CylinderU, CylinderV
Parabolic Cylinder Functions
CylinderD
Whittaker's Parabolic Function
Calling Sequence
Parameters
Description
Examples
CylinderU(a, x)
CylinderV(a, x)
CylinderD(a, x)
a
-
algebraic expression (the degree)
x
algebraic expression (the argument)
CylinderU and CylinderV are the parabolic cylinder functions. They satisfy the first real standard distinct form of the Parabolic Cylinder equation:
y''−x24+a⁢y=0
CylinderD and CylinderU are related in the following way:
CylinderD⁡−a−12,x=CylinderU⁡a,x.
aa≔CylinderU⁡3,0
aa≔2⁢234⁢Γ⁡345⁢π
evalf⁡aa
0.4650946536
CylinderU⁡−52,x
ⅇ−x24⁢HermiteH⁡2,x⁢222
CylinderD⁡3.2,1
−1.819497238
diff⁡CylinderU⁡a,x,x
−x⁢CylinderU⁡a,x2−a+12⁢CylinderU⁡a+1,x
convert⁡CylinderD⁡32,x,CylinderU
CylinderU⁡−2,x
convert⁡CylinderU⁡a,x+CylinderD⁡b,x,CylinderV
π⁢CylinderV⁡a,−x−sin⁡a⁢π⁢CylinderV⁡a,xcos⁡a⁢π2⁢Γ⁡a+12+π⁢CylinderV⁡−b−12,−x−sin⁡−b−12⁢π⁢CylinderV⁡−b−12,xcos⁡−b−12⁢π2⁢Γ⁡−b
series⁡CylinderV⁡0,x,x
2342⁢Γ⁡34+12⁢234⁢Γ⁡34π⁢x+196⁢234Γ⁡34⁢x4+1160⁢234⁢Γ⁡34π⁢x5+O⁡x6
See Also
convert
diff
evalf
HermiteH
inifcns
series
Download Help Document