
> >

DataSeries and DataFrame
Maple 2016 adds two new data containers: DataSeries and DataFrame. These labeled
tabular data structures are ideal for storage of many different kinds of data:

Tabular data with heterogeneous columns data types

Ordered or unordered data, including time series or sequential data

Any kind of statistical or observational data; labels are not essential for the data frame

DataSeries and DataFrames are built for easy manipulation and analysis of data. There
are many commands in the Maple language that can be applied to these structures,
including most Statistics commands. Many commands are also available from the right-
click context menu. DataSeries and DataFrames also contain many commands, such as:

Account for missing values using the FillMissing and DropMissing commands

Find and remove duplicate entries using the AreDuplicate and AreUnique commands

DataFrames are mutable; add rows or columns with Append

Compute Aggregate statistics based on values in a column

convert DataSeries and DataFrames to various other data storage types and change
the datatype in place for DataSeries

Subset and index into data using a natural labeled index or various Boolean queries

DataSeries
A DataSeries is a one-dimensional sequence of data with a label for each data point.
For example, you can keep track of nutritional energy values (in per 100) of
certain types of berries, as follows:

energy := DataSeries(<220, 288, 136>, labels = [Raspberry,

Grape, Strawberry]);

This allows you to access the energy values by position (number) or label (name).

> >

> >

> >

> >

> >

> >

> >

> >

> >

energy[2];

288

energy[Strawberry];

136
You can determine which values satisfy some criteria by using elementwise
operators. The result is a DataSeries of true/false values.

energy >~ 200;

You can use this DataSeries to filter the entries in the original DataSeries.

energy[energy >~ 200];

DataFrame
A DataFrame is a two-dimensional rectangular table of data with a label for each
column and for each row. For example, you can keep track of various properties of
certain types of berries as follows:

genus := <"Rubus", "Vitis", "Fragaria">:

carbohydrates := <11.94, 18.1, 7.68>:

total_tons := < 543421, 58500118, 4594539 >:

top_producer := < Russia, China, USA >:

berry_data := DataFrame([genus, energy, carbohydrates,

total_tons, top_producer], columns = [Genus, Energy,

Carbohydrates, `Total tons`, `Top producer`], rows = Labels

(energy));

Note that in the above example, the data stored in the DataFrame is heterogeneous;

> >

> >

> >

> >

> >

> >

> >

> >

each DataSeries has a different data type: Float, Integer, string, and name.

You can access columns by indexing the berry DataFrame with a number, for the
position, or a name. Each column is a DataSeries.

berry_data[4];

berry_data[Carbohydrates];

Because columns are DataSeries, you can test properties like for DataSeries.

berry_data[Energy] >~ 200;

You can also filter rows. This returns a new DataFrame with a subset of the data.

berry_data[berry_data[Energy] >~ 200];

By using the with command, you can simplify the syntax a little: the column names
then represent the corresponding column directly, without the use of indexing.

with(berry_data);

Carbohydrates;

berry_data[Energy >~ 200];

> >

