Maple Quantum Chemistry Toolbox

The Maple Quantum Chemistry Toolbox from RDMChem, a separate add-on product to Maple,
is a powerful environment for the computation and visualization of the electronic structure of
molecules. In Maple 2022, this toolbox has significant new features and enhancements: (1) a
new option for solvents in Density Functional Theory as well as a new extendable database of
solvents and their dielectric constants, (2) a new option for ghost atoms to correct basis set
superposition errors, (3) new commands for computing and visualizing exciton populations in
molecules, (4) a new option for exporting skeletal structures to a graphics file including jpg,
png, tif, and bmp formats, (5) a new addition to the 30 builtin lessons for classroom learning
in undergraduate-to-graduate chemistry and physics, and (6) additional enhancements
throughout the package.

Note that the Maple Quantum Chemistry Toolbox (QCT) is required in order to execute the
examples in this worksheet.

Continuum Solvents

QCT 2022 adds support for continuum solvents in Density Functional Theory (DFT). Before
we begin we load the QuantumChemistry package,

> with(QuantumChemistry);

[A OLabels, ActiveSpaceCl, ActiveSpaceSCF, AtomicData, BondAngles, BondDistances, Charges,
ChargesPlot, ContractedSchrodinger, CorrelationEnergy, CoupledCluster, DensityFunctional,
DensityPlot3D, Dipole, DipolePlot, Energy, ExcitationEnergies, ExcitationSpectra,
ExcitationSpectraPlot, ExcitedStateEnergies, ExcitedStateSpins, ExcitonDensityPlot,
ExcitonPopulations, ExcitonPopulationsPlot, FullCI, GeometryOptimization, HartreeFock, Interactive,
Isotopes, MOCoefficients, MODiagram, MOEnergies, MOIntegrals, MOOccupations,
MOOQOccupationsPlot, MOSymmetries, MP2, MolecularData, MolecularDictionary,
MolecularGeometry, NuclearEnergy, NuclearGradient, OscillatorStrengths, Parametric2RDM,
PlotMolecule, Populations, Purify2RDM, RDM 1, RDM2, RTM 1, ReadXYZ, Restore, Save, SaveXYZ,
SearchBasisSets, SearchFunctionals, SkeletalStructure, SolventDatabase, Thermodynamics,
TransitionDipolePlot, TransitionDipoles, TransitionOrbitalPlot, TransitionOrbitals,
Variational2RDM, VibrationalModeAnimation, VibrationalModes, Video]

The new command SolventDatabase accepts a name or part of a name and returns all

matching solvents and their dielectric constants. Using SolventDatabase, we search for
solvents containing "Toluene"

> SolventDatabase("Toluene");

[["p-IsoPropylToluene", 2.23220000], ["Toluene", 2.37410000], ["o-ChloroToluene", 4.63310000],
["a-ChloroToluene", 6.71750000], ["o-NitroToluene", 25.66900000] |

Next we can perform a DFT calculation for a water molecule in the one of these solvents, i.
e. "Toluene". After we import the geometry of water with the MolecularGeometry command

> water == MolecularGeometry("water");
water = [["O", 0,0, 0], ["H", 0.27740000, 0.89290000, 0.25440000], ["H", 0.60680000, —0.23830000,
—0.71690000]]

we use the DensityFunctional command to perform the DFT calculation

nmn

> data = DensilyFunctional(water, basis = "cc-pvdz", "solvent="Toluene ");

["O O 1S"]
"0 O 2SH
003s 026528412
data :=table| | e _tot= —76.38344245, aolabels = 00 2px , charges = 0.13264195
"0 O 2py" 0.13264217
"O O 2pZ"
24 e-lement Vector[coh;mn]

converged =1, group ="C1", mo_coeff=[[[1.00312141, —0.00603245,

—5.30776238 x 10", 0.00746752, —1.20730690 x 10~ °, —0.03080595, ... |,
[0.00756206, 0.44287033, —3.91192518 x 10 °, —0.16555268, —1.57285449 x 10~ °,
0.12750733, ... |,

[—0.00692984, 0.35469464, 5.21929912 x 10~
)

