

Geotechnical design of foundation

This document shows the way in which actions will be combined according to EN 1990. And, the design situation and its calculation are based on Eurocode 7: Geothehnical Design Worked examples ANNEX A.2.

References:

- Eurocode 7: Geotechnical Design Worked examples
- EN 1997
- EN 1990

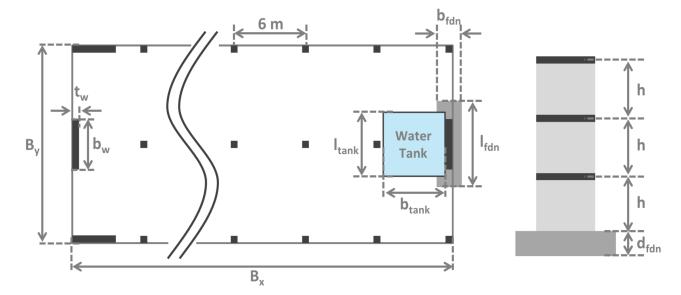


Figure 1 : Design example : 3 storey building

1. Design situation

1-1. Design parameters

Basic geometries

 $Number of storey \hspace{1cm} n \coloneqq 3$

Length $B_{\nu} := 48 \text{ m}$

Width $B_v := 15 \text{ m}$

 $N_x := 8$

 $N_v := 2$

 $h := 3.2 \, \mathbf{m}$

 $d_{floor} := 250 \text{ mm}$

Shear wall

 $t_{w} := 300 \text{ mm}$

$$\mathsf{b}_{\mathsf{w}} \coloneqq \mathsf{4}\;\mathsf{m}$$

Water tank

$$d_{tank} := 2 \, \mathbf{m}$$

Length

$$I_{tank} := 5 \text{ m}$$

Width

$$b_{tank} := 5 \text{ m}$$

Strip fundation

Length

$$I_{fdn} := 6.5 \, \mathbf{m}$$

Breadth

$$b_{fdn} := 2 m$$

Thickness

$$d_{fdn} := 1.5 \, \mathbf{m}$$

Characteristic of imposed/wind actions

Roof loading

$$q_{rf\;k}^{} \coloneqq 0.6 \; \text{kPa}$$

Office floor loading

$$\rm q_{\rm off_k} \coloneqq 2.5~k\text{Pa}$$

Partition loading

$$q_{\text{par_k}} \coloneqq 0.8 \, \text{kPa}$$

Wind

$$\textbf{q}_{\textbf{w}_{-}\textbf{k}} \coloneqq 1.15~\textbf{kPa}$$

Weight density

Reinforced concrete
$$\gamma_{c_{\underline{k}}} := 25 \frac{kN}{m^3}$$

Water
$$\gamma_{w_k} \coloneqq 10 \, \frac{kN}{m^3}$$

Area

Total plan area of building
$$A_{tot} := B_x \cdot B_y = 720 \text{ m}^2$$

Area above the stability wall
$$A := \frac{B_y + b_w}{2} \cdot \frac{1}{2} \cdot \frac{B_x}{N_x} = 28.500 \text{ m}^2$$

1-2. Characteristic actions - permanent

Self-weight of slabs

Floor
$$g_{fl,Gk} := \gamma_{c,k} \cdot d_{floor} = 6.25 \text{ kPa}$$

Screed on roof
$$g_{scr Gk} := 1.5 \text{ kPa}$$

Raised floor
$$g_{r,fl,Gk} := 0.5 \text{ kPa}$$

Self weight of others

Water tank on roof
$$W_{tank_Gk} := \frac{1}{2} \cdot \gamma_{w_k} \cdot d_{tank} \cdot l_{tank} \cdot b_{tank} = 250 \text{ kN}$$

Core wall
$$W_{\text{wall Gk}} := \gamma_{\text{C k}} \cdot t_{\text{W}} \cdot b_{\text{W}} \cdot (\text{n·h}) = 288.000 \text{ kN}$$

Pad fundation
$$W_{fdn_Gk} := \gamma_{c_k} \cdot d_{fdn} \cdot b_{fdn} \cdot I_{fdn} = 487.500 \text{ kN}$$

