq^rem-table^option-seq^local-seq^param-seqPROC

^return-type^eop^lexical-seq^global-seq

Maple syntax:
proc ( paramSeq ) :: returnType;

description descSeq;
local localSeq;
export exportSeq;
global globalSeq;
option optionSeq;
statSeq

end proc

Length: 10 or 11 (the return type is optional)
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The param-seq points to an expression sequence describing the formal parameters of the
procedure. Each entry is either a NAME or a DCOLON (which, in turn, contains a
NAME and an expression specifying a type). Within the procedure, parameters are referred
to by PARAM structures, the parameter number being the index into the param-seq.

The local-seq points to an expression sequence listing the explicitly and implicitly declared
local variables. Each entry is a NAME. The explicitly declared variables appear first.
Within the procedure, locals are referred to by LOCAL structures, the local variable
number being the index into the local-seq.

The option-seq field points to an expression sequence of options to the procedure (for
procedures, options are the same as attributes). Each entry is a NAME or EQUATION
specifying an option. Commonly used options are cache, operator, and `Copyright ...`.

The rem-table field points to a hash table containing remembered values of the procedure.
Entries in the table are indexed by the procedure arguments, and contain the resulting
value. If there is no remember table, this field contains a pointer to NULL, which is the
empty expression sequence.

The stat-seq field points to a single statement or a statement sequence (STATSEQ). If
the procedure has an empty body, this is a pointer to NULL instead. For each procedure
that is built into the kernel, there is a wrapper PROC that has the option builtin in its
option-seq, and a single Maple integer pointed to by its stat-seq. The integer gives the
built-in function number.

The desc-seq field points to an expression sequence of NAMEs or STRINGs. These are
meant to provide a brief description of what the procedure does, and are displayed even
when the interface(verboseproc) command is less than 2.

The global-seq field points to a list of the explicitly declared global variables in the pro-
cedure (those that appeared in the global statement). This information is never used at
run time, but it is used when simplifying nested procedures to determine the binding of
lexically scoped identifiers. For example, an identifier on the left-hand side of an assign-
ment in a nested procedure can be global if it appears in the global statement of a sur-
rounding procedure. This information is also used at procedure printing time, so that the
global statement will contain exactly the same global identifiers that were declared in
the first place.

The lexical-seq field points to an expression sequence of links to identifiers in the sur-
rounding scope, if any. The sequence consists of pairs of pointers. The first pointer of
each pair is to the globally uniqueNAME of the identifier; this is needed at simplification
and printing time. The second pointer is a pointer to a LOCAL, PARAM, or LEXICAL
structure which is understood to be relative to the surrounding scope. When a procedure
is evaluated (not necessarily called), the lexical-seq is updated by replacing each of the
second pointers with a pointer to the actual object represented. The name pointers are
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not modified, so that the actual identifier names are still available. The lexical-seq for a
procedure contains entries for any surrounding-scope identifiers used by that procedure
or by any procedures contained within it.

The eop field is BINARY. The first entry specifies the number of positional parameters
of the procedure. The remaining entries, if any, specify the evaluation order permutation
for the procedure (that is, an evaluation order for the arguments that is consistent with
any dependencies among the parameter specifications).

The return-type field is present only if a return type has been specified for the procedure.
A return type is an assertion about the type of the value returned by the procedure; if
kernelopts(assertlevel) is set to 2, then this type is checked as the procedure returns.

PROD: Product, Quotient, Power
......^expon2^expr2^expon1^expr1PROD

Maple syntax: expr1 ^ expon1 * expr2 ^ expon2 ...

Length: 2n + 1

This structure is interpreted as pairs of factors and their numeric exponents. Rational or
integer expressions to an integer power are expanded. If a rational constant is in the
product, this constant is moved to the first entry by the simplifier. A simple power, such

as , is represented as a PROD structure. More complex powers involving non-numeric
exponents are represented as POWER structures.