[0.00144541, 0.08431287, —0.10846229, 0.40395131, 0.40489506, 0.18449760, ... |,
[0.00107008, 0.06241911, 0.37247229, 0.29905675, —0.24680815, 0.13658958, .. |,
[
[

7 —0.37827410, 8.06679786 x 10 %, 0.89663401,

—0.00075606, —0.04410181, 0.31982206, —0.21129581, 0.42475185, —0.09650522, ...],

[2.00000000 | [A"]

2.00000000 "A"

2.00000000 "A"

2.00000000 "A")

24 x 24 Matrix |, M0_0CC = , mo_symmetry = , dipole

2.00000000 "A"

0' IVA”
247element Vector[colun:m] 24 elemc;nt Vectortcolumn]

1.42306177
=| 1.05353446 |,rdml
—0.74436405

[[[2-01268945, 0.00735560, —0.02383183, 0.00791565, 0.00586015, —0.00414050, ... |,
[0.00735560, 0.44719800, 0.43931124, —0.05904925, —0.04371599, 0.03088693, ... |,

[—0.02383183, 0.43931124, 0.53789521, —0.24581807, —0.18198588, 0.12858099, ... |,
[0.00791565, —0.05904925, —0.24581807, 0.69198298, —0.02852391, 0.09643726, ... |,
[0.00586015, —0.04371599, —0.18198588, —0.02852391, 0.58596420, —0.10330082, ... |,
[—0.00414050, 0.03088693, 0.12858099, 0.09643726, —0.10330082, 0.65858348, ... |,

[

200621803 [—19.12050478 |
0.84110733 —0.98721541
0.81657149 —0.50535422
lati 1.00740790 —0.36137824
24 x 24 Matrix |, populations = , mo_energy =
0.96606128 0.05236958
- - -24 element Vector[column-]
24 element Vector[column]

The new solvent keyword implements a domain-decomposition COnductor-like Screening
MOdel (ddCOSMO) for solvation, which accounts implicitly for the interactions between the
specified molecule (solute) and solvent.

Ghost Atoms

When modeling intermolecular interactions, it is often necessary to correct for basis set
superposition error (BSSE). In BSSE the intermolecular interaction is overestimated due to
the incompleteness of the basis set. A common approach to correcting BSSE is the
counterpoise correction. The counterpoise correction estimates the basis-set
incompleteness by performing a series of calculations with ghost atoms. Ghost atoms are
ethereal in that they only contribute basis functions of the specified atom without adding a
nucleus or any additional electrons. QCT 2022 adds support for ghost atoms to all methods
through the new keyword ghost. For example, we can perform a Parametric2RDM
calculation of neon with a neon ghost atom.

> data == Parametric2RDM ([["Ne", 0, 0, 0]], basis = "cc-pvdz", ghost = [["Ne", 0,0, 1.0]]);
["0 Ne 1s"]
"0 Ne 2s"
"0 Ne 3s"
"0 Ne 2px"
"0 Ne 2py"
"0 Ne 2pz"

—0.00184245

Lcharges =4 00184245

data =table| | e tot= —128.68548282, aolabels =

b

28 element Vector[column]

active_orbitals = [1.28], group ="C1", mo_coeff

1.00057892 —0.01398654 0. 0. 0.00139986 —0.00906630
—0.00686084 —0.51618079 0. 0. —0.00332241 —0.02024781
—0.01161852 —0.56395289 0. 0. —0.02691747 0.05108698
0. 0. 0.46318610 0.51743756 0. 0.
0. 0. 0.51743756 —0.46318610 0. 0.
0.00004471 0.00840623 0. 0. —0.69257355 —0.91611571
[1.99995066 |
1.99229725
1.98397369 0
28 x 28 Matrix |, 0_0CC = 198397369 ,e _corr=—0.19560646, dipole = 0.
198334653 —0.05011035
0.01179293
28 Eelement Vector[colur;ln]
= [[[1.99994907, —0.00010947, 0., 0., —2.77800924 x 10~ °, —0.00002971, ..

