
> >

Mathematical Functions
Relevant developments in the MathematicalFunctions project happened for Maple 2017,
regarding both the addition of the four Appell functions, representing the first ever full
implementation of these functions in computational environments, as well as the addition
of a new package, Evalf, for performing numerical experimentation taking advantage of
sophisticated symbolic computation functionality. The Evalf package and project aims to
provide a user-friendly environment to develop and work with numerical algorithms for
mathematical functions.

The Four Appell Functions
The four multi-parameter Appell functions, AppellF1, AppellF2, AppellF3 and AppellF4 are
doubly hypergeometric functions that include as particular cases the 2F1
hypergeometric and some cases of the MeijerG function, and with them most of the
known functions of mathematical physics. These Appell functions have been popping up
with increasing frequency in applications in quantum mechanics, molecular physics,
and general relativity.

As in the case of the hypergeometric function, a distinction is made between the four
Appell series, with restricted domain of convergence, and the four Appell functions, that
coincide with the series in their domain of convergence but also extend them
analytically to the whole complex plane. The Maple implementation of the Appell
functions includes a thorough set of their symbolic properties, all accessible using the
FunctionAdvisor, as well as numerical algorithms to evaluate the four functions over the
whole complex plane, representing the first ever complete computational
implementation of these functions.

To display special functions and sequences using textbook notation as shown in this
page, use extended typesetting:

Examples
The definition of the four Appell series and the corresponding domains of
convergence can be seen through the FunctionAdvisor. For example,

> >

> >

(1.1.3)(1.1.3)

(1.1.2)(1.1.2)

> >

(1.1.1)(1.1.1)

(1.1.5)(1.1.5)

> >

> >

(1.1.4)(1.1.4)

From these definitions, these series and the corresponding analytic extensions
(Appell functions) are singular (division by zero) when the c parameters entering
the pochhammer functions in the denominators of these series are non-positive
integers. For an analogous reason, when the a and/or b parameters entering the
pochhammer functions in the numerators of the series are non-positive integers,
the series will truncate and the Appell functions will be polynomial. Consult the
FunctionAdvisor for comprehensive information on the combinations of all these
conditions. For example, for AppellF1, the singular cases happen when any of the
following conditions hold

(1.1.6)(1.1.6)

> >

(1.1.7)(1.1.7)

(1.1.5)(1.1.5)

> >

By requesting the sum form of the Appell functions, besides their double power
series definition, we also see the particular form the four series take when one of
the summations is performed and the result expressed in terms of 2F1
hypergeometric functions. For example, for AppellF3,

So, for AppellF3 (and also for AppellF1, but not for AppellF2 nor AppellF4) the
domain of convergence of the single sum with hypergeometric coefficients is
larger than the domain of convergence of the double series, because the
hypergeometric coefficient in the single sum - say the one in z - analytically
extends the series with regards to the other variable - say z - entering the
hypergeometric coefficient.

In the literature, the Appell series are analytically extended by integral
representations in terms of Eulerian double integrals. With the exception of
AppellF4, one of the two iterated integrals can always be computed resulting in a
single integral with hypergeometric integrand. For example, for AppellF2

(1.1.5)(1.1.5)

(1.1.7)(1.1.7)

> >

(1.1.9)(1.1.9)

> >

(1.1.7)(1.1.7)

(1.1.8)(1.1.8)

(1.1.5)(1.1.5)

For the purpose of numerically evaluating the four Appell functions over the whole
complex plane, instead of numerically evaluating the integral representations, it is
simpler, when possible, to evaluate the function using identities. For example, with
the exception of AppellF3, the Appell functions admit identities analogous to Euler
identities for the hypergeometric function. These Euler-type identities, as well as
contiguity identities for the four Appell functions, are visible using the
FunctionAdvisor with the option identities, or directly from the function. For
AppellF4, for instance, provided that none of , , , is a non-positive
integer,

and this identity can be used to evaluate AppellF4 at over the whole complex
plane since, in that case, the two variables of the Appell Functions on right-hand
side become equal, and that is a special case of AppellF4, expressible in terms of
hypergeometric 4F3 functions

> >

(1.1.10)(1.1.10)

(1.1.7)(1.1.7)

> >

> >

(1.1.5)(1.1.5)

A plot of the AppellF2 function for some values of its parameters

A thorough set with the main symbolic properties of any of the four Appell
functions, for instance for AppellF3, can be seen via

AppellF3

describe

definition

(1.1.7)(1.1.7)

(1.1.5)(1.1.5)

classify function

symmetries

plot

singularities

branch points

branch cuts

special values

(1.1.7)(1.1.7)

(1.1.5)(1.1.5)

identities

sum form

series

integral form

differentiation rule

DE

The Evalf Package
Evalf is both a command and a package of commands for the numerical evaluation of
mathematical expressions and functions, numerical experimentation, and fast
development of numerical algorithms, taking advantage of the advanced symbolic
capabilities of the Maple computer algebra system.

