Revision	Author	Checked by	Date	

	Maple Flow
1	1 Idpa I tow

www.maplesoft.com

By: Check: Approve: Flagpole Footing Design Client: Maplesoft 23423-MAP-3432 REB B

Flagpole Footing Design

Compliant with International Building Code (IBC) 2018

P/O No:	665477 AB	Prepared by	
Doc Ref:	23423-MAP-342	Checked by	
		Approved by:	
		Approved by (Client):	
		Date:	17 th April 2021

Revision

Rev A	First release	16 th January 2021
Rev B	Updated fracture check	17 th April 2021

Author	Checked by	Date	
	Author	Author Checked by	Author Checked by Date

Introduction

This calculation sheet determines the diameter of a footing, according to Chapter 18 of IBC 2018 (1807.3 Embedded posts and poles)

Parameters

Restrained at grade $constrained \coloneqq "yes"$

 $P := 30 \times 10^3 \, lbf$ Lateral force at top of pole

Height of pole above grade $H := 3 \, ft$

Diameter of pole footing $B \coloneqq 4.5\,\text{ft}$

 $S := 0.35 \times 10^3 \, \text{lbf} \cdot \text{ft}^{-3}$ Lateral soil capacity

Isolated pole factor $F \coloneqq 2$

IBC 2018 (1806.3.4)

Revision	Author	Checked by	Date	

Analysis

Moment in the post at grade

$$M_a := P \cdot H = 9.00 \times 10^4 \, lbf \cdot ft$$

Constant IBC 2018 (1807.3.2.1)

$$eq1 := A = \frac{2.34 \cdot P \cdot lbf^{-1}}{B \cdot ft^{-1} \cdot S_1 \cdot lbf^{-1} \cdot ft^2}$$

In these equations

- d is the depth of embedment in earth
- S1 and S3 are the allowable lateral soil-bearing pressures

Lateral bearing @ bottom

$$\mathsf{eq2} \coloneqq \mathsf{S_3} \, \mathsf{=} \, \mathsf{F} \! \cdot \! \mathsf{S} \! \cdot \! \mathsf{min}(\mathsf{d}, \mathsf{12}\,\mathsf{ft})$$

Lateral bearing @ d/3

$$eq3 := S_1 = F \cdot S \cdot min(d/3, 12 ft)$$

Diameter of round post IBC 2018 (1807.3.2.1 eq 18-1 and 1807.3.2.2 eq 18-3)

$$\text{eq4} := \text{d} = \text{ft} \cdot \left\{ \begin{array}{l} \frac{A}{2} \cdot \left(1 + \sqrt{1 + \frac{4.36 \cdot H \cdot \text{ft}^{-1}}{A}} \right) & \text{constrained} = \text{"no"} \\ \\ \sqrt{\frac{4.25 \cdot M_g \cdot \text{lbf}^{-1} \cdot \text{ft}^{-1}}{B \cdot \text{ft}^{-1} \cdot S_3 \cdot \text{lbf}^{-1} \cdot \text{ft}^2}} & \text{constrained} = \text{"yes"} \end{array} \right.$$

Iterative solution of equations

res :=
$$fsolve$$
 { eq1, eq2, eq3, eq4},
 $A = 1, S_1 = 1 \frac{lbf}{ft^2}, S_3 = 1 \frac{lbf}{ft^2}, d = 1 ft$ }

Hence the dimensions and soil pressures are

convert(res, Vector) =
$$\begin{bmatrix} A = 13.501 \\ S_1 = 5.532 \times 10^4 \, \text{Pa} \\ S_3 = 1.660 \times 10^5 \, \text{Pa} \\ d = 1.509 \, \text{m} \end{bmatrix}$$