RANGE: Range
^expr2^expr1RANGE

Maple syntax: expr1 .. expr2

Length: 3

RATIONAL: Rational
^pos-integer^integerRATIONAL

Maple syntax: 1/2

Length: 3

This structure is one of the basic numeric objects in Maple. Note that this is not a division
operation, but only a representation for rational numbers. Both fields must be integers
(INTPOS, INTNEG, or an immediate integer) and the second must be positive.

630 • Appendix A Internal Representation



READ: Read Statement
^exprREAD

Maple syntax: read expr

Length: 2

The Maple read statement. The expression must evaluate to either a string or symbol
(STRING or NAME structure), and specifies the name of the file to read.

RETURN: Return Statement
^expr-seqRETURN

Maple syntax: return expr1, expr2, ...

Length: 2

The Maple return statement. The expression sequence is evaluated, giving the value(s)
to return.

RTABLE: Rectangular Table
num-elemsflags^attrib^index-func^maple-type^dataRTABLE

......

Maple syntax: rtable(...)

Length: 2n + p where n is the number of dimensions (0 to 63), and p is 0, 1, or 2, depend-
ing on the number of parameters.

The data field points to either a block of memory (for dense and NAG-sparseRTABLEs),
or to a HASHTAB structure (for Maple-sparse RTABLEs). The data block is either an
object of type BINARY, or memory allocated directly from the storage manager of the
operating system when the block is too large to be allocated as a Maple data structure. If
the data block is a BINARY object, the data pointer points to the first data word, not to
the object header.

The maple-type field points to a Maple structure specifying the data type of the elements
of an RTABLE of Maple objects. If the RTABLE contains hardware objects, themaple-
type field points to the Maple NAME anything.

The index-func field points to either an empty expression sequence (NULL), or an expres-
sion sequence containing at least one indexing function and a pointer to a copy of the
RTABLE structure. The copy of theRTABLE is identical to the original structure, except
that its index-func field refers to one less indexing function (either NULL, or another
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expression sequence containing at least one indexing function and a pointer to another
copy of the RTABLE with one less indexing function again).

The attrib field points to an expression sequence of zero or more arbitrary attributes,
which can be set by the setattribute command and queried by using the attributes
command.

The flags field is a bit field containing the following subfields.

• data type - 5 bits - indicates that one of several hardware data types or a Maple data type
(as specified by maple-type) is being used.

• subtype - 2 bits - indicates if the RTABLE is an Array, Matrix, or Vector.

• storage - 4 bits - describes the storage layout (for example, sparse, upper triangular, and
so on)

• order - 1 bit - indicates C or Fortran ordering of RTABLE elements.

• read only - 1 bit - indicates that the RTABLE is to be read-only once created.

• foreign - 1 bit - indicates that the space pointed to by the data field does not belong to
Maple, so Maple should not garbage collect it.

• eval - 1 bit - indicates if full evaluation should occur on lookup. For more information,
refer to the rtable_eval help page.

• literal - 1 bit - optimization for internal type checking of data contained in an RTABLE.

• number of dimensions - 6 bits - the number of dimensions of the RTABLE, from 0 to
63.

The num-elems field indicates the total number of elements of storage allocated for the
data. For a Maple-sparseRTABLE, num-elems is not used. For a NAG-sparseRTABLE,
and for other formats that grown in size since initial allocation, num-elems specifies the
number of elements currently allocated, some of which might not be in use.

The fields specify the upper and lower bounds of each dimension; they are stored

directly as signed machine integers. The limits on bounds are -2,147,483,648 to
2,147,483,647 for 32-bit architectures and -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 for 64-bit architectures. The total number of elements cannot
exceed the upper limit numbers either. Space is always reserved for at least 4 dimensions
in case the rtable is redimensioned.

The remaining fields refer to storage specific properties such as the number of bands

above and below the diagonal and the number of elements that are sorted in NAG-sparse
storage.