As an environment for working with special functions, Evalf helps
developing/implementing the typical approaches used in the literature and comparing
their performances. This kind of environment is increasingly relevant nowadays, when
rather complicated mathematical expressions and advanced special functions, as for
instance is the case of the Heun and Appell functions, appear more and more in the
modeling of problems in science.

> >

> >

> >

(1.1.5)(1.1.5)

(2.1.2)(2.1.2)

(2.1.4)(2.1.4)

> >

(2.1.3)(2.1.3)

(1.1.7)(1.1.7)

(2.1.1)(2.1.1)

Examples

Consider the following AppellF4 function

This function satisfies a linear differential equation whose singularities, which depend
on the function's parameters, are relevant in the context of numerically evaluating
the function. To see the location of these singularities you can construct the linear
ODE behind F4 using PDEtools:-dpolyform) and use the DEtools:-singularities
command, or directly use Evalf:-Singularities

For the purpose of experimentation with numerical methods, it is useful to have
arrays of points located in different quadrants and different regions of the complex
plane. For example, in connection with the singularities of F4, you can get an Array of
floating-point complex numbers in the four quadrants around the absolute value of
these singularities using Evalf:-QuadrantNumbers

Check the quadrant location of the points in each of the four components of the
Array A

(2.1.9)(2.1.9)

(2.1.7)(2.1.7)

(1.1.5)(1.1.5)

(2.1.8)(2.1.8)

(2.1.5)(2.1.5)

> >

> >

(2.1.6)(2.1.6)

> >

> >

(1.1.7)(1.1.7)

> >

Use the Evalf:-GenerateRecurrence command to generate a recurrence with which
one could numerically evaluate the following AppellF2 function and use it to compute
the first four coefficients of its power series expansion around the origin

The procedure returned by Evalf:-GenerateRecurrence is optimized for numerical
computations (option hfloat) but it can also compute with exact numbers as the
arguments of F2

Perform a numerical double sum, where both summation ranges are from 0 to
infinity, using the Evalf:-Add command, so perform the double sum until the
summation converges up to the value of Digits. For example, consider the definition
of the AppellF2 double series

Following the steps outlined in Evalf:-Add, get the summand and construct a formula-
procedure depending on 2 parameters m and n

> >

> >

> >

(2.1.16)(2.1.16)

(2.1.15)(2.1.15)

(2.1.14)(2.1.14)

(1.1.5)(1.1.5)

(2.1.5)(2.1.5)

> >

(2.1.12)(2.1.12)

> >

> >

> >

(2.1.17)(2.1.17)

> >

(1.1.7)(1.1.7)

> >

(2.1.10)(2.1.10)

(2.1.11)(2.1.11)

(2.1.13)(2.1.13)

> >

Use this formula to create a routine for the numerical evaluation of AppellF2 valid
when the condition , shown in the definition, is satisfied

where we are calling AF2 this representation of AppellF2. Consider now for instance
some numerical complex values of the parameters , , , , , , satisfying

 and numerically evaluate this AF2 representation at those values using
the procedure just constructed

Compare with the numerical value obtained using the standard Maple AppellF2
function

Consider the following confluent HeunC function

You can normally evaluate the function using evalf

(2.1.18)(2.1.18)

(1.1.7)(1.1.7)

> >

(2.1.10)(2.1.10)

(1.1.5)(1.1.5)

(2.1.5)(2.1.5)

> >

> >

But how was this evaluation performed? Using Evalf, instead of a black box
approach, you have access to information describing the approach used:

 HeunCZ and HeunCZPrime at Z = .500000000000

-.559016994375*I using a series expansion around Z = 0

 HeunCZ and HeunCZPrime at Z = 1.06250000000

-.559016994375*I using a series expansion around Z =

.500000000000-.559016994375*I

 HeunCZ and HeunCZPrime at Z = 1.16204916259

-.149352378815*I using a series expansion around Z =

1.06250000000-.559016994375*I

 HeunCZ at Z = 1.200000000 using a series expansion

around Z = 1.16204916259-.149352378815*I

CPU time elapsed during evaluation: .284 seconds

From this information we see that the Z approach (see Evalf) was used to first map
the original problem at into a problem within the ring , then a

> >

> >

(2.1.20)(2.1.20)

> >

(2.1.23)(2.1.23)

(2.1.19)(2.1.19)

(2.1.21)(2.1.21)

(1.1.5)(1.1.5)

(2.1.5)(2.1.5)

> >

(2.1.22)(2.1.22)

(2.1.24)(2.1.24)

> >

> >

(1.1.7)(1.1.7)

> >

(2.1.10)(2.1.10)

> >

sequence of concatenated taylor series got used departing from the origin, working
around the singularity at , finally reaching and from there getting
the value at .

