
ProgramAnalysis
The ProgramAnalysis package is a new subpackage of the CodeTools package. There are
commands to analyze the data dependencies in for loops and to verify the correctness of
while loops.

For loops
For loops can be analyzed to determine their data dependencies and apply
transformations to assist in their parallelization. The commands support array indices
that are polynomials with rational coefficients. Here is an example of how a nested for
loop can be transformed so that the inner loop can be parallelized:

The following procedure has dependencies across both the and the loop indices and
cannot be easily parallelized in this form:

The dependencies in this loop cross both the and dimension, as can be seen in the
equation of its dependence cone:

Applying a transformation to the loop will change the relationship between the data
dependencies:

This transformed loop no longer has a relationship between the dimensions its distance
vectors:

The data dependencies in the loop body only depend on previously computed elements.
The pattern for updating the array in the original and transformed loops are shown
below. The inner loop of the transformed program corresponds to the anti-diagonal
lines of the array updates. These updated operations can be performed simultaneously
since they only refer to previously updated array entries (those entries that point
toward a particular array entry).

Original loop's array updates Transformed loop's array updates

Legend

Red dots: Data points in array

Blue arrows: Read/write dependency between array entries

Green dotted lines: Order in which elements of the array are updated

The set of array indices for all values of the loop's index variables can also be
computed:

While Loops
The while loop related commands can be used to formally verify that a procedure meets
its specification. The invariants of a while loop can be computed and, when combined
with the pre-condition and guard condition of the loop, used to verify whether or not the
post-condition will be satisfied. This verification indicates whether or not the
statement after the loop will always be true. Loops whose assignments are polynomials
with rational coefficients are supported.

The following example shows how the invariants of a while loop can be computed and

used to verify that the following program is free from errors and meets its specification
encoded in the last statement of the procedure:

Create the WhileLoop data structure:

In this case, a loop invariant needs to be computed to formally verify the loop:

The return value of indicates that the procedure is guaranteed to meet its
specification:

true