Total self weight

Total self weight
$$N_{Gk1} \coloneqq \left(n \cdot g_{fl_Gk} \cdot A \right) + \left(g_{scr_Gk} \cdot A \right) \\ + W_{wall \ Gk} + W_{fdn \ Gk}$$

$$N_{Gk1} = 1352.625 \, kN$$

Total self weight
$$N_{Gk2} \coloneqq \left(\left(n-1 \right) \cdot g_{r_fl_Gk} \cdot A \right) + W_{tank_Gk}$$
 of removable members

$$N_{Gk2} = 278.500 \, kN$$

1-3. Characteristic actions - variable

Imposed actions (normal to ground)

on roof
$$N_{rf_Qk} := q_{rf_k} \cdot A = 17.100 \text{ kN}$$

on floors
$$N_{fl_Qk} := \left(\, n-1 \right) \cdot \left(\, q_{off_k} + q_{par_k} \right) \cdot A = \ 188.100 \ kN$$

Wind actions (horizontal direction)

on roof
$$Q_{w_rf_Qk} := q_{w_k} \cdot \frac{h}{2} \cdot \frac{B_x}{2} = 44.160 \text{ kN}$$

on each floor
$$Q_{w_fl_Qk} := q_{w_k} \cdot h \cdot \frac{B_x}{2} = 88.320 \text{ kN}$$

Tota wind action (normal to ground)

$$N_{w_Qk} \coloneqq 0 \ kN$$

Moment effect of wind action

first floor
$$M_{\text{w Ok1}} := Q_{\text{w fl Ok}} \cdot ((n-2) \cdot h + d_{\text{fdn}})$$

$$M_{w \text{ Ok1}} = 415.104 \text{ kN m}$$

second floor
$$\mathbf{M}_{\text{w.Qk2}} \coloneqq \mathbf{Q}_{\text{w.fl.Qk}} \cdot \left(\left(n - 1 \right) \cdot \mathbf{h} + \mathbf{d}_{\text{fdn}} \right)$$

$$M_{w_Qk2} = 697.728 \text{ kN m}$$

roof
$$M_{\text{w Qk3}} := Q_{\text{w rf Qk}} \cdot (n \cdot h + d_{\text{fdn}})$$

$$M_{w Qk3} = 490.176 \text{ kN m}$$

total
$$\mathsf{M}_{\mathsf{w}\;\mathsf{Qk}} \coloneqq \mathsf{M}_{\mathsf{w}\;\mathsf{Qk1}} + \mathsf{M}_{\mathsf{w}\;\mathsf{Qk2}} + \mathsf{M}_{\mathsf{w}\;\mathsf{Qk3}}$$

$$M_{w Ok} = 1603.008 \text{ kN m}$$

2. Combination of actions for persistent and transient design situations - ULS (Ultimate Limit State) verification

2-1. Combination 1

Wind as leading variable action / Vertical actions unfavaourable / Partial factors from Set B

Partial factors

on permanent actions $\gamma_G := 1.35$

on variable actions (wind) $\gamma_{\text{Q_w}} \coloneqq 1.5$

on variable actions (imposed loads) $\gamma_{O,i} := 1.5$

Combination factors

for wind $\psi_{_{\!\scriptscriptstyle W}}\coloneqq 1.0$

for imposed load in office areas $\psi_{\text{fl}} \coloneqq 0.7 \label{eq:psi_fl}$ (Category B)

for imposed load on roof $\psi_{rf} \coloneqq 0 \label{eq:psi_f}$ (Category H)

Design value of normal action effect

$$\begin{split} N_{Ed} &:= \gamma_{G} \cdot \left(N_{Gk1} + N_{Gk2}\right) + \gamma_{Q_w} \cdot \psi_{w} \cdot N_{w_Qk} + \gamma_{Q_i} \cdot \left(\psi_{fl} \cdot N_{fl_Qk} + \psi_{rf} \cdot N_{rf_Qk}\right) \\ N_{Ed} &= 2399.524 \, \textbf{kN} \end{split}$$

Design value of moment effect

$$\mathbf{M}_{Ed} := \gamma_{\mathbf{Q}_{-W}} {\cdot} \psi_{w} {\cdot} \mathbf{M}_{w_{-}\mathbf{Q}k} = \ 2404.512 \ \textbf{kN} \ \textbf{m}$$

Maximum bearing pressure on underside of foundation

$$P_{\text{max_Ed}} := \frac{N_{Ed}}{b_{fdn} \cdot I_{fdn}} + \frac{6 \cdot M_{Ed}}{b_{fdn} \cdot I_{fdn}^2} = 355.313 \text{ kPa}$$