632 • Appendix A Internal Representation



SAVE: Save Statement
^expr-seqSAVE

Maple syntax: save expr, expr, ...

Length: 2

The Maple save statement. The expression sequence gives a list of names of objects to
save, and either a file name or Maple library archive name (.mla) in which to save them.
The file or library archive name can be specified as a NAME or STRING.

SDPOLY: Sparse Distributed Multivariate Polynomial
exp_n...exp_1^coeff_1^coeff_domain^term_ordering^exprSDPOLY

exp_n...exp_1^coeff_m......

Maple syntax: none

Length: For a polynomial of m terms with n variables, the length is

The expr entry stores the indeterminates of the polynomial (symbol for univariate cases
or expression sequence of symbols for multivariate cases).

The term_ordering is either null or a pointer to a Maple procedure that is used to compare
the exponent_vector to sort the polynomial terms. When term_ordering is null, lexico-
graphic order is used to sort the polynomial terms.

The coeff_domain is either null or a pointer to a Maple module that is used to perform
coefficient arithmetic (addition and multiplication). When coeff_domain is null, ordinary
arithmetic is used. Each of the followingm terms consists of a coefficient coeff_i (i=1..m)
followed by an exponent_vector [exp_j] (j=1..n). Coefficient coeff_i is a non-zero Maple
expression. Exponent_vector [exp_j] is an array of n hardware integers. Each integer
stores the exponent of the corresponding indeterminate. By default, the polynomial terms
are sorted by lexicographic order (that is, sorted by descending powers of indeterminate).

SERIES: Series
......integer^expr3integer^expr2^expr1SERIES

Maple syntax: none

Length: 2n + 2

This is the internal representation of a series in Maple. There is no input syntax for a
series; one can only be generated from a computation. The first expression has the general
form x-a, where x denotes the variable of the series used to perform that expansion, and
a denotes the point of expansion. The remaining entries are interpreted as pairs of coeffi-

Appendix A Internal Representation • 633



cients and exponents. The exponents are integers, not pointers to integers or immediate
integers. The exponents appear in increasing order. A coefficient O(1) (a function call
to the function O, with parameter 1) is interpreted specially by Maple as an order term.

SET: Set
^attrib-expr^expr-seqSET

Maple syntax: { expr, expr, ... }

Length: 2 (or 3 with attributes)

The entries in the expression sequence of the set are sorted in a deterministic order. For
details, see the set help page.

STATSEQ: Statement Sequence
...^stat2^stat1STATSEQ

Maple syntax: stat1; stat2; ...

Length: 3 or more

This structure represents a sequence of two or more statements, and can be used wherever
a single statement (for example, ASSIGN, IF, FOR) can appear. A statement sequence,
containing only a single statement, is replaced by that statement. A statement sequence
containing no statements is replaced by the empty expression sequence (NULL). Nested
STATSEQ structures are flattened. All of the above transformations are made by the
simplifier.

STOP: Quit Statement
STOP

Maple syntax: quit, done, or stop

Length: 1

STRING: Character String
...characterscharacters^attrib-exprreservedSTRING

Maple syntax: "This is a string"

Length: 4 or more

A Maple string is structurally similar to a NAME, except that it has no assigned-value
field. The attrib-expr field points to an expression sequence of attributes of the string. If
there are no attributes, this field points to the empty expression sequence (NULL). The
remaining fields contain the characters that form the string, stored 4 or 8 per machine
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word (for 32-bit and 64-bit architectures respectively). The last character is followed by
a zero-byte. Any unused bytes in the last machine word are also zero.

The maximum length of a string is 268,435,447 characters on 32-bit architectures and
34,359,738,351 characters on 64-bit architectures.

SUM: Sum, Difference
......^factor2^expr2^factor1^expr1SUM

Maple syntax: expr1 * factor1 + expr2 * factor2 ...