3

]

[—0.00010947, 1.99227236, 0., 0., —0.00013600, 0.00412310, ... |,

0., 0., 198394165, 0., 0., 0., ... |,

[0.,0.,0.,1.98394165, 0., 0., ... |,

[—2.77800924 x 10~°, —0.00013600, 0., 0., 1.98323965, 0.01395312, ...],
[—0.00002971, 0.00412310, 0., 0., 0.01395312, 0.00286435, .. |,

[

, rdml

[2.00129196 |
0.94473303
1.04823226
1.26614566
1.26614566
1.26051998

28 x 28 Matrix |, populations =

28 element Vector[column]

The additional basis functions on the neon ghost atom lower the total energy from -128.679
hartrees (without the ghost atom) to -128.685 hartrees.

Exciton Populations

QCT2022 can compute the exciton populations of a molecule. Excitons are quasi-particles
that consist of an electron and a hole (the absence of an electron). These particles are
important because they can absorb, transport, and emit energy. Consider the benzene
molecule

> benzene == MolecularGeometry("benzene");

benzene = [["C", —1.21310000, —0.68840000, 0], "C", —1.20280000, 0.70640000, 0.00010000 |,
["C", —0.01030000, —1.39480000, 0], ["C", 0.01040000, 1.39480000, —0.00010000], ["C",
120280000, —0.70630000, 0], ["C", 1.21310000, 0.68840000, 0], ["H", —2.15770000,
—1.22440000, 0], ["H", —2.13930000, 1.25640000, 0.00010000], ["H", —0.01840000,
—2.48090000, —0.00010000], ["H", 0.01840000, 2.48080000, 0], ["H", 2.13940000, —1.25630000,
0.00010000], ["H", 2.15770000, 1.22450000, 0]]

We perform a variational 2-RDM calculation with a 6-electrons-in-6-orbitals [6,6] active
space

> data = Variational2RDM (benzene, active = [6, 6], return_rdm ="rdm1_and rdm2");

data :=table| | e_tot= —227.95444685, mo_coeff canonical

[[—0.17009035, 0.53184999, 0.42048984, —0.12113394, 0.56067469, —0.40839320, ...

[
|
[—0.00534589, 0.01550896, 0.00962921, —0.00522920, 0.02437501, —0.02107402, ... |,

[—0.00169716, —0.00117440, —0.00111974, 0.00153726, 0.00206940, —0.00210823, ... |,
[0.00300187, 0.00101462, —0.00116050, —0.00350446, 0.00016799, —0.00128489, ... |,
[0.,0.,0.,0.,0.,0., ...],

[

[

["0 C lsn]) }
—0.06220440
0C32s —0.06225210
"0 C 2px" —0.06224581
" " —0.06226661

36 x 36 Matrix |, aolabels = 0C 2py , charges = , converged = 1,

"0 C 2pz" —0.06224119
" C s —0.06.220159

L - 1-2 element Vector[columr;]

36 element Vector[column]

active_orbitals = [19 .24], group = "C1", mo_coeff

[[[—0.00892741, —0.10627428, 0.04211509, —0.06701835, —0.13027557,
—0.10467581, ...],

[0.03644646, 0.31318600, —0.12410580, 0.18086649, 0.35157420, 0.26484248, ... |,

[—0.20379512, —0.02592619, 0.13297960, 0.06827088, —0.00798270, 0.05386142, ...],

[—0.11566987, —0.11262086, —0.17156676, —0.09457665, 0.06407487, 0.03057589, ...],
[0., 0., —0.00001147, 0., 0., 0., ...],
[
[

[2.00000000 |
2.00000000
2.00000000
36 x 36 Matrix |, M0_0CC = 2.00000000 ,e_corr=—0.06361461, rdm?2
2.00000000
2.00000000
36-element Vector[colun-m]
[1.99938995 0. 0. 0. 0. 0.
0 3.80057155 —0.00012216 0. 0. 0.00019356
0 —0.00012216 3.80095776 0. 0. 0.00015167
= 0. 0. 0. 0.18448784 0.00003398 0.)
0 0. 0. 0.00003398 0.18422742 —0.00001021
0 0.00019356 0.00015167 0. —0.00001021 0.02728402

slice of 6 X 6 x 6 x 6 Array

—0.00005362

dipole = | —0.00003057 | yqm1
0.00003380
[1.99938371 0. 0.
0 1.90061899 —0.00002346
0 —0.00002346 1.90068179
- 0. 0. 0.
0 0. 0.
0 0.00006981 0.00004763

[1.99277191 |
1.13643038
0.97288746
0.96006097
1.00005368
1.99277190

populations =

36 element Vector[column]

0.

