Zeilberger - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DEtools

  

Zeilberger

  

perform Zeilberger's algorithm (differential case)

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Zeilberger(F, x, y, Dx)

Zeilberger(F, x, y, Dx, 'gosper_free')

Parameters

F

-

hyperexponential function in x and y

x

-

name

y

-

name

Dx

-

name; denote the differential operator with respect to x

Description

• 

For a specified hyperexponential function Fx,y of x and y, the Zeilberger(F, x, y, Dx) calling sequence constructs for Fx,y a Z-pair L,G that consists of a linear differential operator with coefficients that are polynomials of x over the complex number field

L=avxDxv+...+a1xDx+a0x

  

and a hyperexponential function Gx,y of x and y such that

LoFx,y=DyGx,y

• 

Dx and Dy are the differential operators with respect to x, and y, respectively, defined by DxFx,y=xFx,y, and DyFx,y=yFx,y.

• 

By assigning values to the global variables _MINORDER and _MAXORDER, the algorithm is restricted to finding a Z-pair L,G for Fx,y such that the order of L is between _MINORDER and _MAXORDER.

• 

The algorithm has two implementations. The default implementation uses a variant of Gosper's algorithm, and another one is based on the universal denominators. With the 'gosper_free' option, Gosper-free implementation is used.

• 

The output from the Zeilberger command is a list of two elements L,G representing the computed Z-pair L,G.

Examples

withDEtools:

Fexpx2y2y2

Fⅇx2y2y2

(1)

ZpairZeilbergerF,x,y,Dx:

LZpair1

LDx24

(2)

GZpair2

G2ⅇy4+x2y2y

(3)

References

  

Almkvist, G, and Zeilberger, D. "The method of differentiating under the integral sign." Journal of Symbolic Computation. Vol. 10. (1990): 571-591.

See Also

SumTools[Hypergeometric][Zeilberger]