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Safe Use of ML in Computer Algebra Systems

Improve choices that don’t affect correctness.
Example: S-pair polynomial choice in Buchberger’s
algorithm.
CAS often rely on human-made heuristics.
Early applications of ML in CAS showed performance
improvements (Z. Huang et al., 2014).
Question: Can ML contribute to gaining insights?
(Davies et al., 2021).
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Explainable Artificial Intelligence(XAI)

Offer explanations for AI decisions, enhancing user
trust and effectiveness.
As shown in Peifer et al. (2020), ML models can reveal
insights.
We plan to automatize these revelations.
Extracting heuristics from complicated models.
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CAD and variable ordering

We have done this for CAD but could be replicated or
adapted for any choice in any algorithm
CAD is an algorithm that breaks the space into regions.
Variable ordering can have a huge impact on its complexity
C. W. Brown and J. H. Davenport (2007).

Figure: CADs of {x5 + 5x4 + 5x3 − 5x2 − 6x − 2y}. 57 cells using
ordering x ≻ y . 3 cells using the ordering y ≻ x .
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Explain basic heuristics

Brown proposed in C. W. Brown (2004) chooses the variable
that minimizes these features, breaking ties with the next
one:

maxpolys(maxmonomials(Degreexi ))
(highest degree with which the variable appears)
maxpolys(maxmonomials(TotalDegree ∗ Sign(Degreexi )))
(highest degree of a monomial in which the variable
appears)∑

polys(
∑

monomials(Sign(Degreexi )))
(number of monomials in which the variable appears)
randomly
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Explain basic heuristics

gmods proposed by Río and England (2022) chooses the
variable that minimizes:∑

polys(maxmonomials(Degreexi ))
(highest degree with which the variable appears in the
product of the polynomials)
randomly
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Results of basic heuristics

Brown proposed in C. W. Brown (2004) and gmods proposed
by Río and England (2022).

Name Accuracy Total time # Completed
gmods 0.563 7192.2 982.6
Brown 0.553 7842.6 968.9
random 0.167 20797.3 262.5
virtual-best 1 4822.7 1019

Table: Metrics of existing heuristics in our testing dataset.
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Machine learning models

Being inspired by human-made heuristics, D. Florescu and
M. England, 2019 proposed representing sets of
polynomials as a list of features.
For example:

maxpolys(maxmonomials(Degreexi ))

maxpolys Sign(maxmonomials(TotalDegree ∗ Sign(Degreexi )))∑
polys(

∑
monomials(Sign(Degreexi )))

. . .
oppolysop(opmonomials(op(Degreexi )))

Using these features, various machine learning models were
trained.
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XAI - One decision
From each ML decision, XAI models tell us which features
had the biggest impact on the result.

Figure: An explanation of a decision made by the MLP model on
an example CAD problem instance, for the selected output
ordering, ordering 5: x3 ≻ x1 ≻ x2Tereso del Río Explainable AI Insights for Symbolic Computation



XAI - All decisions - One model

Feature Name Summed Impact
sum(max(vi (S))) 102.58
avg(avg(vi (S))) 86.814
sum(max(svi (S))) 72.671
sum(sum(svi (S))) 63.515

avg(avg(sg(vi (S)))) 53.735
avg(avg(svi (S))) 47.913

sum(sum(sg(vi (S)))) 46.66
sum(sum(vi (S))) 45.988

. . . . . .
Table: Features in Multi Layer Perceptron after merging those that
would generate the same heuristic.
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XAI - Models vote most impactful features

Feature Name Voted Score
sum(max(vi (S))) 3.333
avg(avg(vi (S))) 2.167
sum(sum(vi (S))) 1.158
avg(avg(sg(vi (S)))) 1.15
sum(sg(sum(vi (S)))) 0.794
sum(max(svi (S))) 0.787
avg(avg(svi (S))) 0.583
sum(sum(sg(vi (S)))) 0.554
...

...
Table: Voted score of merged and aggregated features across all
models.
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Using them as heuristics

Name Accuracy Total time # Completed
SumMaxV 0.563 7192.2 982.6
AvgAvgV 0.544 7138.7 983.5
SumSumV 0.549 7524.8 975.3
AvgAvgSgV 0.535 8682.6 956.3
SumSgSumV 0.45 10836.7 922.5
SumMaxSV 0.509 8771.7 956.5

Table: Evaluation metrics for the new heuristics to choose the
variable orderings for CAD. In bold, the best measure of the
metric out of all the heuristics.
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Combining them

We can combine them as tiebreakers

Name Accuracy Total time # Completed
Brown 0.553 7842.6 968.9
T1 0.567 6896.3 985.7
T2 0.583 6896.7 984.8

Table: Evaluation metrics for the different heuristics to choose the
variable orderings for CAD. In bold, the best measure of the
metric out of all the heuristics. T1=SumMaxV>AvgAvgV>SumSumV and
T2=SumMaxV>SumSumSgV>SumSumV
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Comparison with previous state of the art

Figure: Survival plot for best-existing heuristics and new heuristics
proposed in the difficult problems.
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Moral of this piece of work

XAI was able to return very relevant features, and there is
nothing special about CAD!
In Symbolic Computation, we can use XAI tools to deduce
simple heuristics.
The entire paper can be read in
https://doi.org/10.48550/arXiv.2304.12154. And the code
used is freely available in Zenodo:
https://doi.org/10.5281/zenodo.8229298
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