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Physics
Maple provides a state-of-the-art environment for algebraic computations in Physics, with emphasis on 
ensuring that the computational experience is as natural as possible. The theme of the Physics project for
Maple 2022 has been the consolidation of the functionality introduced in previous releases, including a 
significant speed-up across the package and significant enhancements in the areas of Particle Physics, 
Functional Differentiation in general relativity, and Integral Vector Calculus.

As part of its commitment to providing the best possible computational environment in Physics, 
Maplesoft launched a Maple Physics: Research and Development website in 2014, which enabled users 
to download research versions of the package, ask questions, and provide feedback. The results from this
accelerated exchange have been incorporated into the Physics package in Maple 2022. The presentation 
below illustrates both the novelties and the kind of mathematical formulations that can now be 
performed.

The StandardModel package
StandardModel is a Physics's package that implements computational representations for the 
mathematical objects formulating the Standard Model in particle physics. The package includes field 
representations for the leptons and quarks of the model, as well as for Weinberg's angle, the Higgs 
boson, and the fields and field strengths after breaking symmetries and most of the fields before that. 
Loading the package sets things to proceed computing with the model.
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The Leptons, Quarks, Gauge Fields and structure 
constants of the model
The massless fields of the model are the electromagnetic field A, the gluons G and neutrinos 

and 

_______________________________________________________

The Leptons and Quarks of the model are

The Gauge fields
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For readability, omit the functionality of all these fields from the display of formulas that follows (see
CompactDisplay) and use the lowercase  instead of the uppercase  to represent the imaginary unit

The definitions of the gauge fields can be seen as with any other tensor of the Physics package using the 
keyword 
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Note that the conventions used in the definitions of covariant derivatives (not shown above) and field 
strength tensors, follow Peskin, S. "An Introduction to Quantum Field Theory", also the Wikipedia, and 
are not uniform in the literature: the gauge term involving the gluon in the covariant derivative of the 
quarks, e.g. the Top, , has a minus sign and the third term in the gluon field strength definition 

(shown above) has a plus sign:

The convention for the signs in the definitions of A  and in (7) also follow Peskin's book and the 

presentation of the Standard Model in Wikipedia.

The Gell-Mann matrices, that enter gauge terms in the interaction Lagrangian of the StandardModel are 
represented by , implemented as a tensor with an SU(3) adjoint representation index, all of 
whose components are matrices
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These matrices satisfy a SU(3) algebra

The structure constants  entering (12) and interaction Lagrangian terms of the StandardModel 

form a three-dimensional array of 8 x 8 matrices represented by the command . implemented as a 
tensor with three SU(3) adjoint representation indices. As with any other tensor of the Physics package, 
to see its components you can use the keyword , e.g.

or, for a more general exploration of the components of  you can use the command

TensorArray with the option 
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Index 1

a

Value of Index 1

81

1

The tensorial equation for the Gell-Mann matrices

is computable for each value of its tensor indices, e.g.

Activating the left-hand side,
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To see all the components of (12)  at once you can use TensorArray

To represent, in what follows, the interaction Lagrangians for QCD and the Electro-Weak sector as sums
over leptons and quarks, all of them fermions, it is useful to introduce two anticommutative prefixes to 
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be used as summation indices

The Quantum Chromodynamics (QCD) sector of the 
Standard Model and its interaction Lagrangian

QCD is about the interaction between quarks and gluons and the self-interaction of the latter. Quarks are
implemented as tensors with one spinor and one SU(3) fundamental representation (1..3) indices. Unless 
set otherwise, according to the starting message these indices are represented by  and 

 letters. Gluons are tensors with one spacetime and one SU(3) adjoint representation 
index (1..8), respectively represented by  and  letters, and  is the QCD 

coupling constant. 