Length: 2n + 1

This structure is interpreted as pairs of expressions and their numeric factors. Rational
or integer expressions with an integer factor are expanded and the factor replaced with
1. If there is a rational constant in the sum, this constant is moved to the first entry by the
simplifier. Simple products, such as a*2, are represented as SUM structures. More complex
products involving non-numeric factors are represented as PROD structures.

TABLE: Table
^hash-tab^array-bounds^index-funcTABLE

Maple syntax: N/A

Length: 4

This is a general table type, as created by the table and array commands in Maple. The
index-func points to either a NAME or a PROC. For general tables, the array-bounds
field points to the empty expression sequence (NULL). For arrays (not to be confused
with Arrays, which are implemented as RTABLEs), the array-bounds field refers to an
expression sequence of RANGEs of integers. The hash-tab field points to a HASHTAB
structure containing the elements.

TABLEREF: Table Reference
^attrib-expr^expr-seq^nameTABLEREF

Maple syntax: name [ expr ]

Length: 3 (or 4 with attributes)

This data structure represents a table reference, or indexed name. The name entry follows
the same rules as for ASSIGN, or it may be a TABLE or MODULE structure. (The
parser will not generate a TABLEREF with a TABLE structure for the name entry, but
this can occur internally.) The expression sequence contains the indices.
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TRY: Try Statement
^final-stat-seq......^catch-stat-seq^catch-str^try-stat-seqTRY

Maple syntax:
try tryStat

catch "catchStr": catchStat
...
finally finalStat;

end try

Length: 3 or more

This structure represents a try statement, and can have an arbitrary length, depending on
how many catch blocks are contained within it, and whether it has a finally block. The
catch-strs point to the catch string of the corresponding catch block. If no catch string
is specified, the catch-str points to NULL. Empty catch-stat-seqs are also represented
by pointers to NULL, as is an empty (but present) finally block.

The actual internal tag used for the TRY structure is MTRY to prevent collision with a
macro defined by some C exception handling libraries.

UNEVAL: Unevaluated Expression
^exprUNEVAL

Maple syntax: 'expr'

Length: 2

USE: Use Statement
^statseq^bindingsUSE

Maple Syntax:
use bindings in
statseq
end use

Length: 3

The bindings component points to an expression sequence of equations whose left-hand
sides are symbols, and the statseq component points to a sequence of statements that
form the body of the use statement. The right-hand sides of the binding equations can be
arbitrary expressions.

The use statement introduces a new binding contour and binds the names that appear on
the left-hand side of the equations in bindings. For convenience, on input, a module 'm'
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can appear among the bindings, and is treated as if it were the sequence e1 = m:-e1, e2
=m:-e2, ..., where the ei are the exports of 'm'. Within the sequence statseq of statements,
the symbols appearing on the left-hand side of the equations in bindings are bound to the
corresponding right-hand sides. The previous bindings of those symbols are restored
upon exit from the use statement. Bindings are resolved during automatic simplification.

XOR: Logical Exclusive-Or
^expr2^expr1XOR

Maple syntax: expr1 xor expr2

Length: 3

ZPPOLY: Polynomials with Integer Coefficients modulo n
...coef1coef0mod^indetZPPOLY

...^zppoly1^zppoly0mod^indet_seqZPPOLY

Maple syntax: modp1( ConvertIn( expr, indet ), n );

Maple syntax: modp2( ConvertIn( expr, indet1, indet2 ), n );

Length: degree(zppoly) + 2 (for the zero polynomial)

Length: degree(zppoly) + 3 (otherwise)

This is the internal representation of univariate and bivariate polynomials modulo some
integer. The modp1() and modp2() front ends provide a suite of functions to work on this
data structure operating in the domain of polynomials in one or two variables with integer
coefficients modulo n, written or , respectively. indet_seq is an expression

sequence of the indeterminates of the polynomial: (x), or (x,y).mod is the integer modulus
of the integer domain. In a univariate polynomial, the coefficients are stored in the fol-
lowing order.

