
(1.1)(1.1)

> >

> >

General solution option for PDEs and new
methods for solving PDEs with Boundary
Conditions

New options in pdsolve for users to ask for a general solution to PDEs and to know
whether a solution from pdsolve is general. Also, many more partial differential
equations with boundary condition (PDE and BC) problems can now be solved.

New userinfo and generalsolution option in
pdsolve
For a PDE of order N in 1 unknown depending on M independent variables, a general solution
involves N arbitrary functions of M-1 arguments. Using differential algebra techniques, we have
extended pdsolve's capabilities to identify a general solution for DE systems, even when the system
involves ODEs and PDEs, algebraic equations, inequations, and/or mathematical functions.

The examples below show the new generalsolution option, as well as a new userinfo that displays
whether a solution that is returned is or is not a general solution. The examples are all of differential
equation systems but the same userinfo and generalsolution option work as well in the case of a
single PDE.

Example 1.
Solve the determining PDE system for the infinitesimals of the symmetry generator of example 11
from Kamke's book. Tell whether the solution computed is a general solution.

The PDE system satisfied by the symmetries of Kamke's ODE example number 11 is

This is a second order linear PDE system, with two unknowns and four equations.
Its general solution is given by the following, where we now can tell that the solution is a general one
by reading the last line of the userinfo. Note that because the system is overdetermined, a general

(1.2)(1.2)

> >

> >

(1.4)(1.4)

> >

(1.3)(1.3)

solution in this case does not involve any arbitrary function

-> Solving ordering for the dependent variables of the PDE
system: [xi(x,y), eta(x,y)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [x, y]
tackling triangularized subsystem with respect to xi(x,y)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to eta(x,y)
<- Returning a *general* solution

Next we indicate to pdsolve that and are parameters of the problem, and that we want a solution
for , making more difficult to identify by eye whether the solution returned is a general one.
Again the last line of the userinfo indicates that pdsolve's solution is indeed a general one

-> Solving ordering for the dependent variables of the PDE
system: [r, n, xi(x,y), eta(x,y)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [x, y]
tackling triangularized subsystem with respect to r
tackling triangularized subsystem with respect to n
tackling triangularized subsystem with respect to xi(x,y)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to eta(x,y)
tackling triangularized subsystem with respect to r
tackling triangularized subsystem with respect to n
tackling triangularized subsystem with respect to xi(x,y)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to eta(x,y)
tackling triangularized subsystem with respect to r
tackling triangularized subsystem with respect to n
tackling triangularized subsystem with respect to xi(x,y)
First set of solution methods (general or quasi general

(1.5)(1.5)

(1.4)(1.4)

> >

> >

solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to eta(x,y)
tackling triangularized subsystem with respect to n
tackling triangularized subsystem with respect to xi(x,y)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to eta(x,y)
tackling triangularized subsystem with respect to n
tackling triangularized subsystem with respect to xi(x,y)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to eta(x,y)
tackling triangularized subsystem with respect to xi(x,y)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to eta(x,y)
<- Returning a *general* solution

Example 2.
Compute the solution of the following (linear) overdetermined system involving two PDEs, three
unknown functions, one of which depends on 2 variables and the other two depend on only 1
variable.

(1.7)(1.7)

(1.8)(1.8)

> >

> >

> >

(1.6)(1.6)

> >

(1.4)(1.4)

> >

The solution for the unknowns G, H, is given by the following expression, where again determining
whether this solution, that depends on 3 arbitrary functions, , , , is or is not a
general solution, is non-obvious.

-> Solving ordering for the dependent variables of the PDE
system: [F(r,s), H(r), G(s)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [r, s]
tackling triangularized subsystem with respect to F(r,s)
First set of solution methods (general or quasi general
solution)
Trying differential factorization for linear PDEs ...
differential factorization successful.
First set of solution methods successful
tackling triangularized subsystem with respect to H(r)
tackling triangularized subsystem with respect to G(s)
<- Returning a *general* solution

Example 3.
Compute the solution of the following nonlinear system, consisting of Burger's equation and a
possible potential.