2-2. Combination 2

Wind as leading variable action / Vertical actions favaourable / Partial factors from Set B

Partial factors

on permanent, favourable

$$\gamma_{G_fav} := 1.0$$

Design value of normal action effect

$$N_{Ed} := \gamma_{G~fav} \cdot \left(N_{Gk1} + N_{Gk2} \right) = ~1631.125~\text{kN}$$

Design value of moment effect

$$\boldsymbol{M}_{Ed} := \boldsymbol{\gamma}_{Q\ w} \!\cdot\! \boldsymbol{\psi}_{w} \!\cdot\! \boldsymbol{M}_{w_Qk} = \ 2404.512 \ \textbf{kN} \ \textbf{m}$$

Maximum bearing pressure on underside of foundation

$$P_{\text{max_Ed}} := \frac{N_{\text{Ed}}}{b_{\text{fdn}} \cdot I_{\text{fdn}}} - \frac{6 \cdot M_{\text{Ed}}}{b_{\text{fdn}} \cdot I_{\text{fdn}}^2} = -45.263 \text{ kPa}$$

Line of action is outside the middle-third and eccentricity

$$ecc := \frac{M_{Ed}}{N_{Ed}} = 1.474 \, \mathbf{m}$$

Revised maximum bearing pressure on underside of foundation

$$P_{\text{max_Ed}} := \frac{8}{3} \cdot \frac{N_{\text{Ed}}}{(I_{\text{fdn}} - 2 \cdot \text{ecc})^2} = 344.810 \text{ kPa}$$

2-3. Combination 3

Imposed loads as leading variable action / Vertical actions unfavaourable / Partial factors from Set B

Combination factors

for wind $\psi_{_{W}} \coloneqq 0.6$

for imposed load in office areas $\psi_{fl} \coloneqq 1$

(Category B)

for imposed load on roof $\psi_{rf} \coloneqq 1$

(Category H)

Design value of normal action effect

$$N_{Ed} := \gamma_{G} \cdot \left(N_{Gk1} + N_{Gk2} \right) + \gamma_{Q_w} \cdot \psi_{w} \cdot N_{w_Qk} + \gamma_{Q_i} \cdot \left(\psi_{fl} \cdot N_{fl_Qk} + \psi_{rf} \cdot N_{rf_Qk} \right)$$

 $N_{Ed} = 2509.819 \, kN$

Design value of moment effect

$$M_{Ed} := \gamma_{Q_W} \cdot \psi_W \cdot M_{W_Q k} = 1442.707 \text{ kN m}$$

Maximum bearing pressure on underside of foundation

$$P_{\text{max_Ed}} := \frac{N_{\text{Ed}}}{b_{\text{fdn}} \cdot I_{\text{fdn}}} + \frac{6 \cdot M_{\text{Ed}}}{b_{\text{fdn}} \cdot I_{\text{fdn}}^2} = 295.504 \text{ kPa}$$

2-4. Combination 4

Wind as leading variable action / Vertical actions unfavaourable / Partial factors from Set C

Partial factors

on permanent actions $\gamma_G \coloneqq 1$

on variable actions (wind) $\gamma_{Q\ w} := \ 1.3$

on variable actions (imposed loads) $~~\gamma_{Q~i} \coloneqq 1.3$

Combination factors

for wind $\psi_{_{\!W}} \coloneqq \, 1.0$

for imposed load in office areas $\psi_{fl} \coloneqq 0.7$

(Category B)

for imposed load on roof $\psi_{rf} \coloneqq 0$

(Category H)

Design value of normal action effect

$$N_{Ed} := \gamma_G \cdot \left(N_{Gk1} + N_{Gk2}\right) + \gamma_{Q_w} \cdot \psi_w \cdot N_{w_Qk} + \gamma_{Q_i} \cdot \left(\psi_{fl} \cdot N_{fl_Qk} + \psi_{rf} \cdot N_{rf_Qk}\right)$$

$$N_{Ed} = 1802.296 \, kN$$

$$M_{Ed} := \gamma_{Qw} \cdot \psi_w \cdot M_{wQk} = 2083.910 \text{ kN m}$$

2-5. Combination 5

Wind as leading variable action / Vertical actions favaourable / Partial factors from Set C

