

Live loads with Vehicular centrifugal force

This document analyzes the vehicular live load force effects by caluculating the unit wheel-load factors with the centrifugal force amd superelevation.

The calculation is based on LRFD for Highway Bridge Superstructures Reference Manual.

References:

- (Spec) : AASHTO LRFD Bridge Design Specification
- (Manual) : Load and Resistance Factor Design (LRFD) for Highway Bridge Superstructures - (Exam) : Design Examples

Figure 1 : Vehicular centrifugal force by the wheel-load reactions

1. Parameters and conditions

Vehicle

Wheel spacing	$s_{wh} \coloneqq 6 \text{ ft}$
Highet at which the radial force is applied above the deck	h ≔ 6 ft
Lane and Deck	
Radius of curvature of traffic lane	$R \coloneqq 700 \text{ ft}$
Deck cross slope (superelevation)	sl := 0.05 sl = 5.00%
Design condition	
Highway design speed	$v \coloneqq 35 \text{ mph}$
Wheel-load Factor for fatigue : 1.0 Other than fatigue : 4/3	$f := \frac{4}{3}$
Others	
Graviational acceleration	$g\coloneqq 32.2\ \frac{ft}{s^2}$

2. Vehicular centrifugal force

The centrifugal effect on live load can be analyzed with the axle weights of the design truck or tandem and the following factor C.

_

Reference: Spec-Eq 3.6.3-1
$$C \coloneqq \frac{f \cdot v^2}{g \cdot R}$$

C = 0.156

3. Wheel-load reactions by the centrifugal force effects

This effects shows in Figure.1.

Left

 $R_{CL} := C \cdot W_{axle} \cdot \frac{h \cdot \cos(\theta)}{2 \cdot \left(\frac{s_{wh}}{2} \cdot \cos(\theta)\right)} = 0.156 \cdot W_{axle}$ $R_{CR} := -R_{CL} = -0.156 \cdot W_{axle}$ Right

4. Wheel-load reactions by the superelevation effects

Figure 2 : Effects of superelevation on the wheel-load reactions

 $\theta \coloneqq \arctan(sl)$ rad Angle of superelevation θ = 2.862 arcdeg $R_{SR} := \frac{\left(\frac{s_{wh}}{2} \cdot \cos(\theta) + h \cdot \sin(\theta)\right) \cdot W_{axle}}{s_{wh} \cdot \cos(\theta)} = 0.550 \cdot W_{axle}$ Left

Right
$$R_{SL} := 1.0 \cdot W_{axle} - R_{SR} = 0.450 \cdot W_{axle}$$

Figure 3 : Effects of superelevation on the wheel-load reactions

Left
$$F_L := 2.0 \cdot \frac{R_{CL} + R_{SL}}{W_{axle}} = 1.212$$

Right
$$F_{R} := 2.0 \cdot \frac{R_{CR} + R_{SR}}{W_{axle}} = 0.788$$