We see that in this case the solution returned is not a general solution but two particular ones; again
the information is in the last line of the userinfo displayed

-> Solving ordering for the dependent variables of the PDE
system: [v(x,t), u(x,t)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [x, t]
tackling triangularized subsystem with respect to v(x,t)
tackling triangularized subsystem with respect to u(x,t)
First set of solution methods (general or quasi general
solution)
Second set of solution methods (complete solutions)
Trying methods for second order PDEs
Third set of solution methods (simple HINTs for separating
variables)

(1.8)(1.8)

> >
(1.9)(1.9)

(1.4)(1.4)

> >

PDE linear in highest derivatives - trying a separation of
variables by *
HINT = *
Fourth set of solution methods
Trying methods for second order linear PDEs
Preparing a solution HINT ...
Trying HINT = _F1(x)*_F2(t)
Fourth set of solution methods
Preparing a solution HINT ...
Trying HINT = _F1(x)+_F2(t)
Trying travelling wave solutions as power series in tanh ...
* Using tau = tanh(t*C[2]+x*C[1]+C[0])
* Equivalent ODE system: {C[1]^2*(tau^2-1)^2*diff(diff(u(tau),
tau),tau)+(2*C[1]^2*(tau^2-1)*tau+C[2]*(tau^2-1)+2*u(tau)*C[1]*
(tau^2-1))*diff(u(tau),tau)}
* Ordering for functions: [u(tau)]
* Cases for the upper bounds: [[n[1] = 1]]
* Power series solution [1]: {u(tau) = tau*A[1,1]+A[1,0]}
* Solution [1] for {A[i, j], C[k]}: [[A[1,1] = 0], [A[1,0] =
-1/2*C[2]/C[1], A[1,1] = -C[1]]]
travelling wave solutions successful.
tackling triangularized subsystem with respect to v(x,t)
First set of solution methods (general or quasi general
solution)
Trying differential factorization for linear PDEs ...
Trying methods for PDEs "missing the dependent variable" ...
Second set of solution methods (complete solutions)
Trying methods for second order PDEs
Third set of solution methods (simple HINTs for separating
variables)
PDE linear in highest derivatives - trying a separation of
variables by *
HINT = *
Fourth set of solution methods
Trying methods for second order linear PDEs
Preparing a solution HINT ...
Trying HINT = _F1(x)*_F2(t)
Third set of solution methods successful
tackling triangularized subsystem with respect to u(x,t)
<- Returning a solution that *is not the most general one*

This example is also good for illustrating the other related new feature: one can now request to
pdsolve to only compute a general solution (it will return NULL if it cannot achieve that). Turn OFF

(1.8)(1.8)

> >

> >

(1.4)(1.4)

> >

> >

userinfos and try with this example

This returns NULL:

Example 4.
Another where the solution returned is particular, this time for a linear system, conformed by 38
PDEs, also from differential equation symmetry analysis

> >

(1.8)(1.8)

(1.10)(1.10)

(1.12)(1.12)

> >

(1.11)(1.11)
> >

(1.4)(1.4)

> >

> >
There are 38 coupled equations

38
When requesting a general solution pdsolve returns NULL:

A solution that is not a general one, is however computed by default if calling pdsolve without the
generalsolution option. In this case again the last line of the userinfo indicates that the solution
returned is not a general solution

