Arithmetic - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ComplexBox

  

Arithmetic

  

arithmetic for ComplexBox objects

  

+

  

compute a sum involving ComplexBox objects

  

*

  

compute a product involving ComplexBox objects

  

^

  

compute a power involving ComplexBox objects

  

-

  

compute the negative of ComplexBox object

  

/

  

compute the reciprocal of ComplexBox object

  

conjugate

  

compute the conjugate of ComplexBox object

  

root

  

compute a root of ComplexBox object

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

-b

1/b

b1 + b2

b1 * b2

b1 ^ b2

b1 ^ z

conjugate( b )

root( b, n )

Parameters

b

-

ComplexBox object

b1

-

ComplexBox object

b2

-

ComplexBox object

z

-

extended complex numeric value

n

-

non-negative integer

Description

• 

The arithmetic operators `+`, `*`, `^`, `-` and `/` are available as methods for ComplexBox objects.

Operation

Description

-b

unary negation

1/b

unary inversion

b1 + b2

addition

b1 * b2

multiplication

b1 ^ b2

exponentiation

b1 ^ z

exponentiation

conjugate( b )

conjugation

root( b, n )

n-th root

• 

Addition (+) and multiplication (*) are n-ary operators that support more than two operands. The operators of negation (-) and inversion (/) are unary. The non-associative exponentiation operator (^) is binary.

• 

The conjugate of a ComplexBox object b can be computed by using the conjugate( b ) command.

• 

To compute roots of a ComplexBox object b, use the root( b, n ) command.

Examples

ComplexBox2.3+5.7I

ComplexBox: [-2.3 +/- 2.32831e-10]+[-5.7 +/- 4.65661e-10]I

(1)

ComplexBox2.3+5.7I+ComplexBox1.10.321I

ComplexBox: [3.4 +/- 5.82077e-10]+[5.379 +/- 4.94765e-10]I

(2)

ComplexBox2.3+5.7IComplexBox1.10.321I

ComplexBox: [1.2 +/- 3.49246e-10]+[6.021 +/- 4.94765e-10]I

(3)

ComplexBox2.3+5.7IComplexBox1.10.321I

ComplexBox: [4.3597 +/- 1.3049e-09]+[5.5317 +/- 1.78313e-09]I

(4)

ComplexBox2.3+5.7IComplexBox1.10.321I

ComplexBox: [0.533342 +/- 1.40432e-09]+[5.33746 +/- 2.33351e-09]I

(5)

ComplexBox2.3+5.7IComplexBox1.10.321I

ComplexBox: [8.0897 +/- 1.24388e-08]+[7.13964 +/- 1.16935e-08]I

(6)

conjugateComplexBox2.3+5.7I

ComplexBox: [2.3 +/- 2.32831e-10]+[-5.7 +/- 4.65661e-10]I

(7)

p2x

p2x

(8)

evalp,x=ComplexBox2.3+5.7I

ComplexBox: [4.6 +/- 4.65661e-10]+[11.4 +/- 9.31323e-10]I

(9)

p2x2

p2x2

(10)

evalp,x=ComplexBox2.3+5.7I

ComplexBox: [-54.4 +/- 1.64844e-08]+[52.44 +/- 1.33179e-08]I

(11)

p2x2x

p2x2x

(12)

evalp,x=ComplexBox2.3+5.7I

ComplexBox: [-56.7 +/- 2.04425e-08]+[46.74 +/- 1.75089e-08]I

(13)

p2x23x

p2x23x

(14)

evalp,x=ComplexBox2.3+5.7I

ComplexBox: [-61.3 +/- 2.13739e-08]+[35.34 +/- 2.03028e-08]I

(15)

prandpolyx:

evalp,x=ComplexBox2.3+5.7I

ComplexBox: [-42241.5 +/- 9.30244e-05]+[-7262.81 +/- 6.90875e-05]I

(16)

qrandpolyx,y,degree=30,dense:

evalp3q,x=ComplexBox1.10.321I,y=ComplexBox2.3+5.7I

ComplexBox: [7.65384e-20 +/- 6.73062e-27]+[1.23419e-20 +/- 6.81317e-27]I

(17)

rootComplexBox2.3+5.7I,2

ComplexBox: [2.05506 +/- 1.09856e-10]+[1.38682 +/- 3.03849e-10]I

(18)

rootComplexBox2.3+5.7I,3

ComplexBox: [1.69021 +/- 4.06526e-10]+[0.706168 +/- 2.22582e-10]I

(19)

rootComplexBox2.3+5.7I,10

ComplexBox: [1.19068 +/- 3.15463e-10]+[0.142034 +/- 4.78971e-11]I

(20)

Compatibility

• 

The ComplexBox[Arithmetic], ComplexBox:-+, ComplexBox:-*, ComplexBox:-^, ComplexBox:--, ComplexBox:-/, ComplexBox:-conjugate and ComplexBox:-root commands were introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

ComplexBox

RealBox