The interaction Lagrangian for the QCD can then be introduced as the sum of two terms

where  represents the part involving the interaction between quarks and gluons, and  the part 

related to the self-interaction between gluons. L  is given by

The self-interactions of the gluons L  can be written using the structure constants  and the 

Gell-Mann matrices 
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From where

Each of these terms has different contributions to a scattering amplitude. For example, take the first term
with the interaction between  quarks and gluons and last one with the self-interaction between four 
gluons.

The amplitude for the process with two incoming and two outgoing  quarks (particle and antiparticle)
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The amplitude for the process with two incoming and two outgoing gluons
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The Electroweak sector of the Standard Model and its 
interaction Lagrangian

The computation of scattering amplitudes is performed with the model after symmetry breaking. The 
electro-weak interaction before symmetry breaking, from where the formulation after symmetry 
breaking is derived, can be expressed as a sum of four terms mentioned in the Wikipedia page for the 
weak interaction

Out of these four, in the Maple 2022.0 implementation of  it is possible to represent the 
first term, , the kinetic term for the  and  vector bosons

Introducing the definitions of these tensors we have

The  term is the kinetic term for the fermions of the model before symmetry breaking, and their 
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interaction with the gauge bosons W  and is through the covariant derivative. Note that the 

electron field , as well as all the leptons are Dirac spinors that result after symmetry breaking. The 

quarks are also particles that appear through the symmetry breaking mechanism. So the terms you get 
expanding the covariant derivatives of the leptons and quarks, e.g.

are of no use for constructing the Lagrangian before symmetry breaking. The  term involves the Higgs 

boson before symmetry breaking (here too, the HiggsBoson field implemented in the StandardModel in 
Maple 2022 is the Higgs after symmetry breaking) and the  formulates the Yukawa interaction with the

fermions. 

After symmetry breaking

For the purpose of computing scattering amplitudes, the formulation of the interaction Lagrangian after 
symmetry breaking is more relevant; this one is given by 

where we use the notation shown in the Wikipedia page for the weak interaction. As illustration, we 
compute here the  and  terms, respectively containing the kinetic terms corresponding to the free 

fields and the interaction terms between the fermions - leptons and quarks - and the gauge bosons and

. 

Following the Wikipedia page mentioned, the kinetic term LK  is given by
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The inert sums over the leptons and quarks can be activated using value

Introducing the definition of the field strengths , ,  and 



(25)(25)

> > 

> > 

> > 

(43)(43)

> > 

> > 

> > 

(46)(46)

(42)(42)

(29)(29)

(31)(31)

(45)(45)

(41)(41)

(1)(1)

(39)(39)

(44)(44)

> > 

(18)(18)

> > 

> > 

(7)(7)

> > 

(5)(5)

The neutral current Lagrangian containing the interactions between fermions and the gauge bosons 
and  is expressed in terms of the electromagnetic and weak currents  and  as 
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In turn, these currents are expressed as

To activate only the sum over the different kinds of fermions,

To activate the sums and also the inert representations of the different charges you can use the value 
command

For the weak current, from the Wikipedia reference mentioned,
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To activate only the sums,

To activate the sums and also the inert representations of the corresponding different isospins  

you can use the value command

 defined in (46) in terms of J  and J  is then given by

The structure of indices of this term can be scanned using Check
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The products in the given expression check ok.

Feynman Diagrams

Feynman Diagrams are the cornerstone of calculations in particle physics (collisions involving from the 
proton to the Higgs boson), for example at the CERN. As an introduction for people not working in the 
area, see "Why Feynman Diagrams are so important". In connection, Maple 2020 presented a full 
rewriting of the FeynmanDiagrams command including a myriad of new capabilities. Then Maple 2020 
included a large number of new options in FeynmanDiagrams, as well as a new FeynmanIntegral 
module.

In addition, in Maple 2022, 

The most time consuming parts of FeynmanDiagrams were revised and rewritten, resulting in a 10x 
to 100x speed-up depending on the interaction Lagrangian and the number of loops. Also,
FeynmanDiagrams, that in Maple 2021 can draw diagrams with up to 3 vertices, in Maple 2022 can 
also draw diagrams with 4 and 5 vertices.