-> Solving ordering for the dependent variables of the PDE
system: [eta[1](x,y,z,t,u), xi[1](x,y,z,t,u), xi[2](x,y,z,t,u),
xi[3](x,y,z,t,u), xi[4](x,y,z,t,u)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [t, x, y, z, u]
tackling triangularized subsystem with respect to eta[1](x,y,z,
t,u)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
-> Solving ordering for the dependent variables of the PDE
system: [_F1(x,y,z,t), _F2(x,y,z,t)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [t, x, y, z, u]
tackling triangularized subsystem with respect to _F1(x,y,z,t)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
-> Solving ordering for the dependent variables of the PDE
system: [_F3(x,y,z), _F4(x,y,z)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [x, y, z, t]
tackling triangularized subsystem with respect to _F3(x,y,z)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to _F4(x,y,z)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
-> Solving ordering for the dependent variables of the PDE
system: [_F5(y,z), _F6(y,z)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [y, z, x]

(1.8)(1.8)

(1.12)(1.12)

(1.4)(1.4)

> >

tackling triangularized subsystem with respect to _F5(y,z)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to _F6(y,z)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
-> Solving ordering for the dependent variables of the PDE
system: [_F7(z), _F8(z)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [z, y]
tackling triangularized subsystem with respect to _F7(z)
tackling triangularized subsystem with respect to _F8(z)
tackling triangularized subsystem with respect to _F2(x,y,z,t)
First set of solution methods (general or quasi general
solution)
Trying differential factorization for linear PDEs ...
Trying methods for PDEs "missing the dependent variable" ...
Second set of solution methods (complete solutions)
Third set of solution methods (simple HINTs for separating
variables)
PDE linear in highest derivatives - trying a separation of
variables by *
HINT = *
Fourth set of solution methods
Preparing a solution HINT ...
Trying HINT = _F3(x)*_F4(y)*_F5(z)*_F6(t)
Third set of solution methods successful
tackling triangularized subsystem with respect to xi[1](x,y,z,
t,u)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
-> Solving ordering for the dependent variables of the PDE
system: [_F1(x,z,t), _F2(x,z,t)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [t, x, z, y]
tackling triangularized subsystem with respect to _F1(x,z,t)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to _F2(x,z,t)
First set of solution methods (general or quasi general
solution)

(1.8)(1.8)

(1.12)(1.12)

(1.4)(1.4)

> >

Trying simple case of a single derivative.
First set of solution methods successful
-> Solving ordering for the dependent variables of the PDE
system: [_F3(x,t), _F4(x,t)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [t, x, z]
tackling triangularized subsystem with respect to _F3(x,t)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to _F4(x,t)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
-> Solving ordering for the dependent variables of the PDE
system: [_F5(x), _F6(x)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [x, t]
tackling triangularized subsystem with respect to _F5(x)
tackling triangularized subsystem with respect to _F6(x)
tackling triangularized subsystem with respect to xi[2](x,y,z,
t,u)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
-> Solving ordering for the dependent variables of the PDE
system: [_F1(t), _F2(t)]
-> Solving ordering for the independent variables (can be
changed using the ivars option): [t, z]
tackling triangularized subsystem with respect to _F1(t)
tackling triangularized subsystem with respect to _F2(t)
tackling triangularized subsystem with respect to xi[3](x,y,z,
t,u)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general

(1.8)(1.8)

(1.12)(1.12)

(1.4)(1.4)

> >

solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
tackling triangularized subsystem with respect to xi[4](x,y,z,
t,u)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
First set of solution methods successful
<- Returning a solution that *is not the most general one*

> >

> >

> >

> >

> >

> >

(1.17)(1.17)

(1.20)(1.20)

(1.8)(1.8)

(1.12)(1.12)

(1.13)(1.13)

(1.15)(1.15)

> >
(1.14)(1.14)

(1.19)(1.19)

(1.4)(1.4)

(1.18)(1.18)

> >

(1.16)(1.16)

> >

Example 5.
Finally, the new userinfos also indicates whether a solution is a general solution when working with
PDEs that involve anticommutative variables set using the Physics package

Set first and as suffixes for variables of type/anticommutative

* Partial match of 'anticommutativepre' against keyword 'anticommutativeprefix'

A PDE system example with two unknown anticommutative functions of four variables, two
commutative and two anticommutative; to avoid redundant typing in the input that follows and
redundant display of information on the screen let's use PDEtools:-diff_table and PDEtools:-declare

