Gosper - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DEtools

  

Gosper

  

perform indefinite hyperexponential integration

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Gosper(T, x)

Parameters

T

-

hyperexponential function of x

x

-

variable

Description

• 

The Gosper(T,x) command solves the problem of indefinite hyperexponential integration, that is, for the input hyperexponential function T of x, it constructs another hyperexponential function G of x such that Tx=ⅆⅆxGx, provided that such a G exists. Otherwise, the function returns the error message ``no polynomial solution found''.

Examples

withDEtools:

T21x2+116x947335x414x39x251xexp9186+5x687x3+58x294x7335x414x39x251x2exp9186+5x140x342x218x51+455687x3+58x294x7335x414x39x251x86+5x2exp9186+5x

T21x2+116x94ⅇ9186+5x35x414x39x251x737x3+58x294x68ⅇ9186+5x140x342x218x5135x414x39x251x732+4557x3+58x294x68ⅇ9186+5x35x414x39x251x7386+5x2

(1)

IntT,x=GosperT,x

21x2+116x94ⅇ9186+5x35x414x39x251x737x3+58x294x68ⅇ9186+5x140x342x218x5135x414x39x251x732+4557x3+58x294x68ⅇ9186+5x35x414x39x251x7386+5x2ⅆx=7x358x2+94x+68ⅇ9186+5x35x4+14x3+9x2+51x+73

(2)

References

  

Almkvist, G, and Zeilberger, D. "The method of differentiating under the integral sign." Journal of Symbolic Computation. Vol. 10 (1990): 571-591.

See Also

DEtools

DEtools[PolynomialNormalForm]

DEtools[ReduceHyperexp]

DEtools[Zeilberger]

SumTools[Hypergeometric][Gosper]