The FeynmanIntegral package to evaluate the Feynman integrals - e.g. those that appear in the output
of the FeynmanDiagrams command - includes 9 new commands, covering most of the intermediate 
or advanced steps involved in that evaluation.

These developments were presented in Computer algebra and Particle Physics - CAPP 2021.

Dramatic speedup
Among the most significant things in Physics for Maple 2022 is the revision of the code optimizing it 
for performance, resulting in speedups across the board. For example, Maple 2022 performs the 
computations of scattering amplitudes 10 to 1000 times faster depending on the case. As an example, 
consider the interaction Lagrangian for Quantum Chromodynamics (QCD), part of the Standard 
Model. In QCD, the gluons, that we label here as Gl, are represented by a massless field mediating 
the force (is the analogous of the photon  in QED), and the model includes 6 different types of 
quarks: up, down, strange, charm, top and bottom. 

Without making direct use of the StandardModel package, for comparison purposes you can 
formulate the QCD Lagrangian (27) as in Maple 2021 by setting the field operators
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Define as tensors the following fields entering the model

Defined objects with tensor properties

There are terms for the 6 different types of quarks: up, down, strange, charm, top and bottom

Then the terms representing the self-interaction of the gluons 
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where L7 involves derivatives of the gluon field. Each of these 8 interaction terms produces a particular 
vertex, for example, the output in this 2021 version of QCD, equivalent to (29) and (31) computed 
with the new StandardModel package's commands, is
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The total interaction Lagrangian in this 2021 version of QCD, equivalent to the interaction Lagrangian 
(27) constructed with the  commands, is

Using an Apple laptop with the M1 chip and 32 GB of memory, in Maple 2021.0 released one year ago, 
the computation at two loops of the process with two incoming bottom quarks (particle and antiparticle) 
and two outgoing top quarks (particle and antiparticle) takes 45 seconds. In Maple 2022 it takes around 8
seconds

If one includes tadpoles and reducible graphs, the computation takes 4 hours in Maple 2021.0, and 
around 2 minutes in Maple 2022
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This same process at three loops, even without tadpoles and reducible graphs is out of reach in Maple 
2021. In Maple 2022, that computation at three loops completes in around 20 minutes 

Drawing Feynman diagrams with 4 and 5 vertices
Load the package, set three coordinate systems and set  to represent a quantum operator

_______________________________________________________

Let L be the interaction Lagrangian

New in Maple 2022, diagrams with 4 and 5 vertices are now drawn. The following is the term of the 
scattering matrix in coordinates representation with up to four external legs - i.e. related to processes 
involving four particles in total, adding the incoming and outgoing - and only the fourth term (

)
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The same computation, again in coordinates representation with five external legs - processes involving 
five particles in total, adding the incoming and outgoing
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For a particular scattering process of this type, consider for instance 
, the corresponding input would be 

A more involved example with the  model, cases of 4 and 5 vertices. To understand the drawings, in 
the case of 4 vertices there are 4 red dots in the corners of a square, then there are 6 internal lines: the 
perimeter and the two diagonals.
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The scattering amplitude in momentum representation for one incoming and one outgoing particles and 
four loops; to see the algebraic mathematical expression of the amplitude, remove the `:` at the end of 
the input line

For a more involved example at five loops consider the input line 

FeynmanIntegral module with 9 new commands

FeynmanIntegral, introduced in Maple 2021, is both a command and a package of commands for the 
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computation of Feynman integrals, i.e. the (loop) integrals that appear in quantum field theory when 
performing perturbative calculations with the S-matrix in momentum representation.  In Maple 2021.0,
FeynmanIntegral entered the Maple library with two commands: Evaluate to evaluate the integrals, and
Parametrize to parametrize them. 

