What's New in Maple 2016

Statistics

▼ Linear Regression

All linear regression commands have been updated in Maple 2016 with a new option, summarize, that allows for the display of a summary for the given regression model.

```
with(Statistics): X := Vector([1, 2, 3, 4, 5, 6], datatype = float):Y := Vector([2, 3, 4, 3.5, 5.8, 7], datatype = float):
```

By default, the Fit command returns the resulting regression model for the given model function:

The summarize option includes a full summary for each of the regression coefficients, as well as values for the <u>r-squared</u> and <u>adjusted r-squared</u> for the model. Also, the <u>solution module</u> for regression commands has been extended with the ability to return values for r-squared, adjusted r-squared, and the value of the t-statistic for testing whether the corresponding regression coefficient is different than 0 and its corresponding probability.

```
Fit(a + b * t + c * t^2, X, Y, t, summarize = true):

Summary:

-----

Model: 1.9600000+.16500000*t+.11071429*t^2
-----

Coefficients:

Estimate Std. Error t-value P(>|t|)
a 1.9600 1.1720 1.6724 0.1930
```

```
b 0.1650 0.7667 0.2152 0.8434 c 0.1107 0.1072 1.0325 0.3778
```

R-squared: 0.9252, Adjusted R-squared: 0.8753

The summarize option can also be used to return an embedded table, which contains more details on the residuals:

 $Fit(a + b * t + c * t^2, X, Y, t, summarize = embed):$

Summary

Model: $1.9600000 + 0.16500000 t + 0.11071429 t^2$

Coefficients	Estimate	Standard Error	t-value	P(> t)
a	1.96000	1.17199	1.67237	0.193045
b	0.165000	0.766748	0.215194	0.843415
С	0.110714	0.107226	1.03253	0.377769

R-squared: 0.925169

Adjusted R-squared: 0.875282

▼ Residuals

Residual Sum of	Residual Mean	Residual Standard	Degrees of	
Squares	Square	Error	Freedom	
1.28771	0.429238	0.655163	3	

Five Point Summary

Minimum	First Quartile	Median	Third Quartile	Maximum
-0.891429	-0.290357	0.155714	0.290595	0.548571

▼ Hypothesis Testing

The summarize option has also been added to all <u>hypothesis testing</u> commands. Previously, the <u>infolevel</u> command would have been required to print the results of a hypothesis test as a report.

```
with(Statistics): X := Array([9, 10, 8, 4, 8, 3, 0, 10, 15, 9]):
```

Chi-Square Test on One Sample

Cin-square rest on one sample						
Null Hypothesis:		Sample drawn from population with standard deviation equal to 7				
Alternative Hypothesis:		Sample drawn from population with standard deviation not equal to 7				
Sample Size	Sample Standard Deviation		Distributio n	Computed Statistic	Computed p-value	Confidence Interval
10.	4.24788		ChiSquare(9)	3.31429	0.0989571	2.921847.75496
Result:			-			provide enough oothesis is false.

▼ Summary and Tabulation

The <u>DataSummary</u>, <u>FivePointSummary</u>, and <u>FrequencyTable</u> commands can also accept a summarize option as well as be used to return summary statistics for <u>DataFrames</u>: with(Statistics):

 $X := DataFrame(\langle Sample(Uniform(0, 1), [50, 2]) | LinearAlgebra:-RandomVector(50, generator = rand(0..3))\rangle)$

```
      1
      2
      3

      1
      0.814723686393179
      0.276025076998578
      3

      2
      0.905791937075619
      0.679702676853675
      2

      3
      0.126986816293506
      0.655098003973841
      1

      4
      0.913375856139019
      0.162611735194631
      2

      5
      0.632359246225410
      0.118997681558377
      1

      6
      0.0975404049994095
      0.498364051982143
      0

      7
      0.278498218867048
      0.959743958516081
      1

      8
      0.546881519204984
      0.3403857266666133
      0

      ...
      ...
      ...
      ...
```

DataSummary(X, summarize = embed):

	1 2		3
mean	0.5661101110386353	0.48987882283825	1.22
standarddeviation	0.3125414653315035	0.2785520677947388\	1.1830434635864795
skewness	-0.371651925679829\ 9	0.1158245251557512\	0.3106598115832435
kurtosis	1.729650721370971	1.7837876411157099	1.5501229720154914
minimum	0.0318328463774206\ 76	0.0119020695012413\ 97	0.0
maximum	0.9705927817606157	0.9597439585160811	3.0
cumulativeweight	50.0	50.0	50.0

▼ Visualizations

There are many new visualizations in Maple 2016 for statistics and data analysis, including new options for creating <u>colorschemes</u> using point values:

```
with(Statistics) :
```

 $data := Matrix(\langle Sample(Uniform(0, 1), [50, 2]) \mid LinearAlgebra:-RandomVector(50, generator = rand(0..3))\rangle)$

50 x 3 Matrix

Data Type: anything

Storage: rectangular

Order: Fortran_order

```
ScatterPlot(data[..,1], data[..,2], symbolsize = 20, symbol = solidbox,
colorscheme = ["valuesplit", data[..,3], [0 = "Red", 1 = "Blue", 2 = "Green", 3 = "Purple"]])
```


Maple 2016 also introduces a new visualization in Statistics for generating <u>heat maps</u>. A heat map is a visualization method that represents the magnitude of the included data as a discrete density plot.

```
V := \langle seq(\sin(i), i = 0..10) \rangle :
W := \langle seq(\cos(i), i = 0..10) \rangle :
CM := CorrelationMatrix(Matrix([U, V, W]), ignore);
\begin{bmatrix} 1. & -0.116741765101327 & -0.354242435116850 \\ -0.116741765101327 & 1. & 0.0701662833954325 \\ -0.354242435116850 & 0.0701662833954325 & 1. \end{bmatrix}
```

HeatMap(*CM*, *color* = ["Red", "Black"]);

 $U := \langle seq(0..10) \rangle$:

There are also two new visualizations related to <u>Principal Component Analysis</u>: <u>Biplot</u>, and <u>ScreePlot</u>.

IrisDF := Import(FileTools:-JoinPath(["datasets", "iris.csv"], base = datadir))

	Sepal Length	Sepal Width	Petal Length	Petal Width	Species
1	5.1	3.5	1.4	0.2	"setosa"
2	4.9	3	1.4	0.2	"setosa"
3	4.7	3.2	1.3	0.2	"setosa"
4	4.6	3.1	1.5	0.2	"setosa"
5	5	3.6	1.4	0.2	"setosa"
6	5.4	3.9	1.7	0.4	"setosa"
7	4.6	3.4	1.4	0.3	"setosa"
8	5	3.4	1.5	0.2	"setosa"
			•••		

 ${\it Biplot(IrisDF[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']]},$

colorscheme = ["valuesplit", IrisDF[`Species`]], size = [600, "golden"])

ScreePlot(IrisDF[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']])

The new <u>GridPlot</u> command is useful for visualizing multidimensional datasets. GridPlot generates a matrix of plots corresponding to the columns of a dataset.

GridPlot(IrisDF[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']], upper = ScatterPlot, lower = SunflowerPlot, width = 600, widthmode = pixels);