0.

0.
0.09251396

0.

0.

0.
—0.00001176

—0.00001176 0.09254601

0.

0.

0.
0.00006981
0.00004763

0.

0.
0.01425553

After the calculation we use the new command ExcitonPopulations to compute the exciton
populations, the number of excitons in a given exciton (particle-hole) state

> pops = ExcitonPopulations(benzene, data, nexcitons = 8, showtable = true) :

Exciton State Exciton Population
1 1.00564746
2 1.00559656
3 0.99287953
4 0.95440962
5 0.95438150
6 0.95385219
7 0.95361623
8 0.95208483

The populations can be plotted with the new command ExcitonPopulationsPlot

> ExcitonPopulationsPlot(pops, color = "Nautical Light Blue");

o
1_

Exciton Population

— = —
© Na Ne)
i o0 o

=
o
o

QQQQ‘
1 2 3 4 5 6 7 8

Exciton State

The particle and hole relationship of each exciton can be visualized with the new command
ExcitonDensityPlot. Figure 1, for example, shows the particle and hole densities for the first
exciton state in the table and figure above.

Figure 1: Output from ExcitonDensityPlot
For a particle placed in the 2p, orbital of one of the carbon atoms, whose density is shown

in nautical red, the density of the hole is shown in light nautical blue.

Exporting Skeletal Structures

A new keyword option to the command SkeletalStructure allows us to write skeletal
structures to a jpg, png, tif, or bmp graphics file. The file type is determined from the
extension given to the file name. For example, let's retrieve the skeletal structure of the

non-steroidal anti-inflammatory drug (NSAID) Zaltoprofen.

> SkeletalStructure("Zaltoprofen");

In QCT2022 we can export the skeletal structure to a file with the keyword file.

> dir = kernelopts(homedir);
dir == "C:\Users\david"

> filename = cat(dir, "\\Zaltoprofen.png");
filename = "C:\Users\david\Zaltoprofen.png"

> SkeletalStructure("Zaltoprofen", file = filename);

In addition to printing the skeletal structure, the command with file writes a png file to the
filename. Note that we must use a directory with write permissions.

Using the Package in the Classroom

The Maple Quantum Chemistry Toolbox includes approximately 30 lessons that can be used
in chemistry and physics courses from advanced high school courses through the graduate
level. These lessons and associated curricula provide instructors and students with real-
time quantum chemistry computations and visualizations that quickly deepen
understanding of molecular concepts. Detailed lesson plans and curricula are provided for
Introductory (General) Chemistry, Physical Chemistry (Quantum Mechanics and
Thermodynamics), Thermodynamics (Physics), Quantum Mechanics (Physics),
Computational Chemistry, and Quantum Chemistry as well as Advanced Placement (AP) and
International Baccalaureate (IB) chemistry courses. Topics include atomic structure,
chemical bonding, the Maxwell-Boltzmann distribution, heat capacity, enthalpy, entropy,
free energy, particle-in-a-box, vibrational normal modes, infrared spectroscopy, as well as
advanced electronic structure methods. Use of the QCT in the classroom is described in a
recent paper inJ. Chem. Ed. QCT 2022 includes a new lesson for Physical Chemistry and
Undergraduate Quantum Mechanics on Huckel Theory and Conjugated Molecules. Within
the lesson we compare the molecular orbitals predicted from Huckel Theory with those
predicted from ab initio electronic structure calculations using the Variational2RDM method.
The Maple environment allows us to seamlessly combine analytical work using the
LinearAlgebra package with electronic structure calculations and visualizations from the
QCT.