In Maple 2022, the command and the package got significantly extended, both regarding the 
representation and computation capabilities. As a command, FeynmanIntegral can now compute a 
Feynman integral using dimensional regularization, rewriting the integrand using tensor reduction, 
Feynman parameters, and expanding in the dimensional parameter . As a package, Maple 2022 
extended the FeynmanIntegral (overview) package with the addition of 9 new commands for performing
most of the steps of the computation of these integrals. 

epsilon Evaluate ExpandDimension FeynmanIntegral

FromAbstractRepresenta
tion

Parametrize Series TensorBasis

TensorReduce ToAbstractRepresentatio
n

varepsilon

Brief description of the commands of the FeynmanIntegral package in 
Maple 2022

epsilon is the same as FeynmanDiagrams:-epsilon and is used to express the prescription used to 
integrate in the complex p0 plane.

Evaluate evaluates the Feynman integrals of a given expression, typically the output of the
FeynmanDiagrams command, by parametrizing each of those integrals, optionally returning the 
intermediate steps of the computation or expanding the dimension around  keeping terms 
up to .

ExpandDimension expands the d-dimensional result returned by Evaluate around  
keeping terms up to .

FromAbstractRepresentation returns the standard form of Feynman integrals passed in abstract form. 
This command is the reverse of ToAbstractRepresentation.

Parametrize replaces the propagators within a Feynman integral by integrals on Feynman or alpha 
parameters.

Series expands in series, like the series command, but strictly returning results up to order  
regardless of the existence of terms with negative powers.

TensorBasis given a list of external momenta and a list of spacetime indices, constructs a complete 
basis of tensorial structures using the external momenta and the metric g . 
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TensorReduce expresses integrals with loop momenta in the numerator in terms of scalar integrals 
(with no loop momenta in the numerator).

ToAbstractRepresentation represents Feynman integrals in an abstract form suitable for performing 
the tensor reduction of tensor Feynman integrals. The abstract form is suitable for performing the 
tensor reduction of Feynman integrals implemented in TensorReduce.

varepsilon represents the dimensional parameter used in the dimension regularization approach.

Examples

To remain closer to textbook notation, display the imaginary unit with a lowercase i

The simplest case of a massive  field, the integral containing two propagators and one external 

momentum P1  to which corresponds the mass m1.

The reduction of this tensor integral to a linear combination of scalar Feynman integrals all in one go:

By design, the reduction process does not evaluate the integrals so that one can follow the process 
clearly. The evaluation can be performed next by passing this result to Evaluate
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Note also that Evaluate automatically calls TensorReduce to perform the reduction of tensor integrals 
when that is the case. So, passing the Feynman integral directly to Evaluate, skipping the interactive 
TensorReduce step, results in the same

Back to the reduction process, this is how the integral is processed one step at a time. First, check the 
abstract representation that will be used in the output step by step:

In this output we see the integral has 2 propagators, the first one has 0 external momentum (i.e. none) 
and mass m 2. The second propagator has external momentum  to which corresponds the mass m1. 

Finally the loop momentum integration variable is p1 and the last operand, in this example equal to 0 
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means there are no contracted powers of p1, the loop integration variable, in the numerator of the 

integrand. To retrieve the non-abstract form from the abstract one you can use

The first step of the Passarino-Veltman reduction, the main equation

The right-hand side contains only one element. That is so because the tensor basis for this problem, 
where there is only one free spacetime index in the numerator of the integral and only one external 
momentum P1 is given by just

The second step

The third step only represents the scalar products in the right-hand side in a more convenient form

The fourth step is the most important one, where the actual reduction to scalar integrals, represented in 
abstract form, is performed
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To see this result in standard representation you can use

The fifth step processes this output by solving for the Cn coefficients, expressing them in terms of the 

scalar integrals of step 4.

