
Performance Improvements in Maple 2023

Rational Linear Solver Speedup

Hardware Floating-Point Evaluation of
Numeric Matrices

The Units Package

Performance Improvements for Plots

Faster Water and Steam Properties

evalhf Hardware Floating-Point Subsystem

Importing Data from a File

Bit-Shift Operations

Rational Linear Solver Speedup
The underlying engine that solve uses to solve systems of linear equations with rational
coefficients has been improved for many types of systems. The recently added
SolveTools:-LinearSolvers:-RationalDense is now used for most systems of equations
with more than 5 percent of their coefficients nonzero that are also overdetermined or
highly underdetermined with user specified free variables.

•

Here is an example of a highly overdetermined system with many solutions where the
new method performs much better.

•

N := 200: n := 100: r := rand(-1000..1000):>

M := Matrix(N+n, N, (i,j)->ifelse(j<(i-n), 0, r())):>

V1 := M . Vector([seq(r(),i=1..N)]):V2 := M . Vector([seq(r(),i=1..

N)]):

>

vars := [seq(cat(`x__`,i),i=1..N+1)]:>

sys := (lhs-rhs)~(LinearAlgebra:-GenerateEquations(<V1 | V2 | M>,

vars)):

>

The old default method•

CodeTools:-Usage(SolveTools:-LinearSolvers:-Rational(sys, indets

(sys),dense=false)):

>

memory used=67.95MiB, alloc change=8.80MiB, cpu time=760.00ms, real

time=762.00ms, gc time=76.07ms

The new default is significantly faster on this system•

CodeTools:-Usage(SolveTools:-LinearSolvers:-Rational(sys, indets

(sys))):

>

memory used=27.13MiB, alloc change=-0.72MiB, cpu time=268.00ms, real

time=269.00ms, gc time=43.79ms

Hardware Floating-Point Evaluation of Numeric Matrices
When initializing hardware-float matrix, vector, and array data structures the kernel will
opt for computing with numeric implementations of the initializer when possible. This
results in dramatic speed-ups in some cases. The following example used to take
several seconds and now returns instantly:

•

tt:=time[real]():>

signal:=Vector(10^5,i->sin(i),datatype=float[8]):>

time[real]()-tt;>

0.070

A simple initialization of a float[8] rtable with integer values is now about 3.5 times
faster.

•

tt:=time[real]():>

v:=Vector(10^6, i->i, datatype=float[8]):>

time[real]()-tt;>

0.085

Evaluation of sums, products and functions now use less memory and a more direct
path to hardware-float evaluation. The following example is more than two times faster
in Maple 2023.

•

N := 10^5:>

with(LinearAlgebra):>

X := RandomVector(N, generator = 0 .. 1.0, datatype = float[8]):>

Y := RandomVector(N, generator = 0 .. 1.0, datatype = float[8]):>

st := time[real]():>

total := Vector(N, i -> ifelse(X[i]^2 + Y[i]^2 < 1, 1, 0), datatype=

float[8]):

>

time[real]()-st;>

0.501

Type checking of datatype=float[8] rtables has also improved. The following example is
hundreds of times faster in Maple 2023.

•

A := [seq(Array(1..1,[i],datatype=float[8]),i=1..10^4)]:>

tt := time[real]():>

map(type,A,'rtable'(datatype=float[8])):>

time[real]() - tt;>

0.010

When a hardware-based rtable's elements are extracted they remain as a double-
precision HFloat data-structure. Support for direct operation on these structures has
been extended to include integer-output commands such as floor, round, and ceil. This
gives a small improvement that adds up over millions of computations. Timings in the
following example are now almost half of what they were in the previous version.

•

n := 10^6:>

v := LinearAlgebra:-RandomVector(n,datatype=float[8]):

tt := time():

for i from 1 to numelems(v) do

 v[i] := floor(v[i]/10);

end do:

>

time() - tt;>

2.760

The Units Package
The Units package, and in particular its Units:-Simple subpackage have received several
upgrades that make them faster, sometimes several orders of magnitude faster.

•

The Units:-Simple package works by calling the command Units:-TestDimensions every
time an arithmetic operation is performed. This command has been re-implemented to
be much faster. In user-submitted worksheets that heavily use units, we often see
speedups between 3 times and 100 times for the whole worksheet.

•

The following example shows a simple forward Euler discretization of constant
acceleration for 2 seconds in 2000 steps.

•

make_sys := proc(x :: symbol, v :: symbol, dt :: symbol, a ::

symbol, n :: nonnegint, dtval :: algebraic, aval :: algebraic, $)

local i;

 return [x[0] = 0, v[0] = 0, a = aval, dt = dtval,

 seq(v[i+1] = v[i] + dt * a, i = 0 .. n-1),

 seq(x[i+1] = x[i] + dt * v[i], i = 0 .. n-1)];

end proc;

>

make_sys d proc x::symbol, v::symbol, dt::symbol, a::symbol, n::nonnegint, dtval::algebraic, aval::

algebraic, $

local i;

return x 0 = 0, v 0 = 0, a = aval, dt = dtval, seq v i C 1 = v i C dt*a, i = 0 ..n K 1 , seq x i C 1

= x i C dt*v i , i = 0 ..n K 1

end proc

sys := make_sys(x, v, dt, a, 2000, 0.001*Unit(s), 9.8*Unit(m/s^2)):>

numelems(sys);>

4004

The TestDimensions command without further options verifies that this is a
dimensionally consistent set of equations.

