

Crack Width in Doubly Reinforced Concrete Beam

This worksheet calculates the maximum crack spacing and width in doubly reinforced concrete beam, compliant with Eurocode 2

1. Properties

1.1 Steel

Yield stress $f_y := 420 \text{ MPa}$

Modulus of elasticity $E_s := 2.1 \times 10^5 \text{ MPa}$

1.2 Concrete

Unit weight of concrete $\gamma_{\text{concrete}} \coloneqq 25 \text{ kN} \cdot \text{m}^{-3}$

Characteristic cylinder strength of concrete $f_{ck} := 32 \text{ MPa}$

Mean value of the tensile strength of concrete $f_{ctm} := 3.02 \, \text{MPa}$ Eurocode 2 Table 3.1

Mean value of the tensile s	strength of the concrete
effective at the time when	the cracks may first be
expected to occur	

$$\mathbf{f}_{\mathsf{ct_eff}} \coloneqq \mathbf{f}_{\mathsf{ctm}}$$

Secant modulus of elasticity of concrete	e
Furocode 2 Table 3.1	

$$E_{cm} := 33.3 \, GPa$$

$$E_{c28} := 1.05 \cdot E_{cm}$$

$$\psi \coloneqq 1.5$$

$$E_{\text{eff}} := \frac{E_{c28}}{1 + \psi} = 13.986 \,\text{GPa}$$

$$\alpha_e := \frac{E_s}{E_{eff}} = 15.015$$

1.3 Geometry

$$b := 1000 \, \text{mm}$$

$$h := 900 \, \text{mm}$$

$$c_c := 75 \, \text{mm}$$

$$c_{c2} := 75 \text{ mm}$$

$$w_{limit} := 0.15 \, \text{mm}$$

Area :=
$$\left[seq(\pi \cdot d^2 \cdot 0.25, d \text{ in Dia}) \right]$$

Area =
$$\left[78.540 \, \text{mm}^2, 113.097 \, \text{mm}^2, 201.062 \, \text{mm}^2, 314.159 \, \text{mm}^2, 490.874 \, \text{mm}^2, 804.248 \, \text{mm}^2\right]$$

$$Dn := 6$$

$$s := 150 \, \text{mm}$$

$$\phi := Dia[Dn] = 32 mm$$

$$A_s := Area[Dn] \cdot \frac{b}{s} = 5.362 \times 10^3 \text{ mm}^2$$

$$d := h - c_c = 825 \, \text{mm}$$

$$d_c := c_c + \frac{\phi}{2} = 91 \, \text{mm}$$

Rebar selection Dn2 := 5

$$s_2 := 200 \text{ mm}$$

Diameter of chosen bar $\phi_2 := Dia[Dn2] = 25 \text{ mm}$

Area of compression reinforcement
$$A_{s2} := Area[Dn2] \cdot \frac{b}{s_2} = 2.454 \times 10^3 \text{ mm}^2$$

$$d_2 := c_{c2} + \frac{\phi_2}{2} = 87.500 \,\text{mm}$$

Moment Due to Quasi-Permanent Actions $M_{OP} := 400 \text{ kN} \cdot \text{m}$

2. Calculation of Tensile Stress in Reinforcement at Service Loads

2.1 Cracking Moment at Moment at Service Loads

Neutral axis depths of uncracked section $x_u := \frac{\frac{b \cdot h^2}{2} + \left(\alpha_e - 1\right) \cdot \left(A_s \cdot d + A_{s2} \cdot d_2\right)}{b \cdot h + \left(\alpha_e - 1\right) \cdot \left(A_s + A_{s2}\right)} = 465.561 \, \text{mm}$