The sixth step combines this result inserting, in the output of step 1, the values of the Cn
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Finally, either passing step = 7 or omitting the step = ... altogether, the whole reduction is 
performed as done at the beginning (see equation (3)).

An example with two free indices

The reduction of this tensor integral to scalar integrals, all in one go, is given by
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Integral Vector Calculus and Parametrization of 
curves, surfaces and volumes
Four new commands were added to the Physics:-Vectors package, implementing the parametrization of 
curves, surfaces and volumes, as well as the computation of path, surface and volume vector integrals. 
Those are integrals where the integrand is a scalar or vector function, and the computation is done from 
any description (algebraic, parametric, vectorial) of the region of integration - a path, surface or volume.

There are three kinds of line or path integrals:

where A and B are points in space, the limits of integration, that belong to the curve C  over which the 
integral is performed. In the first integral, F is a scalar function and the result of the integration is thus a 
vector. In the second and third integrals the integrand F is a vector function, so that the dot product 

 is a scalar and so is the integral, while in the third one  is a vector and so is its integration 
over the region C .

Likewise, there are three kinds of surface integrals

and two types of volume integrals
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The line element  in path integrals is expressed in terms of a parameter t as

Using indexed notation for derivatives , the surface element  in surface integrals is 

expressed in terms of parameters as

and the volume element  in volume integrals as

The integrals in the three cases are computed by first expressing the integrand and the integration 
element in terms of the parameters using the parametric equations derived with ParametrizeCurve,
ParametrizeSurface and ParametrizeVolume, then performing the vector product operations, then the 
integration. 

Vectorial Path integrals

Consider the following scalar function F, path C  and integration limits A and B
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The line or path integral, shown here in inert form on the left-hand side and active, computed to the end 
on the right-hand side, is

The output on the right-hand side is a vector. Within int, to perform this integration the curve 
 is first parametrized using ParametrizeCurve

The output above is a sequence, first the parametric equations as an ordered list (order ) then the 

parameter, in this case t. For the formulation of the integral to make sense, the limits of integration A and
B must belong to this curve, i.e. satisfy the parametric equations for some value of the parameter, in this 
case  and 

To see the integral after being parametrized and before performing the integration you can use the option
inert

Since there is a relation one-to-one between the integration limits A and B and the parameter's range, 

instead of indicating A and B you can also indicate the range of t itself, getting the same result (98)

When the parameter's range is passed, you can also use a shortcut notation, passing the second argument
as an equation r_ = C, making more explicit that r_ is the vector representation of the region of 
integration C, so the line element  is the differential of the vectorial parametric representation of C. In 
that case, indicating path = C is redundant and can be omitted.
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The integration path and the limits of integration can be expressed in vector notation as well

Vectorial Surface and Volume integrals

The case of surface and volume integrals is analogous to that of line (path) integrals, but for two things: 
instead of one, there are two or three parameters, and instead of indicating integration limits, it is 
required that you indicate the parameter's ranges.

The following C  represents the surface of a sphere of radius a  centered at the origin

From the definition of the vectorial surface element as

 is a vector perpendicular to the surface of the sphere. Hence, the vectorial surface integral of  over
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the upper half of the sphere should be a vector perpendicular to the plane  in the k direction. Also, 
checking the form of the parametrization returned by ParametrizeSurface (above) is useful to understand
what the ranges for the parameters  and  need to be in order to represent the desired region; for the 
upper half we have

From symmetry considerations, the integral of  over the lower half of the sphere should have the same
magnitude but opposite direction ( ), from where the integral over the whole sphere, so for , 
should be equal to 0

From this example we see that to get the area computing the integral of  over the whole surface it is 

necessary to take as integrand the modulus of , that is its scalar product with a unit vector parallel to 
it. By definition of surface element (see after (112)) that unit vector is given by

where r is the vectorial form of the parametric equations of the surface. It is easy to see this vector is the
radial unit vector r. For that purpose you can use the option output = vector of ParametrizeSurface 
to get the vectorial form of the parametric equations for C2

