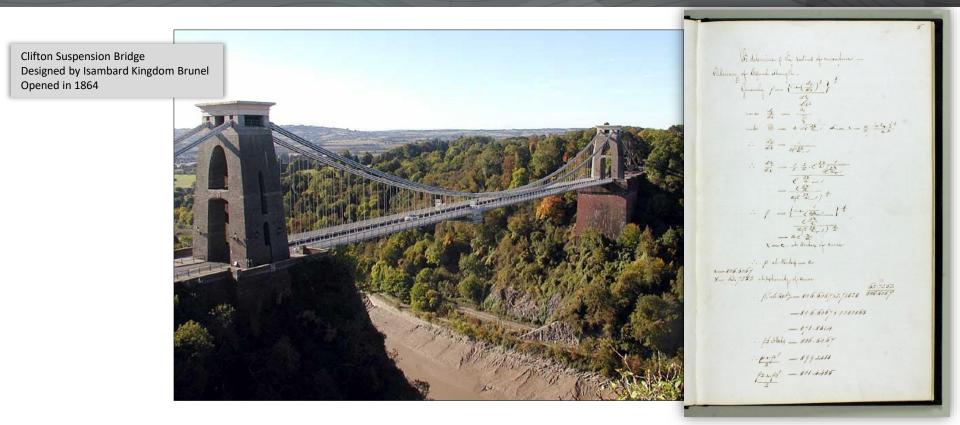


A Calculation Tool for Scientists and Engineers

Samir Khan, Product Manager


Maple Flow

Simple, freeform tool for calculations and documentation

For design engineers and scientists

] ≫∣							QQ	Q	00	0	88										
	flow ×			ght of I		empla								D	 	 	T				 	
meric	Symboli	9	C 2) Math	1		Ŧ	Consol	as				2 🕶	В	U		Ţ	4 :=	:=			«
									-+	_												
																C	6					

Engineering Calculations in the 1800s

Features

- Place math, text, images and plots anywhere and move into position
- Left-to-right, top-to-bottom evaluation
- Automatic calculation updates
- Natural math notation and units
- Access to nearly all of Maple's math functionality

Edit View Insert Format Help		
		_
		<
Maple Flow www.maplesoft.cr	om	
Determine the Position of a Gunshot Through		
Acoustic Localization and Time of Arrival		
The location of a gunshot is at an unknown point (x, y) . Three listening stations are placed at positions $(X[i], Y[i])$ where $i=13$.		
÷		
V		
The sound of the gunshot reaches the first listening station at time t[1]=0. If the distance from cannon to the first listening station is R, then	the	
$(X[1] - x)^2 + (Y[1] - y)^2 - (R + t[1] \cdot a) = 0$	(1)	
where a is the speed of sound.		
If the sound reaches the 2nd and 3rd microphones at times $t[2]$ and $t[3]$, then		
$(X[2] - x)^2 + (Y[2] - y)^2 - (R + t[2] \cdot a)^2 = 0$	(2)	
$(X[3] - x)^{2} + (Y[3] - y)^{2} - (R + t[3] \cdot a)^{2} = 0$	(3)	
(x[3] - x) + (x[3] - y) - (x + ([3] - a)) = 0		
$(x_{1}(y_{1} - x_{1}) + (x_{1}(y_{1} - y_{1}) - (x + (y_{1}) - x_{1}) - (x + (y_{1}) - x_{1})$ These are three equations in three unknowns, (x, y) and R. This application determines positio the gunshot via two methods.	n of	
These are three equations in three unknowns, (x,y) and R. This application determines positio		
These are three equations in three unknowns, (x,y) and R. This application determines positio the ganshot via two methods. 1) Minimization of the least squares error of equations 1, 2 and 3. This method is suitable if th		
These are three equations in three unknowns, (x, y) and R. This application determines positio the gunshot via two methods. 1) Minimization of the least squares error of equations 1, 2 and 3. This method is suitable if th some uncertainty in the recorded times and positions of the listening stations		