(coef0*indet^0 + coef1*indet^1 + ... + coefi*indet^i) mod n

A bivariate polynomial contains pointers to univariate ZPPOLY structures representing
the coefficients of the first indeterminate.

(coef0(indet2)*indet1^0 + coef1(indet2)*indet1^1 + ...) mod n

where each coefi is a univariate polynomial in indet1 mod n.

All coefficients are stored, including zero coefficients. The leading coefficient is always
non-zero.
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A.4 Hashing in Maple
An important factor in achieving the overall efficient performance of Maple is the use of
hash table-based algorithms for critical functions. Tables are used in both simplification
and evaluation, as well as for less critical functions. For simplification, Maple keeps a
single copy of each expression, or subexpression, during a session. This is done by
keeping all objects in a table. In procedures, the cache and remember options specify
that the result of each computation of the procedure is to be stored in a remember table
associated with the procedure. Finally, tables are available to the user as one of the Maple
data types.

All table searching is done by hashing. Three types of hash tables are available: basic,
dynamic, and cache. Basic hash tables are used for most Maple hashing. They are auto-
matically promoted to dynamic hash tables when they are filled with a large number of
elements. Dynamic hash tables are designed to work with a large number of elements.
Cache tables are a type of hash table that store only recently inserted items.

Basic Hash Tables

The algorithm used for the basic hash tables is direct chaining, except that the chains are
dynamic vectors instead of the typical linked lists. The two data structures used to imple-
ment hash tables are HASHTAB and HASH.

Hash Table
...^hash-chain2^hash-chain1HASHTAB

Maple syntax: none

Length:

This is an internal data structure with no Maple syntax equivalent. It is used in the repres-
entation of tables within Maple. Each entry points to a hash chain (a HASH structure),
or is a null pointer if no entry has been created in that hash chain yet (that is, with that
entry location as its hash value). The size of a HASHTAB structure depends on the type
of table and the platform, but is always a power of 2 plus one.

Hash Chain
......^expr2key^expr1keyHASH

Maple syntax: none

Length: 2n + 1

Each table element is stored as a pair of consecutive entries in a hash bucket vector. The
first entry of this pair is the hash key, and the second is a pointer to a stored value. In
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some cases (for example, procedure remember tables and user-defined tables), the key
is also a pointer. In other cases, the key is a hashed value (for example, the simplification
table, the symbol table). The key cannot have the value zero (or the null pointer) since
this is used to indicate the bottom of the bucket.

Dynamic Hash Tables

The Maple dynamic hash table is a complicated data structure. a brief overview is
presented here.

Instead of using a flat, fixed-length directory, Maple dynamic hash tables use a tree
structure with contiguous bits from the hash key to select a child. A child of a directory
can be a subdirectory or a hash chain. For example, a top-level directory may use the first
10 bits to index 1024 children. One of its children may be a directory that uses, for ex-
ample, the next 8 bits of the key to index 256 children.

A hash chain in a dynamic table stores elements using key value pairs (in the same way
that a hash chain does in a basic hash table). The first n bits of the keys in a hash chain
are identical, where n is the number of bits required to locate the hash chain. The remaining
bits are arbitrary. Using the example in the previous paragraph, the elements of a hash
chain that is a child of the directory with 256 children have hash keys that are identical
in the first 18 bits.

When a hash chain with unused bits overflows, it is split into two. This may require cre-
ating a subdirectory with two children or doubling the size of the hash chain's parent
directory. In either case, another bit from the hash key is introduced for indexing. This
bit is used to divide the elements of the old chain into the two new chains. If the hash
chain has no unused bits for indexing, the chain grows as needed. This growth occurs
only if many elements are inserted with identical hash keys.

Cache Hash Tables

Cache tables have two classes of entries: permanent and temporary. Each bucket in the
table has 4 entries reserved as temporary, followed by a pointer to a variable-sized chain.

Permanent entries, as designated by the way they are inserted, are stored exclusively in
the variable-sized chain, which can grow as needed.

