DEtools
Gosper
perform indefinite hyperexponential integration
Calling Sequence
Parameters
Description
Examples
References
Gosper(T, x)
T
-
hyperexponential function of x
x
variable
The Gosper(T,x) command solves the problem of indefinite hyperexponential integration, that is, for the input hyperexponential function T of x, it constructs another hyperexponential function G of x such that T⁡x=ⅆⅆxG⁡x, provided that such a G exists. Otherwise, the function returns the error message ``no polynomial solution found''.
with⁡DEtools:
T≔−21⁢x2+116⁢x−94−73−35⁢x4−14⁢x3−9⁢x2−51⁢x⁢exp⁡−91−86+5⁢x−−68−7⁢x3+58⁢x2−94⁢x−73−35⁢x4−14⁢x3−9⁢x2−51⁢x2⁢exp⁡−91−86+5⁢x⁢−140⁢x3−42⁢x2−18⁢x−51+455⁢−68−7⁢x3+58⁢x2−94⁢x−73−35⁢x4−14⁢x3−9⁢x2−51⁢x⁢−86+5⁢x2⁢exp⁡−91−86+5⁢x
T≔−21⁢x2+116⁢x−94⁢ⅇ−91−86+5⁢x−35⁢x4−14⁢x3−9⁢x2−51⁢x−73−−7⁢x3+58⁢x2−94⁢x−68⁢ⅇ−91−86+5⁢x⁢−140⁢x3−42⁢x2−18⁢x−51−35⁢x4−14⁢x3−9⁢x2−51⁢x−732+455⁢−7⁢x3+58⁢x2−94⁢x−68⁢ⅇ−91−86+5⁢x−35⁢x4−14⁢x3−9⁢x2−51⁢x−73⁢−86+5⁢x2
Int⁡T,x=Gosper⁡T,x
∫−21⁢x2+116⁢x−94⁢ⅇ−91−86+5⁢x−35⁢x4−14⁢x3−9⁢x2−51⁢x−73−−7⁢x3+58⁢x2−94⁢x−68⁢ⅇ−91−86+5⁢x⁢−140⁢x3−42⁢x2−18⁢x−51−35⁢x4−14⁢x3−9⁢x2−51⁢x−732+455⁢−7⁢x3+58⁢x2−94⁢x−68⁢ⅇ−91−86+5⁢x−35⁢x4−14⁢x3−9⁢x2−51⁢x−73⁢−86+5⁢x2ⅆx=7⁢x3−58⁢x2+94⁢x+68⁢ⅇ−91−86+5⁢x35⁢x4+14⁢x3+9⁢x2+51⁢x+73
Almkvist, G, and Zeilberger, D. "The method of differentiating under the integral sign." Journal of Symbolic Computation. Vol. 10 (1990): 571-591.
See Also
DEtools[PolynomialNormalForm]
DEtools[ReduceHyperexp]
DEtools[Zeilberger]
SumTools[Hypergeometric][Gosper]
Download Help Document