Introduce this value of r into the expression for n and change basis to spherical
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Putting all together, the area of a sphere of radius a  is given by this closed surface integral

In the case of the volume of a sphere, an algebraic representation of the region is

from where the volume of a sphere of radius a  is equal to the integral of the corresponding 
 with parameters ,  and 

Using ParametrizeVolume one can also see that the vectorial representation of this region is just the 
position vector r written in spherical coordinates and basis

Parametrization of curves, surfaces and volumes

Consider the following C  representing a curve in space

The parametric equations for this curve are

The right-hand sides of equations above are the components of the position vector r in cartesian 
coordinates, from where a vectorial form of these equations is
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> > 

The curve C  can also be passed in vector form

The equations of circle of radius a  on the ( ) plane can be written as

In vector notation,

Changing the basis of this vector, for example to cylindrical, we get

The same result can be obtained by specifying the basis

ParametrizeSurface and ParametrizeVolume work in the same way as ParametrizeCurve, only with two 
and three parameters respectively.



> > 

> > 

> > 

(90)(90)

(104)(104)

> > 

(29)(29)

(55)(55)

(141)(141)

(41)(41)

> > 

(140)(140)

> > 

> > 

> > 

(138)(138)

> > 

(118)(118)

> > 

(5)(5)

(25)(25)

> > 

(137)(137)

(64)(64)

(87)(87)

(74)(74)

(126)(126)

(65)(65)

(73)(73)

(31)(31)

> > 

(54)(54)

(1)(1)

(39)(39)

(75)(75)

(18)(18)

> > 

(66)(66)

(7)(7)

(50)(50)

(139)(139)

(79)(79)

Functional Differentiation in General Relativity
Functional differentiation is a key operation in theoretical physics, used thoroughly to compute field 
equations using an action principle, from classical mechanics, to general relativity and quantum field 
theory. Maple 2022 brings a significant optimization of the related Fundiff command, as well as major 
improvements in its capabilities to handle the traditional General Relativity tensors, including the 
determinant of the spacetime metric.

For illustration, set any non-flat metric, e.g. Tolman's

For readability, avoid redundant display of functionality and set an additional system of coordinates to 
perform functional differentiation
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The functional derivative of the metric with regards to itself

from where the functional derivative of its integral is the symmetric expression

In Maple, to represent the determinant of the metric without actually computing it you can use the inert 
form of it

The derivative of the determinant with respect to the metric itself

from where
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When formulating General Relativity using an action principle, the expression that enters the integrand 
in the action is the square root of the determinant

Its derivative, functional derivative, and the functional derivative of its integral are now all computable

Likewise, for the derivative of the metric we now have

from where the functional derivative of the integral of the product of dg  with the square root of the 
determinant becomes
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The handling of this abstract representation  of the determinant of the metric is also consistent with 
the expansion of the determinant both with regards to its components or its tensorial representation. Due 
to the amount of indices involved, it is simpler to input the expressions using lowercase latin indices, and
to verify formulas set the most arbitrary possible metric 

The metric now has the most general form in terms of ten arbitrary functions

The tensorial form of the determinant is

This expression is now understood by the simplifier

The expanded form of the determinant is given by the active form of , which 
is entered without the `%` prefix
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Summing over the repeated indices of the tensorial form (158) and comparing with the expanded form 
we see they are equal

0

Depending on the case, more subtle expressions can also be mapped into . For example,

Likewise the simplifier can now map derivatives of the tensorial form of the determinant into the more 
compact abstract form

With the new functional differentiation and simplification capabilities in place, it is now possible to 
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compute more complicated abstract tensorial expressions, for example:

It is using these new capabilities that the results (153) and (156) are computed. 