Temporary entries are inserted in the normal way you would include a value in a basic
hash table or remember table. These are hashed to identify the bucket in which they are
to be stored. The existing entries in that bucket are pushed right by one, and the new entry
is put in the leading, ''most-recent'' spot. Reinserting an expression will cause it to be
promoted to the ''most-recent'' spot. Inserting a fifth element that hashes to the same
bucket will cause the least recently inserted temporary element to be removed from the
table.
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The maximum size of the cache table can be specified at creation time. Because cache
tables have a maximum size, and because as new elements are added old ones may be
removed, the cache table does not grow continuously as values are added. When used as
a remember table, they are useful for temporarily storing elements that were recently
computed, and likely to be needed again. Over time, as more elements are inserted, the
old elements will be discarded.

Cache tables can be created by using the Cache command, or as a remember table in a
procedure with the cache option specified. The advantage of using a cache table over
standard remember tables is that a cache table has a maximum size. This means that a
cache table does not act as a memory trap, storing a large number of values that cannot
be reclaimed by the garbage collector. As cache tables allow permanent elements to be
added, they can be used in procedures that cannot use option system remember tables.

The Simplification Table

The most important table maintained by the Maple kernel is the simplification table. All
simplified expressions and subexpressions are stored in the simplification table. The main
purpose of this table is to ensure that simplified expressions have a unique instance in
memory. Every expression which is entered into Maple or generated internally is checked
against the simplification table. If it is found in the simplification table, the new expression
is discarded and the old one (the one in the simplification table) is used. This task is done
by the simplifier, which recursively simplifies (applies all the basic simplification rules)
and checks against the table. The garbage collector deletes the entries in the simplification
table that cannot be reached from a global name or from a live local variable.

The task of checking for equivalent expressions within thousands of subexpressions
would not be feasible if it were not done with the aid of hashing. Every expression is
entered in the simplification table using its signature as a key. The signature of an expres-
sion is a hashing function itself, with one important attribute: signatures of trivially
equivalent expressions are equal. For example, the signatures of the expressions a+b+c
and c+a+b are identical; the signatures of a*b and b*a are also identical. If the signatures
of two expressions disagree, the expressions cannot be equal at the basic level of simpli-
fication.

In Maple 13, the use of the basic and dynamic hash tables as the data structure behind
the simplification table was phased out in favor of a new structure that worked better in
a multithreaded environment. In particular, the new table guarantees atomic inserts. This
removed the need for locking, and, because the simplification table is used so often,
greatly improved performance when running many threads.

Searching for an expression in the simplification table is done by:

• Simplifying recursively all of its components

• Applying the basic simplification rules
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• Computing its signature and searching for this signature in the table

If the signature is found, then a full comparison is performed (taking into account that
additions and multiplications are commutative) to verify that it is the same expression.
If the expression is found, the one in the table is used and the searched one is discarded.
A full comparison of expressions has to be performed only when there is a collision of
signatures.

Since simplified expressions are guaranteed to have a unique occurrence, it is possible
to test for equality of simplified expressions using a single pointer comparison. Unique
representation of identical expressions is significant for the efficiency of tables, and
therefore the remember option. Also, since the relative order of objects is preserved
during garbage collection, sequences of objects can be ordered by machine address. For
example, sets containing mutable objects are represented this way. The set operations,
such as union or intersection, can be done in linear time by merging sorted sequences.
Sorting by machine address is also available by using the sort command.

The Name Table

The simplest use of hashing in the Maple kernel is the name table. This is a symbol table
for all of the global names. Each key is computed from the character string of the name
and the entry is a pointer to the data structure for the name. The name table is used to
locate global names formed by the lexical scanner or by name concatenation. It is also
used by functions that perform operations on all global names. These operations include:

• Marking for garbage collection

• Saving a Maple session environment in a file

• The Maple commands anames and unames, which return all assigned and unassigned
global names, respectively

Remember Tables

A remember table is a hash table in which the argument(s) to a procedure call are stored
as the table index, and the result of the procedure call is stored as the table value. Because
a simplified expression in Maple has a unique instance in memory, the address of the
arguments can be used as the hash function. Therefore, searching a remember table is
very fast.