Design value of normal action effect

$$N_{Ed} := \gamma_{G \text{ fav}} \cdot \left(N_{Gk1} + N_{Gk2}\right) = 1631.125 \text{ kN}$$

Design value of moment effect

$$M_{Ed} := \gamma_{Q_W} \cdot \psi_W \cdot M_{W_-Qk} = 2083.910 \text{ kN m}$$

2-6. Combination 6

Imposed loads as leading variable action / Vertical actions unfavaourable / Partial factors from Set C

Combination factors

for wind $\psi_w := 0.6$ for imposed load in office areas $\psi_{fl} := 1$ (Category B)

for imposed load on roof $\psi_{rf} \coloneqq 1$ (Category H)

Design value of normal action effect

$$\begin{split} N_{Ed} &:= \gamma_G \cdot \left(N_{Gk1} + N_{Gk2}\right) + \gamma_{Q_w} \cdot \psi_w \cdot N_{w_Qk} + \gamma_{Q_i} \cdot \left(\psi_{fl} \cdot N_{fl_Qk} + \psi_{rf} \cdot N_{rf_Qk}\right) \\ N_{Ed} &= 1897.885 \, \textbf{kN} \end{split}$$

$$M_{Ed} := \gamma_{Q_W} {\cdot} \psi_w {\cdot} M_{w_Qk} = 1250.346 \, \text{kN m}$$

3. Combination of actions for Quasi-persistent design situations - SLS (Serviceability limit states) verification

3-1. Combination 7

Wind as leading variable action / Vertical actions unfavaourable / Partial factors from SLS

Partial factors

on permanent actions $\gamma_G \coloneqq 1$

on variable actions (wind) $\gamma_{Q_w} \coloneqq 1$

on variable actions (imposed loads) $\gamma_{Qi} \coloneqq 1$

Combination factors

for wind $\psi_{_{\!\scriptscriptstyle{\mathsf{W}}}}\coloneqq 0$

for imposed load in office areas $\psi_{\text{fl}} \coloneqq 0.3$

(Category B)

for imposed load on roof $\psi_{rf} \coloneqq 0$

(Category H)

Design value of normal action effect

$$N_{Ed} := \gamma_G \cdot \left(N_{Gk1} + N_{Gk2}\right) + \gamma_{Q_w} \cdot \psi_w \cdot N_{w_Qk} + \gamma_{Q_i} \cdot \left(\psi_{fl} \cdot N_{fl_Qk} + \psi_{rf} \cdot N_{rf_Qk}\right)$$

$$N_{Ed} = 1687.555 \, kN$$

$$\label{eq:MEd} \boldsymbol{M}_{\text{Ed}} := \gamma_{Q_w} \!\cdot\! \psi_w \!\cdot\! \boldsymbol{M}_{w_Qk} = \ \boldsymbol{0}.$$

3-2. Combination 8

Wind as leading variable action / Vertical actions favaourable / Partial factors from SLS

Design value of normal action effect

$$N_{Ed} := \gamma_{G,fav} \cdot \left(N_{Gk1} + N_{Gk2} \right) = 1631.125 \, \text{kN}$$

Design value of moment effect

$$\boldsymbol{M}_{Ed} := \gamma_{Q_w} \!\cdot\! \psi_w \!\cdot\! \boldsymbol{M}_{w_Qk} = \ \boldsymbol{0}.$$

3-3. Combination 9

Imposed loads as leading variable action / Vertical actions unfavaourable / Partial factors from SLS

Combination factors

(Category H)

for wind
$$\psi_w := 0$$
 for imposed load in office areas
$$\psi_{fl} := 0.3$$
 (Category B)
$$\psi_{rf} := 0$$
 for imposed load on roof
$$\psi_{rf} := 0$$

Design value of normal action effect

$$\begin{split} N_{Ed} &:= \gamma_G \cdot \left(N_{Gk1} + N_{Gk2}\right) + \gamma_{Q_{_W}} \cdot \psi_{_W} \cdot N_{_{W_Qk}} + \gamma_{Q_{_i}} \cdot \left(\psi_{fl} \cdot N_{fl_Qk} + \psi_{_{rf}} \cdot N_{_{rf_Qk}}\right) \\ N_{Ed} &= 1687.555 \, \text{kN} \end{split}$$

$$M_{Ed} := \gamma_{Q_w} \cdot \psi_w \cdot M_{w_Qk} = 0.$$