Consider the system formed by these two PDEs (because of the q diff_table just defined, we can enter
derivatives directly using the function's name indexed by the differentiation variables)

The solution returned for this system is indeed a general solution

-> Solving ordering for the dependent variables of the PDE
system: [_F4(x,y), _F2(x,y), _F3(x,y)]
-> Solving ordering for the independent variables (can be

> >

(1.20)(1.20)

(1.8)(1.8)

> >

(1.12)(1.12)

(1.4)(1.4)

(2.1)(2.1)

> >

> >

changed using the ivars option): [x, y]
tackling triangularized subsystem with respect to _F4(x,y)
tackling triangularized subsystem with respect to _F2(x,y)
tackling triangularized subsystem with respect to _F3(x,y)
First set of solution methods (general or quasi general
solution)
Trying simple case of a single derivative.
HINT = _F6(x)+_F5(y)
Trying HINT = _F6(x)+_F5(y)
HINT is successful
First set of solution methods successful
<- Returning a *general* solution

This solution involves an anticommutative constant , analogous to the commutative constants
 where n is an integer.

PDE&BC in semi-infinite domains for which a
bounded solution is sought can now also be
solved via Laplace transforms
Maple is now able to solve more PDE&BC problems via Laplace transforms.
Laplace transforms act to change derivatives with respect to one of the independent variables of the
domain into multiplication operations in the transformed domain. After applying a Laplace transform
to the original problem, we can simplify the problem using the transformed BC, then solve the
problem in the transformed domain, and finally apply the inverse Laplace transform to arrive at the
final solution. It is important to remember to give pdsolve any necessary restrictions on the variables
and constants of the problem, by means of the "assuming" command.

A new feature is that we can now tell pdsolve that the dependent variable is bounded, by means of
the optional argument HINT = boundedseries.

Consider the problem of a falling cable lying on a table that is suddenly removed (cf. David J.
Logan's Applied Partial Differential Equations p.115).

If we ask pdsolve to solve this problem without the condition of boundedness of the solution, we
obtain:

(2.1.5)(2.1.5)

> >

(2.1.3)(2.1.3)

> >

(1.20)(1.20)

(1.8)(1.8)

> >

(2.1.4)(2.1.4)

(1.12)(1.12)

> >

> >

> >

(2.1.1)(2.1.1)

(2.3)(2.3)

(2.1.2)(2.1.2)

(1.4)(1.4)

(2.2)(2.2)

> >

> >

> >

If we now ask for a bounded solution, by means of the option HINT = boundedseries, pdsolve
simplifies the problem accordingly.

And we can check this answer against the original problem, if desired:

How it works, step by step
 Let us see the process this problem is solved by pdsolve, step by step.

First, the Laplace transform is applied to the PDE:

and the result is simplified using the initial conditions:

Next, we call the function "laplace(u(x,t),t,s)" by the new name U:

And this equation, which is really an ODE, is solved:

Now, since we want a BOUNDED solution, the term with the positive exponential must be zero,
and we are left with:

(2.2.1)(2.2.1)

(2.2.2)(2.2.2)

(2.1.9)(2.1.9)

> >

> >

> >

> >

(2.1.7)(2.1.7)

> >

> >

(1.20)(1.20)

(2.1.10)(2.1.10)

(1.8)(1.8)

(2.2.3)(2.2.3)

> >

(1.12)(1.12)

> >

> >

(2.1.11)(2.1.11)

(2.1.8)(2.1.8)

> >

(1.4)(1.4)

> >

(2.1.6)(2.1.6)

> >

Now, the initial solution must also be satisfied. Here it is, in the transformed domain:

Or, in the new variable U,

And by applying it to bounded_solution_U, we find the relationship

so that our solution now becomes

to which we now apply the inverse Laplace transform to obtain the solution to the problem:

Four other related examples
A few other examples:

(3.1)(3.1)

> >

> >

> >

> >

> >

(2.2.5)(2.2.5)

(2.2.4)(2.2.4)

(1.20)(1.20)

(1.8)(1.8)

> >

> >

(2.2.3)(2.2.3)

(1.12)(1.12)

> >

(1.4)(1.4)

> >

(2.2.6)(2.2.6)

> >

(2.2.7)(2.2.7)

The following is an example from David J. Logan's Applied Partial Differential Equations p.76:

More PDE&BC problems in bounded spatial
domains can now be solved via eigenfunction
(Fourier) expansions
The code for solving PDE&BC problems in bounded spatial domains has been expanded. The
method works by separating the variables by product, so that the problem is transformed into an ODE
system (with initial and/or boundary conditions), and for one of the variables it is a Sturm-Liouville
problem (a type of eigenvalue problem) which has infinitely many solutions - hence the infinite series
representation of the solutions.

Here is a simple example for the heat equation:

(3.1)(3.1)

> >

> >

(3.2)(3.2)

(3.4)(3.4)

> >

(1.20)(1.20)

(1.8)(1.8)

(3.7)(3.7)

> >

(2.2.3)(2.2.3)

> >

(1.12)(1.12)

> >

(3.5)(3.5)

> >

(3.3)(3.3)

(1.4)(1.4)

(3.6)(3.6)

> >

> >

> >

Now, consider the displacements of a string governed by the wave equation, where c is a constant (cf.
Logan p.28).

Another wave equation problem (cf. Logan p.130):

Here is a problem with periodic boundary conditions (cf. Logan p.131). The function stands
for the concentration of a chemical dissolved in water within a tubular ring of circumference . The
initial concentration is given by , and the variable is the arc-length parameter that varies from 0
to .

(3.1)(3.1)

(3.9)(3.9)

(3.8)(3.8)

> >

> >

> >

(1.20)(1.20)

(1.8)(1.8)

(3.7)(3.7)

(2.2.3)(2.2.3)

(3.10)(3.10)

(1.12)(1.12)

> >

> >

(3.11)(3.11)

(1.4)(1.4)

> >

> >

(3.12)(3.12)

> >

> >

> >

The following problem is for heat flow with both boundaries insulated (cf. Logan p.166, 3rd edition)

This is a problem in a bounded domain with the presence of a source. A source term represents an
outside influence in the system and leads to an inhomogeneous PDE (cf. Logan p.149):

Current pdetest is unable to verify that this solution cancels the mainly because it currently fails
in identifying that there is a fourier expansion in it, but its subroutines for testing the boundary
conditions work well with this problem

Consider a heat absorption-radiation problem in the bounded domain , :

(3.1)(3.1)

> >

(3.14)(3.14)

> >

> >

> >

(3.18)(3.18)

(3.17)(3.17)

> >

(3.15)(3.15)

(1.20)(1.20)

(1.8)(1.8)

(3.7)(3.7)

(3.13)(3.13)

(3.16)(3.16)

(2.2.3)(2.2.3)

> >

(1.12)(1.12)

> >

(1.4)(1.4)

> >

> >

> >

0
Consider the nonhomogeneous wave equation problem (cf. Logan p.213, 3rd edition):

Consider the following Schrödinger equation with zero potential energy (cf. Logan p.30):

(3.1)(3.1)

(4.2)(4.2)

(4.1)(4.1)

(4.3)(4.3)

> >

(3.18)(3.18)

> >

(1.20)(1.20)

(1.8)(1.8)

(3.7)(3.7)

(2.2.3)(2.2.3)

(1.12)(1.12)

> >

(4.4)(4.4)

> >

(1.4)(1.4)

> >

> >

> >

> >

> >

Another method for linear PDE&BC with spatial
initial conditions
This method is for problems of the form

or

where M is an arbitrary linear differential operator of any order which only depends on the spatial
variables .