•

Units:-TestDimensions(sys);>

true

With the option below, it computes the dimensions of x0 and v2000.•

Units:-TestDimensions(sys, output=units(x[0], v[2000]));>

v2000::
m
s

, x0::m

This example is about 200 times faster in Maple 2023 than before.•

The Units:-Simple package has been optimized to improve performance of base
operations. In order to provide automatic units simplifications and verify consistency,
the Units:-Simple package overloads core operations such as add, multiply and
exponentiations. In previous versions this could add significant overhead even when
calculating with expressions that do not contain units. In Maple 2023 this overhead has
been greatly reduced.

•

For example, the following example computes a numerical approximation to pi using a
Monte Carlo method.

•

restart;>

tt := time[real]():

with(Units[Simple]):

N := 10^6:

with(LinearAlgebra):

X := RandomVector(N, generator = 0 .. 1.0, datatype = float[8]):

Y := RandomVector(N, generator = 0 .. 1.0, datatype = float[8]):

total := Vector(N, i -> ifelse(X[i]^2 + Y[i]^2 < 1, 1, 0), datatype=

float[8]):

add(total[i], i = 1..N) * 4 / N;

time[real]()-tt:

>

3.14037200000000

On a representative computer, this example now completes in 7 seconds, compared to
more than 60 seconds in prior versions.

•

Performance Improvements for Plots
In Maple 2022, we introduced a new adaptive plotting engine. This engine has been
sped up significantly in Maple 2023. For example, the following simple plot has been
sped up by about a factor of 4, and it uses about 4 times less memory:

•

plot(tan);>

K
3 p
2

Kp
K

p

2
0 p

2
p 3 p

2

K4

K3

K2

K1

1

2

3

4

This example runs about 15 times faster in Maple 2023, and it uses about 10 times less
memory.

•

•

plot(sin(ln(exp(x) + 1)), x=-5..5);>

x
K4 K2 0 2 4

K1

K0.5

0.5

1

Faster Water and Steam Properties
The ThermophysicalData:-CoolProp subpackage has been updated to CoolProp 6.4.1.
Most notably, the update introduces IAPWS-IF97 water and steam properties--these are
faster to compute than those given by IAPWS-95 (which is used by the default Helmholtz
equation of state). This is at the expense of slightly less accuracy and applicability over
a smaller envelope of temperatures and pressures.

•

IAPWS-IF97 is recommended when water properties need to be computed quickly and
continuously, such as in the simulation and optimization of steam power cycles.

•

Specific heat capacity of water using IAPW-IF97•

ThermophysicalData:-CoolProp:-Property(C, "IF97::Water",

temperature=500*Unit('K'), pressure=1*Unit('atm'));

>

1981.542297
J

kg K

Specific heat capacity of water using the Helmholtz equation of state (which can be
specified by using "HEOS::Water" or "Water" as the fluid).

•

•

ThermophysicalData:-CoolProp:-Property(C, "HEOS::Water",

temperature=500*Unit('K'), pressure=Unit('atm'));

>

1981.609716
J

kg K

Evaluate the specific heat capacity of water N times using IAPW-IF97 and the Helmholtz
equation of state

•

N:=4000:>

tt:=time[real]():

for i to N do

 ThermophysicalData:-CoolProp:-Property(C, "IF97::Water",

pressure=1*Units:-Unit(atm), enthalpy=Unit(('kJ'/'kg'))):

end do:

time[real]()-tt;

>

8.359

tt:=time[real]():

for i to N do

 ThermophysicalData:-CoolProp:-Property(C, "HEOS::Water",

pressure=1*Units:-Unit(atm), enthalpy=Unit(('kJ'/'kg'))):

end do:

time[real]()-tt;

>

8.949

evalhf Hardware Floating-Point Subsystem
A call to evalhf evaluates an expression to a numerical value using the floating-point
hardware of the underlying system. The evaluation is done in double precision. The
argument passed to evalhf must be an expression that evaluates to float[8] or complex
[8] values as singletons or in an array, matrix, or vector. In Maple 2023, the evalhf
subsystem has been extended to handle all built-in (kernel) procedures that process
arbitrary inputs and return hardware values.

•

Consider the following example which uses the built-in function, rhs. Evaluation of rhs
and its arguments will be performed outside of evalhf so the non-hardware range
structure returned by rtable_dims can be computed, and subsequently given to rhs,
which will return a hardware compatible structure back to the evalhf subsystem.

•

restart;>

A := Array(1..2,datatype=float[8]):>

evalhf(rhs(rtable_dims(A,1)));>

2.

•

In this example, the given loopsum procedure uses the built-in, numelem, which was
formerly not supported by evalhf.

•

loopsum := proc(A)

 local s := 0;

 local n := numelems(A);

 for local i from 1 to n do

 s := s + A[i];

 end do;

 s;

end proc:

>

v := LinearAlgebra:-RandomVector(100,datatype=float[8]):>

evalhf(loopsum(v));>

410.

These additions extend the reach of evalhf allowing a wider variety of code to be used
inside evalhf.

•

Importing Data from a File
The ImportVector command can be used to load data from a variety of different file
formats. Performance of importing comma-separated value (CSV) files has been
improved on Windows. The following example completes in about half the time it used
to.

•

t:=time[real]():>

data:=ImportVector("C:\\data.csv", source=csv[standard],datatype=

float[8]):

>

time[real]()-t:>

Bit-Shift Operations
Two new commands integerdivq2exp and integermul2exp provide what are considered
hardware bit-shift operations. They are fast methods for dividing or multiplying an
integer to a power of 2. integermul2exp computes i*2^pow, and integerdivq2exp
calculates trunc(i / 2^pow).

•

integermul2exp(10, 4) - 10*2^4;>

0

integerdivq2exp(255,4) - trunc(255/2^4);>

0