Several kernel functions use remember tables including evalf, series, divide, normal,
expand, diff, readlib, and frontend. The functions evalf, series, and divide are handled
internally in a special way for the following reasons:

• evalf and series need to store some additional environment information ('Digits' for evalf
and 'Order' for series). Consequently, the entries for these are extended with the precision
information. If a result is requested with the same or less precision than what is stored in
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the table, the table value is retrieved and rounded. If a result is produced with more pre-
cision than what is stored, it is stored in the table, replacing the lower precision value.

• evalf remembers only function calls (this includes named constants); it does not remember
the results of arithmetic operations.

• If a division operation succeeds and the divisor is a nontrivial polynomial, the divide
function stores the quotient in its remember table. Otherwise, no value is stored in the
remember table.

If option remember is specified together with option system, at garbage collection time,
the remember table entries which refer to expressions no longer in use elsewhere in the
system are removed. This provides a relatively efficient use of remembering that does
not waste storage for expressions that have disappeared from the expression space. As
garbage collection time can be unpredictable, cache remember tables provide an alternate
approach similar to option system, by remembering only the most recently computed
results.

Maple Language Arrays and Tables

Tables and arrays are provided as data types in the Maple language through the table and
array commands.

Note: Unlike the array command, the Array command creates a rectangular table, which
is described in the following subsection. An array is a table for which the component in-
dices must be integers within specified bounds. Tables and arrays are implemented using
the Maple internal hash tables. Because of this, sparse arrays are equally as efficient as
dense arrays. A table object consists of the following.

• Index bounds (for arrays only)

• A hash table of components

• An indexing function

The components of a table T are accessed using a subscript syntax (for example,
T[a,b*cos(x)]). Since a simplified expression is guaranteed to have a unique instance in
memory, the address of the simplified index is used as the hash key for a component. If
no component exists for a given index, then the indexed expression is returned.

The semantics of indexing into a table are described by its indexing function. Aside from
the default, general indexing, some indexing functions are provided by the Maple kernel.
Other indexing functions are loaded from the library or are supplied by the user.

Maple Language Rectangular Tables

Rectangular tables (as implemented by the RTABLE structure) can use a variety of
storage formats. One format, Maple-sparse, is identical to that used in tables and arrays,
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namely a hash table. For Matrices, there is another sparse format, NAG-sparse, which
uses one vector for each dimension to record indices, and one more vector to record the
values of the entries. Most RTABLE storage formats are dense, the simplest being the
rectangular format. Other dense formats include upper-triangular and band, where storage
is allocated only for the upper triangle or a band of elements respectively. To the user,
rectangular tables appear as objects of type Array, Matrix, Vector[row], and Vec-
tor[column]. Note that an Array is not the same as an array. For more information,
refer to the Array and array(deprecated) help pages.

Portability

The Maple kernel and the command-line interface are not associated with any one oper-
ating system or hardware architecture. The Maple kernel is designed to be portable to
any system which supports a C compiler, a flat address space, and a 32-bit or 64-bit word
size. Refer to the Install.html file on your product installation disc for a list of currently
supported operating system versions.

Most of the source code comprising the kernel is the same across all platforms. Extensive
use of macros and conditional compilation take care of platform dependencies, such as
word size, byte ordering, storage alignment requirements, differences in hardware floating
point support, and sometimes, C compiler bugs.

The Maple library is interpreted by the Maple kernel. Therefore, other than issues such
as maximum object size, it is completely independent of the underlying architecture.

The Standard worksheet graphical user interface is implemented in Java, which is platform-
independent. This includes custom GUI features such as embedded components and
Maplets.
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