Here are some examples:

Here are two examples for which the derivative with respect to t is of the second order, and two
initial conditions are given:

(3.1)(3.1)

> >

> >

(5.1.2)(5.1.2)

> >

(4.5)(4.5)

> >

> >

(3.18)(3.18)

> >

(4.6)(4.6)

> >

> >

(1.20)(1.20)

(1.8)(1.8)

(3.7)(3.7)

(5.1.3)(5.1.3)

(2.2.3)(2.2.3)

(5.1.1)(5.1.1)

(5.1.4)(5.1.4)

> >

(1.12)(1.12)

(5.2)(5.2)

> >

(1.4)(1.4)

> >

(5.1)(5.1)

(5.1.5)(5.1.5)

> >

More PDE&BC problems solved via first finding
the PDE's general solution.
The following are examples of PDE&BC problems for which pdsolve is successful in first
calculating the PDE's general solution, and then fitting the initial or boundary condition to it.

If we ask pdsolve to solve the problem, we get:

and we can check this answer by using pdetest:

How it works, step by step:
The general solution for just the PDE is:

Substituting in the condition , we get:

We then isolate one of the functions above (we can choose either one, in this case), convert it into
a function operator, and then apply it to gensol

(3.1)(3.1)

> >

> >

> >

> >

> >

(5.2.3)(5.2.3)

> >

> >

(5.2.1)(5.2.1)

(3.18)(3.18)

> >

> >

(5.2.2)(5.2.2)

> >

(1.20)(1.20)

(1.8)(1.8)

(3.7)(3.7)

(5.2.4)(5.2.4)

(2.2.3)(2.2.3)

> >

(1.12)(1.12)

> >

(5.2.6)(5.2.6)

(1.4)(1.4)

(5.2.5)(5.2.5)

> >

> >

Three other related examples

More PDE&BC problems are now solved by
using a Fourier transform.

Consider the following problem with an initial condition:

(3.1)(3.1)

(6.1.2)(6.1.2)

(6.1.8)(6.1.8)

(3.18)(3.18)

(6.1.1)(6.1.1)

> >

(6.1.7)(6.1.7)

> >

(1.8)(1.8)

> >

(2.2.3)(2.2.3)

(1.12)(1.12)

(6.1.6)(6.1.6)

> >

> >

(1.4)(1.4)

> >

> >

> >

(6.1.3)(6.1.3)

> >

> >

> >

> >

> >

> >

> >

(6.1.9)(6.1.9)

(6.1.4)(6.1.4)

(1.20)(1.20)

(3.7)(3.7)

(6.1.5)(6.1.5)

(6.2)(6.2)

(6.1)(6.1)

pdsolve can solve this problem directly:

And we can check this answer against the original problem, if desired:

How it works, step by step
Similarly to the Laplace transform method, we start the solution process by first applying the
Fourier transform to the PDE:

Next, we call the function "fourier(u(x,t),x,s1)" by the new name U:

And this equation, which is really an ODE, is solved:

Now, we apply the Fourier transform to the initial condition :

Or, in the new variable U,

Now, we evaluate solution_U at t = 0:

and substitute the transformed initial condition into it:

Putting this into our solution_U, we get

Finally, we apply the inverse Fourier transformation to this,

(3.1)(3.1)

> >

> >

> >

> >

(3.18)(3.18)

> >

> >

> >

(6.1.10)(6.1.10)

(7.2)(7.2)

(7.1)(7.1)

(7.4)(7.4)

(1.20)(1.20)

(1.8)(1.8)

(3.7)(3.7)

(2.2.3)(2.2.3)

(1.12)(1.12)

(1.4)(1.4)

> >

> >

> >

> >

(7.3)(7.3)

PDE&BC problems that used to require the
option HINT = `+` to be solved are now solved
automatically
The following are two examples of PDE&BC problems which used to require the option HINT = `+`
in order to be solved. This is now done automatically within pdsolve.

