DEtools
infgen
find the k-extension of the infinitesimal generator of a one-parameter Lie group
Calling Sequence
Parameters
Description
Examples
infgen([xi, eta], k, y(x))
infgen([xi, eta], k, ODE)
infgen([xi, eta], k, y(x), ODE)
[xi, eta]
-
list of the coefficients of the symmetry generator (infinitesimals)
k
positive integer indicating the order of the required prolongation
y(x)
'dependent variable'; it can be any indeterminate function of one variable
ODE
ODE invariant under the given infinitesimals; required only if they represent dynamical symmetries
The infgen command receives a pair of infinitesimals; k, the order of the required prolongation; and the dependent variable, say y(x). It returns the k-extension of the infinitesimal generator (see eta_k and symgen).
This command also works with dynamical symmetries, in which case the ODE assumed to be invariant under the given infinitesimals is also required as an argument. The right hand side of the given nth order ODE is then used to replace the nth order derivatives of the dependent variable appearing in the infinitesimal generator.
This function is part of the DEtools package, and so it can be used in the form infgen(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[infgen](..).
The infinitesimals xi and eta of the one-parameter rotation group and the first extension of the related infinitesimal generator
with⁡DEtools:
X≔−y,x
infgen⁡X,1,y⁡x
_F1→−y⁢∂∂x⁢_F1+x⁢∂∂y⁢_F1+_y12+1⁢∂∂_y1⁢_F1
When an ODE is given as an argument, its right hand side is used to replace all occurrences of the highest derivative in the infinitesimal generator. To obtain a meaningful result, the ODE is invariant under the related symmetry group (or at least more general than the related invariant ODE). For example, this is the most general first order ODE invariant under rotations in the plane.
ODE≔diff⁡y⁡x,x=x+tan⁡_F1⁡x2+y⁡x2⁢y⁡x−y⁡x+x⁢tan⁡_F1⁡x2+y⁡x2
ODE≔ⅆⅆxy⁡x=x+tan⁡_F1⁡x2+y⁡x2⁢y⁡x−y⁡x+x⁢tan⁡_F1⁡x2+y⁡x2
symtest⁡X,ODE
0
The first extension of the related infinitesimal generator is given by
infgen⁡X,1,ODE
_F2→−y⁢∂∂x⁢_F2+x⁢∂∂y⁢_F2+1+tan⁡_F1⁡x2+y22⁢y2+tan⁡_F1⁡x2+y22⁢x2+x2⁢∂∂_y1⁢_F2−y+x⁢tan⁡_F1⁡x2+y22
It was not necessary to also give y(x) above, since this information is already present in the ODE.
The most general case of a point symmetry and the first extension of the related infinitesimal generator
X≔ξ⁡x,y,η⁡x,y
_F1→ξ⁡x,y⁢∂∂x⁢_F1+η⁡x,y⁢∂∂y⁢_F1+∂∂x⁢η⁡x,y+−_y1⁢∂∂y⁢ξ⁡x,y+∂∂y⁢η⁡x,y−∂∂x⁢ξ⁡x,y⁢_y1⁢∂∂_y1⁢_F1
The final example illustrates the most general case of a dynamical symmetry in the context of second order ODEs and the first extension of the related infinitesimal generator. When working with dynamical symmetries, the ODE itself is required as an argument.
X≔ξ⁡x,y,_y1,η⁡x,y,_y1
ODE≔diff⁡y⁡x,x,x=F⁡x,y⁡x,diff⁡y⁡x,x
ODE≔ⅆ2ⅆx2y⁡x=F⁡x,y⁡x,ⅆⅆxy⁡x
_F1→ξ⁡x,y,_y1⁢∂∂x⁢_F1+η⁡x,y,_y1⁢∂∂y⁢_F1+−∂∂y⁢ξ⁡x,y,_y1⁢_y12+−F⁡x,y,_y1⁢∂∂_y1⁢ξ⁡x,y,_y1+∂∂y⁢η⁡x,y,_y1−∂∂x⁢ξ⁡x,y,_y1⁢_y1+F⁡x,y,_y1⁢∂∂_y1⁢η⁡x,y,_y1+∂∂x⁢η⁡x,y,_y1⁢∂∂_y1⁢_F1
See Also
dsolve,Lie
eta_k
PDEtools
symgen
Download Help Document