

Forecasting Natural Gas Heating Cost for a Building

This application estimates the cost of heating a building with natural gas. The analysis accounts for

- the energy content and cost of natural gas
- heat loss from four walls a roof, and windows
- thickness and R value of insulation

The application uses real heating degree days data for a cold winter month in Kitchener, Ontario.

Humid Air Properties

Density

$$\rho := \frac{1}{\text{ThermophysicalData:-Property(V,Tdb=290 K,P=1 atm,R=0.5,HumidAir)}}$$

$$\rho = 1.206 \frac{\text{kg}}{\text{m}^3}$$

Specific heat capacity

Cp := ThermophysicalData:-Property(C, Tdb = 290 K, P = 1 atm, R = 0.5, HumidAir)

$$Cp = 1.011 \frac{kJ}{kg \ K}$$

Heat capacity per unit volume

$$airCapacityPerVolume := Cp \cdot \rho = 1.220 \frac{kJ}{\text{K m}^3}$$

Natural Gas and Furnace Properties

Cost of Natural gas per unit volume at standard conditions

)

Energy content of natural gas

energyPerVolume $= 0.0373 \text{ GJ} \cdot \text{m}^{-3}$

Walls and Ceiling

Area of side1, side2, side3, side 4 and ceiling

$$A_{\text{Wallceiling}} := \begin{bmatrix} 60 \\ 60 \\ 60 \\ 60 \\ 60 \end{bmatrix} m^2$$

Depth of insulation

 $insulationDepth_{wallceiling} := [9cm, 9 cm, 9cm, 9cm, 15 cm]$

$$insulationDepth_{wallceiling} := \begin{bmatrix} 9 \\ 9 \\ 9 \\ 9 \\ 15 \end{bmatrix}$$
 cm

R value of insulation (typical value for fiberglass batts)

$$Rp := 22 \text{ K} \cdot \text{m} \cdot \text{W}^{-1}$$

Windows

Area of windows on all four sides and ceiling

$$A_{\text{windows}} := [5.4 \text{ m}^2, 12 \text{ m}^2, 2.5 \text{ m}^2, 0, 0]$$

$$A_{\text{windows}} := \begin{bmatrix} 5.4 \\ 12 \\ 2.4 \\ 0 \\ 0 \end{bmatrix} m^2$$

R value of windows on all four sides and ceiliing

$$R_{windows} := \begin{bmatrix} 0.35 \\ 0.35 \\ 0.35 \\ 0.35 \\ 10^{8} \end{bmatrix} \frac{m^{2} \cdot K}{W}$$

Miscellanous

Volume of building interior

 $volumeBuilding \coloneqq 400 \ m^3$

Furnace efficiency

furnaceEfficiency = 0.95

Number of air exchanges per hour

 $airExchanges := 0.8 hour^{-1}$

Mean HDD for Kitchener, Ontario in January

HDD := 713 degC·day

Cost of Natural Gas

Cost per unit energy content of natural gas

$$costPerEnergy := \frac{costPerVolume}{energyPerVolume} = 2.606 \frac{1}{GJ}$$

Effective cost per unit energy, given the furnace efficiency

costPerEnergyEffective :=
$$\frac{\text{costPerEnergy}}{\text{furnaceEfficiency}} = 2.743 \frac{1}{\text{GJ}}$$

Energy Losses in One Month Through Various Paths

R values of all four sides and ceiling

$$R_{\text{Wallceiling}} := \text{Rp·insulationDepth}_{\text{Wallceiling}} = \begin{bmatrix} 1.980 & \frac{\text{K} \cdot \text{s}^3}{\text{kg}} \\ 3.300 & \frac{\text{K} \cdot \text{s}^3}{\text{kg}} \end{bmatrix}$$

Heat loss through all four walls and ceiling

$$Q_{\text{wallceiling}} := \text{HDD} \cdot \text{add} \left(\frac{A_{\text{wallceiling}}[\text{i}] - A_{\text{windows}}[\text{i}]}{R_{\text{wallceiling}}[\text{i}]}, \text{i} = 1..5 \right) = 7.97 \times 10^3 \text{ MJ}$$

Heat loss through windows

$$\mathbf{Q}_{\text{windows}} := \text{HDD} \cdot \text{add} \left(\frac{\mathbf{A}_{\text{windows}}[\mathbf{i}]}{\mathbf{R}_{\text{windows}}[\mathbf{i}]}, \mathbf{i} = 1..5 \right) = 3.48 \times 10^3 \text{ MJ}$$

Heat loss through air exchanges

 $\textbf{Q}_{\texttt{exchange}} := \texttt{HDD} \cdot \texttt{volumeBuilding} \cdot \texttt{airExchanges} \cdot \texttt{airCapacityPerVolume} = ~6.68 \times 10^3 \text{ MJ}$

Total Heating Cost

Total energy loss in one month

$$\mathbf{Q_{total}} \coloneqq \mathbf{Q_{wallceiling}} + \mathbf{Q_{windows}} + \mathbf{Q_{exchange}} = \mathbf{1.81} \times \mathbf{10^4} \ \mathrm{MJ}$$

Total cost of natural gas used in heating home for one month

$$\texttt{cost} \coloneqq \texttt{Q}_{\texttt{total}} \cdot \texttt{costPerEnergyEffective} \texttt{= 49.745}$$