In addition to handling (functional) derivatives of different representations of the determinant of the 
metric, in Maple 2022 Fundiff can compute the functional derivatives of the traditional tensors of 
General Relativity with respect to the metric. The key observation is that all of them can be expressed in 
terms of the metric itself and its derivatives. For example, for the Christoffel symbols we have

This result is computed by first relating  to the metric and its derivatives

and then differentiation the right-hand side, to obtain the result shown in (170)
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In the same way, for instance, because Fundiff can now compute derivatives of , through this 

relationship it can also compute derivatives of the Ricci tensor or any other one (Einstein, Riemann,
Weyl)

CompactDisplay and Typesetting:-Suppress 
unified

There are two Maple commands to avoid redundant display of functionality: Typesetting:-Suppress and
Physics:-CompactDisplay which is a synonym of PDEtools:-declare. There are differences in how these 
commands work:

When you PDEtools:-declare , the functionality is suppressed only from the output, not from the 
input. So entering , does not result in .

When you Typesetting:-Suppress , the functionality is suppressed from both the output and the 
input. So entering , result in . In this sense, Typesetting:-Suppress works similar to the alias 
command.

Also,

When you declare , the functionality is suppressed also for indexed q, so  is displayed as 
. This is particularly useful when working with indexed variables, as for example tensors are.

When you Typesetting:-Suppress , the functionality is not suppressed for indexed q, so  is
not displayed as . This makes Typesetting:-Suppress not ideal when working with indexed 
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variables.

Finally,

When you PDEtools:-declare , in previous versions of Maple derivatives or  are displayed 
indexed, as , even when the rule to display them with a dot is set (typesetdot rule, automatically set 

when you load Physics).

When you Typesetting:-Suppress , derivatives or  are displayed with a dot when that rule is 
set.

To combine the advantages of these two commands, new in Maple 2022, when you PDEtools:-declare a 
function, it also automatically gets suppressed (i.e, a call is made to Typesetting:-Suppress in the 
background). So PDEtools:-declare'd functions are now also Typesetting:-Suppress'd. 

The different designs were combined such that when you PDEtools:-declare a function, things work as 
always but now you also get advantage of several things that work very well with Typesetting:-Suppress 
as is the case of typesetdot.

This is the new behavior, that actually is the same as the old one but for the fixes mentioned. In what 
follows, recall that Physics:-CompactDisplay calls PDEtools:-declare

The following is the same as 

As usual, entering q results in q, not 

q

q

The following is as usual: the functionality is omitted in the display of the output, but it is there

q(t)
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Also as usual: for declare'd functions, the functionality is also suppressed (not displayed) when the 
function is indexed, the typical example being any tensor function

q[j](t)

New: the typesetdot rule that is automatically set when you load Physics, in Maple 2022 also works with
declare'd functions

In addition, the typeset got improved: the dot is placed over q, not over q[t]. This is relevant, for 
instance, when there are several indices, e.g.

New: the typesetdot rule also works with contravariant tensor indices. For example, define  as a 
tensor, and the dot does not interfere with the superscript contravariant indices

Copy and paste works flawlessly in all these example. E.g. copy the above and paste it:

diff(q[~j](t),t)
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Documentation advanced examples
One of the most important parts of the Physics project is its documentation; the illustration of the use of 
the package in different scenarios. The three relevant help pages for that are

The Physics,Examples

The Physics,Tensors

The Physics,Updates

For Maple 2021, the first of these pages got extended with four sections: "Vectors in Spherical 
Coordinates using Tensor Notation", "The equations of motion in curvilinear coordinates, tensor 
notation and Coriolis force", "The EnergyMomentum tensor for the Proca Lagrangian" and "The Gross-
Pitaevskii field equations for a quantum system of identical particles", covering new material in Vector 
Analysis, Mechanics and Classical Field Theory.

For Maple 2022, the first of these pages got extended with three new sections: "Parametrization of 
Curves, Surfaces and Volumes", "Integral Vector Calculus" and "The StandardModel in Particle 
Physics".