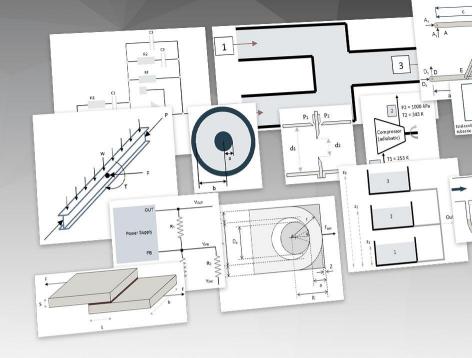
What this means for you

You don't have to start with a grand plan

Progressive refinement is rewarded

Smooth flow from initial calculation concept to final technical report

	0 QQQ 00	<
Highway Paven	nent Design using the CALTRANS method	
	layers of materials above the natural soil.	-
	asphalt	
	bar Dan Dankharen Daria (h. 1990)	
Manual (6th edition) published by	n a flexible pavement using the approach outlined in the <u>Highway Design</u> , y the California Department of Transportation (<u>CALTRANS</u>). Specifically, this ckness of the subbase, base and asphalt concrete layers.	
R-Value	*a measure of resistance of soils to deformation under wheel loading and saturated soils conditions*	
Gravel Equivalent	"equivalent thickness of gravel (aggregate subbase) that would be required to prevent permanent deformation in the underlying layer or layers due to cumulative traffic loads anticipated during the design life of the pavement structure	
Gravel Equivalent Traffic Index	required to prevent permanent deformation in the underlying layer or layers due to cumulative traffic loads anticipated during the design life of the	
Fraffic Index	required to prevent permanent deformation in the underlying layer or layers due to cumulative traffic loads anticipated during the design life of the pavement structure.	
Fraffic Index Annual Average Daily Traffic	required to prevent permanent deformation in the underlying layer or layers due to cumulative traffic loads anticipated during the design life of the pavement structure "a measure of the cumulative number of ESALs expected during the design life of the pavement structure" "average 24-hour volume, being the total number during a stated period divided	
Traffic Index Annual Average Daily Traffic Equivalent Single Axle Loads	required to prevent permanent deformation in the underlying layer or layers due to cumulative traffic loads anticipated during the design life of the pavement structure "a measure of the cumulative number of ESALs expected during the design life of the pavement structure" "average 24-hour volume, being the total number during a stated period divided by the number of days in that period" "number of 18-kip standard single axie load repetitions that would have the same damage effect to the pavement as an axie of a specified magnitude and	
	required to prevent permanent deformation in the underlying layer or layers due to cumulative traffic loads anticipated during the design life of the pavement structure "a measure of the cumulative number of ESALs expected during the design life of the pavement structure" "average 24-hour volume, being the total number during a stated period divided by the number of days in that period" "number of 18-kip standard single axie load repetitions that would have the same damage effect to the pavement as an axie of a specified magnitude and	


Untitled (32)* - [Server 14] - Maj		- 5 ×
File Edit View Insert Format	rmep ☆ ▦ ở 역역ዊ ወ⊡ ☷	
Start.flow X 📓 *Untitled		
Numeric Symbolic C 2D Ma	aft v Segoe UI v II v B I U \equiv \equiv \exists \mathscr{L} \mathscr{L} \equiv \exists	>>
		^
gas := "N2"		
State 1		
Pressure	$P_1 := 2 \times 10^6 Pa$	
Temperature	τ, : 900 Κ	
Internal energy	$u_1 = 6.921 \times 10^5 \frac{J}{kg}$	
Specific volume	$v_1 = 0.135 \frac{m^3}{kg}$	
State 2		
Pressure	$P_2 := 7 \times 10^6 Pa$	
Temperature	T ₂ := T ₁ = 900 K	
Internal energy	$u_2 = 6.901 \times 10^5 \frac{J}{kg}$	
Specific volume	$v_2 := 1/ThermophysicalData:-Property(density, gas, T = T_{2'}P = P_2) = 0.039 \frac{m^3}{kg}$	
Pressure at any specific volume	P ≔ ThermophysicalData:-Property(*pressure*, gas. *temperature* = T _y , *D* = 1/V)	
Work done in isothermal compression	$w = \int_{v_1}^{v_2} P dV = -3.35 \times 10^2 \frac{kJ}{kg}$	
Heat transferred per unit mass	$q := u_2 - u_1 + w = -3.37 \times 10^2 \frac{kJ}{kg}$	
		*
< Ready	C: Program Files Waple 2	> 2022\toolbox\WapleFlow Memory: 56.18M Time: 5.21s Zoom: 100%

What This Means In The Classroom

- In the classroom
 - Develop mathematically live class notes and electronic hand-outs
 - Give students a clear understanding of the physics by exposing the equations in a readable format
 - Emphasize the importance of units
- Homework & Assignments
 - Give students a simple, freeform scratchpad for doing fully documented calculations
 - Help students spot and correct errors
 - Make calculations fun!

S:\Program Files\Maple Flow 2023\data\exa	mples\DerivingBeamDeflectionEquations.flow* - [Server 4] - Maple Flow 2023	- 0	×
File Edit View Insert Format Help			
□┣̈́	› ૡ્ૡૣૡૣ ፼ ፼ ∰① ✿		«
			~
🛸 Maple Flow	www.maplesoft.com		
Deriving Beam Defle	ection Equations		
This application demonstrates how y beam deflection equations for severa	ou can solve the Euler-Bernoulli equation to symbolically derive I different cases.		
Point loads can be represented by th by the Heaviside Step function.	e Dirac Delta function, while distributed loads can be represented		
Various combinations of initial and b cantilevers and free ends.	oundary conditions can be used to represent simple supports,		
The cases given below can be extend	ed to model other configurations.		
Beam with Point Load			_
	A		
	a		
Euler-Bernoulli equation	$de := EI \cdot \frac{d^4}{dx^4} w(x) = q(x)$		
Initial and boundary conditions	ibc := w(0) = 0, w(L) = 0, w''(0) = 0, w''(L) = 0		
Load profile	q := x - F Dirac $(x - a)$		
Solve the differential equation	deflection := dsolve({ de, ibc}, w(x))		
			E.
Convert Heaviside to piecewise	deflection:= simplify(convert(deflection, piecewise, x)) assuming L > a, positive = converted and the statement of the stat	w(x) =	<u>. [[</u>
			~
< Ready	C:\Program Files\Maple Flow 2023\data\examples Memory: 40.18M Time:	1.93s Zoo	> m: 100%

Questions