In the case of the Heun or Appell functions, the singularities behind the
corresponding differential equations, and hence restricting the radius of convergence
of power series expansions, can be viewed using the Evalf:-Singularities command

Evalf can evaluate expressions in general, not just single function calls. Any optional
arguments apply when Heun or Appell functions are present in the expression.
Consider for instance one of the special values of AppellF1, a case where the function
can be represented by a 2F1 hypergeometric function

The left-hand side is AppellF1 written in inert form, to avoid the automatic
representation in terms of 2F1 functions, while the right-hand side involves only a
hypergeometric 2F1 function in terms of rational numbers, also to avoid the
automatic numerical evaluation of this function. Proceed now with the numerical
evaluation of both sides of this equation

Compute now showing the strategy used

-> Numerical evaluation of AppellF1(4.0, 2.0, .3, 2.3,

1.12, 1.1)

 -> AppellF1, checking singular cases

 -> AppellF1, trying special values

Hypergeometric: case: c = b1 + b2

 <- special values of AppellF1 successful
CPU time elapsed during evaluation: .1e-2 seconds

So during the numerical evaluation of AppellF1 the special value of hypergeometric
form was identified and used. Numerically evaluate this equation now without using
the special values information of AppellF1

(1.1.5)(1.1.5)

(2.1.5)(2.1.5)

> >

(2.1.24)(2.1.24)

(2.1.25)(2.1.25)

(1.1.7)(1.1.7)

(2.1.10)(2.1.10)

> >

> >

-> Numerical evaluation of AppellF1(4.0, 2.0, .3, 2.3,

1.12, 1.1)

 -> AppellF1, checking singular cases

 -> AppellF1, trying formulas

 case AKF page 36, after (13), maps into AppellF3

with abs(z2/(z2-1)) < 1

 case: abs(z1) > 1, abs(z2) > 1 and 1.1 <= abs

(z1) < abs(z2); swapping parameters and z1 <-> z2

 -> Numerical evaluation of AppellF3(-1.7, 2.0,

.3, 4.0, 2.3, 11.00000000, 1.12)

 -> AppellF3, checking singular cases

 -> AppellF3, trying special values

 -> AppellF3, trying formulas
CPU time elapsed during evaluation: .3e-2 seconds

 case AKF page 35, (9), maps into AppellF2 with abs

(1 - z1/z2) < 1

 case: abs(z1) < 1, abs(z2) > 1; swapping

parameters and z1 <-> z2

 -> Numerical evaluation of AppellF2(2.3, 4.0,

.3, 2.3, 2.3, 1.12, -.18181818e-1)

 -> AppellF2, checking singular cases

 -> AppellF2, trying special values

Hypergeometric: case: c1 = a, c2 = a and z1 <> 1 and z2

<> 1

 <- special values of AppellF2 successful
CPU time elapsed during evaluation: .2e-2 seconds
CPU time elapsed during evaluation: .15e-1 seconds

In the information above we see that first a mapping into AppellF3 was attempted, it
did not succeed, then a mapping into AppellF2 was attempted and that resulted in
the correct value. Perform the numerically evaluation once more, this time without
mapping into other functions:

-> Numerical evaluation of AppellF1(4.0, 2.0, .3, 2.3,

1.12, 1.1)

 -> AppellF1, checking singular cases

 -> AppellF1, trying formulas

 case z1 <> 0 and z1 <> 1 and abs(z1/(z1-1)) < 1;

swapping parameters and recursing

 case AKF page 30, (5.5), abs(z1) > 1, abs(z2) >

1, and abs((z2-z1)/(z2-1)) <= 1; using identity mapping

(2.1.26)(2.1.26)

(1.1.7)(1.1.7)

(2.1.10)(2.1.10)

(1.1.5)(1.1.5)

> >

(2.1.5)(2.1.5)

> >

(2.1.24)(2.1.24)

> >

(2.1.25)(2.1.25)

into F*AppellF1(..., z1, (z2-z1)/(z2-1))

 -> Numerical evaluation of AppellF1(-1.7, 0.,

2.0, 2.3, 1.1, .1666666667)

 -> AppellF1, checking singular cases

 -> AppellF1, trying special values

 <- special values of AppellF1 successful
CPU time elapsed during evaluation: .3e-2 seconds

We see now that there was still another formula that could be used, it is a
transformation of Euler type mapping AppellF1 into an equivalent form of AppellF1

that has the advantage of having as evaluation point so after swapping

parameters the function got evaluated again as expected. The same problem using a
sequence of concatenated Taylor expansions, avoid displaying extra information, just
the time consumed and a plot showing the path used and expansion points

CPU time elapsed during evaluation: .56e-1 seconds

(2.1.26)(2.1.26)

(1.1.7)(1.1.7)

(2.1.10)(2.1.10)

> >

(1.1.5)(1.1.5)

(2.1.5)(2.1.5)

> >

(2.1.24)(2.1.24)

> >

(2.1.25)(2.1.25)

(2.1.27)(2.1.27)

In this Taylor approach, each expansion around a point is used to reach up to 95/100
of the radius of convergence before starting another expansion. Reduce that to 1/2,
compute internally at Digits = 50 (but return as if computing with Digits = 10) and
zoom the plot around extending 1/4 to either side of the singularity located at

CPU time elapsed during evaluation: .206 seconds

