
Embedded Components

Tables as Embedded Components

Table Properties

In Maple 2016 some Table properties can be accessed programmatically, meaning
properties can be updated using the DocumentTools package. To enable this, Tables
now have a name (or identity), which is listed in the Table Properties dialogue. Note
the name is not the same as the title.

Reset Table to Defaults

This Table is a Dynamic Component

The following commands were used to update the Table above.

> >

> >

> >

Programmable Tables

Tables can be also be created and inserted (or embedded) using DocumentTools
commands:

x y z

1 2 3

The Tabulate command provides built-in support for laying out lists, Arrays, Vectors,
Matrices and DataFrames containing strings, numbers, math expressions, and plots.
By constructing the content using the DocumentTools commands, further
customization is possible and the inserted Table can also be subsequently altered
programmatically.

> >

Date Mean Sunspot Number

1700 5.0

1701 11.0

1702 16.0

1703 23.0

1704 36.0

1705 58.0

1706 29.0

1707 20.0

1708 10.0

1709 8.0

1710 3.0

1711 0.

1712 0.

1713 2.0

> >

> >

> >

> >

The Table inserted above may receive a new identity upon insertion if the value of
the identity option supplied to the Table constructor is already in use in the
worksheet. The name lookup has been assigned a table which can be used to look up
the identity that has been used for insertion. In this example, the identity has not
changed since the supplied identity is not already used in any other component in
the worksheet.

"sunspot_table"

The next command hides rows 11 through 14 of the above Table. The identity of the
inserted Table is used for this.

And those rows can be made visible once more.

Hidden Options Example

In this example, we use the table's ability to show or hide cells, rows, or columns.
This example presents an interactive application of an area chart in which you can
easily change some options that affect how the plot is displayed. After you get the
look you want, you can hide the options in order to reduce screen clutter. For
demonstration purposes, the "Hide Options" button is implemented using a
captioned Button component, but this could be reduced to a simple unobtrusive icon.

> >

The above application was created by dragging components off the
Components palette. The action handlers of the various embedded components
obtain the relevant options and generate the plot using the AreaChartPlot module
defined in the following Code Edit Region. Note how AreaChartPlot:-
Options implements hiding the options column.

AreaChartPlot := module()AreaChartPlot := module()

Plot Component
The following properties of a Plot Component can now be accessed programmatically:

hoverx: the x-coordinate position where the mouse is currently hovering

hovery: the y-coordinate position where the mouse is currently hovering

In addition, it is now possible for the Plot component to run action code on the event of
a mouse hover.

Example 1
The hover over action on Plot components allows code to be run any time the mouse

> >

hovers in the plot. In this example, the hover action code updates two TextArea
components with information on the current position of the mouse cursor. In
addition, the action code updates the plot shown in the Plot component with a
pointplot corresponding to the current position of the mouse.

Example 2
In this example, as the mouse moves from one quadrant of the plot to the next, the
action code updates the plot shown in the Plot component. The action code also
updates the TextArea components.

> >

Example 3
As a part of the new ThermophysicalData package, you can now generate
psychrometric charts for humid air. The following chart, for example, is generated at
101325 Pa.

In this example, as the mouse hovers over the psychrometric chart, Maple:

Calculates thermophysical data for the current dry bulb temperature and
humidity ratio.

Overlays the information on top of the chart.

> >

Math Containers
The following properties of a Math Container can now be accessed programmatically:

editable: specify if the math container contents can be edited or not.

minimumpixelheight: set the minimum pixel height. Used in conjunction with the
autofit option.

minimumpixelwidth: set the minimum pixel width. Used in conjunction with the
autofit option.

Note: These properties can also be accessed through the Math Container Properties
window.

Component Font Color
You can now control the font color for Buttons, Check Boxes, Combo Boxes, Labels, List
Boxes, Radio Buttons, Sliders, and Text Areas. This can be adjusted from the
component properties dialog or programmatically accessed using the following option:

fontcolor: specify the font color of the component.

Component Transparency and Fill Color

> >

> >

By default, most embedded components are now transparent, meaning that they will
use the same background color as the table cell they are in. Check Boxes, Labels, List
Boxes, Math Expression Component, Plot Components, Radio Buttons, Sliders, and Text
Areas are not transparent by default but now have a new customizable background
fillcolor option. This can be adjusted from the component properties dialog or
programmatically accessed using the following option:

fillcolor: specify the background color of the component.

Examples: Transparent
Components

Shortcut

Examples: Components
with fillcolor option background

>

>

Example: Background Colors on Components
The following components can make use of the background fill color option.

> >

> >

Paint the town red
1
2
3

RadioButton

I love it

Example: Interactive Table
Consider the following example that uses coloring to delimit the rows. The contents
inside of the Table are live active components. The numbers in the 'n' column are
housed in TextArea components, and the series approximations are housed in
MathContainer components. All components have their background color set to
match the Table cells' fill color.

This example is interactive. Try changing n=6 to n=8 by putting your cursor on the 6
and typing over it with 8.

> >

> >

n taylor(exp(x),x,n)

1

2

3

4

5

6

The following Code Edit Region implements the TaylorTable command seen
above:

> >

> >

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

TaylorTable := proc(fn, var, ord)
 uses DocumentTools, DocumentTools:-Layout, DocumentTools:-Components;

local Colors := Array(0..1,[white,"#ccddff"]):
InsertContent(
 Worksheet(
 Table('interior'='none', 'width'=600, 'widthmode'=pixels,
 Column('weight'=10), Column('weight'=90),
 Row(
 Cell(Textfield(Font("n",color=white,bold)), fillcolor=blue),
 Cell(Textfield(Font(sprintf("taylor(%a,%a,n)",fn,var),color=white,bold)), fillcolor=blue)
),
 seq(
 Row(
 Cell(`fillcolor =̀Colors[row mod 2],
 TextArea(convert(row,string),
 'identity'=cat("TA",row),
 'action'=sprintf("DocumentTools:-Do(%%MC%d = taylor(%a,%a,%%TA%d))",row,fn,var,row),
 'showborders'=false,
 'fillcolor'=Colors[row mod 2])
),
 Cell(`fillcolor =̀Colors[row mod 2],
 MathContainer(taylor(fn,var,row),
 'identity'=cat("MC",row),
 'minwidth'=`if`(col=1,60,540),
 'minheight'=40,
 'autofit',
 'showborders'=false,
 'fillcolor'=Colors[row mod 2])
)
),
 row = 1..ord)
)
)
);
NULL;

end proc:

> >

> >

Programmatic Content Generation
There have also been several new additions that build on the framework for
programmatic content generation, including the ability to replace existing worksheet
content and add a notion of state to components.

For more details on Component State, see the what's new page for Component State.
For more details on Replaceable Content, see the what's new page for
Replaceable Content.

http://www.maplesoft.com/products/maple/new_features/maple2016/StateComponent.pdf
http://www.maplesoft.com/products/maple/new_features/maple2016/ReplaceableContent.pdf