Moment of inertia of uncracked section transformed to concrete

$$\begin{split} I_u &:= \frac{b \cdot h^3}{12} + b \cdot h \cdot \left(\frac{h}{2} - x_u\right)^2 \\ &+ \left(\alpha_e - 1\right) \cdot \left(A_s \cdot \left(d - x_u\right)^2 + A_{s2} \cdot \left(x_u - d_2\right)^2\right) \end{split}$$

$$I_u = 7.559 \times 10^{10} \, \text{mm}^4$$

Cracking moment

$$M_{cr} := f_{ctm} \cdot I_u \cdot \frac{1}{h - x_u} = 525.483 \text{ kN m}$$

2.2 Tensile Stress in Reinforcement

Distance from top to neutral axis

$$\begin{aligned} x &:= \left(\left(\left(A_s \cdot \alpha_e + A_{s2} \cdot \left(\alpha_e - 1 \right) \right)^2 + 2 \cdot b \cdot \left(A_s \cdot d \cdot \alpha_e + A_{s2} \cdot d_2 \cdot \left(\alpha_e - 1 \right) \right) \right)^{1/2} - \left(A_s \cdot \alpha_e + A_{s2} \cdot \left(\alpha_e - 1 \right) \right) \right) \cdot b^{-1} \\ x &= 275.040 \, \text{mm} \end{aligned}$$

$$I_{cr} := \frac{b \cdot x^3}{3} + \alpha_e \cdot A_s \cdot (d - x)^2 + (\alpha_e - 1) \cdot A_{s2} \cdot (d_2 - x)^2 = 3.249 \times 10^{10} \, \text{mm}^4$$

Stresses

$$f_{st} := \frac{M_{QP}}{I_{cr}} \cdot \alpha_e \cdot (d - x) = 1.017 \times 10^8 \, Pa$$

$$f_c := \frac{M_{QP}}{I_{cr}} \cdot x = 3.386 \times 10^6 \, \text{Pa}$$

$$f_{sc} := \frac{M_{QP}}{I_{cr}} \cdot \alpha_e \cdot (x - d_2) = 3.466 \times 10^7 \text{ Pa}$$

2.3 Crack Width (Eurocode 2)

Stress in the tension reinforcement assuming a cracked section

$$\sigma_{\!_S} \coloneqq f_{st}$$

Factor dependent on the duration of the load (0.6 for short term, 0.4 for long term)

$$k_t := 0.4$$

Depth of effective tension area

$$h_{c_{-eff}} := min\left(2.5 \cdot (h - d), \frac{h - x}{3}, \frac{h}{2}\right) = 187.500 \, mm$$

Effective tension area

$$A_{c \text{ eff}} := h_{c \text{ eff}} \cdot b - A_{s} = 1.821 \times 10^{5} \text{ mm}^{2}$$

Effective steel ratio for effective tension

$$\rho_{\text{p_eff}} := \frac{A_{\text{s}}}{A_{\text{c_eff}}} = 0.029$$

Coefficient of rebar bond property 0.8 for high bond bar 1.6 for prestressing tendons (effectively plain surface

$$k_1 := 0.8$$

Coefficient of strain distribution 0.5 for bending, 1.0 for pure tension

$$k_2 := 0.5$$

Coefficients found in national annex

$$k_3 := 3.4$$
 $k_4 := 0.425$

Variance in mean strains between reinforcement and concrete.

$$\epsilon_{\text{sm_cm}} \coloneqq \frac{\sigma_{s} - k_{t} \cdot \frac{f_{\text{ct_eff}}}{\rho_{p_eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{p_eff}\right)}{E_{s}} = 2.023 \times 10^{-4}$$

 $\varepsilon_{\mbox{\scriptsize sm}}$ is the mean strain in the reinforcement under the relavent combination of loads $^{\mbox{\scriptsize sm}}$

 $\epsilon_{\rm cm}$ is the mean strain in the concrete between cracks

$$\substack{\epsilon \\ \text{sm_cm}} \text{ is } \substack{\epsilon \\ \text{cm}} - \substack{\epsilon \\ \text{cm}}$$

Maximum crack spacing

$$s_{r_{\text{-max}}} := k_3 \cdot c_c + \frac{k_1 \cdot k_2 \cdot k_4 \cdot \phi}{\rho_{p_{\text{-}eff}}} = 439.800 \,\text{mm}$$

Check

$$\text{check} := \left\{ \begin{array}{ll} \text{"Check Design"} & \varepsilon_{\text{sm_cm}} \geq 0.6 \cdot \frac{\sigma_{\text{s}}}{E_{\text{s}}} \\ \\ \text{"OK"} & \text{otherwise} \end{array} \right.$$

check = "OK"

Crack width eq 7.8 EN 1992-1-1

$$w_k := s_{r_max} \cdot \epsilon_{sm_cm} = 0.089 \, mm$$