matrixDE - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DEtools

  

matrixDE

  

find solutions of a linear system of ODEs in matrix form

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

matrixDE(A, B, t, method=matrixexp)

matrixDE(A, B, t, solution=solntype)

Parameters

A, B

-

coefficients of a system X' t=AtXt+Bt ; if B not specified, then assumed to be a zero vector

t

-

independent variable of the system

method=matrixexp

-

(optional) matrix exponentials

solution=solntype

-

(optional) where solution=polynomial or solution=rational

Description

• 

The matrixDE command solves a system of linear ODEs of the form X't=AtXt+Bt. If B is not specified then it is assumed to be the zero vector.

• 

An option of the form method = matrixexp can be specified to use matrix exponentials (in the case of constant coefficients).

• 

An option of the form solution = polynomial or solution = rational can be specified to search for polynomial or rational solution. In this case, the function invokes LinearFunctionalSystems[PolynomialSolution] or LinearFunctionalSystems[RationalSolution].

• 

The command returns a pair St,Pt with St, which is an n by n matrix, and Pt, which is an n by 1 vector. If you want the result expressed using Matrix instead, then use convert/Matrix on S(t).

  

A particular solution of the system can be then written in the form Ft=StC0+Pt where C0 is n by 1 and F0=C0+P0. If B is zero then P will also be zero.

• 

If a system is expressed in terms of equations, dsolve can be used instead.

Examples

withDEtools:

Nonconstant homogeneous system

AMatrix2,2,1,t2,t,1

A1t2t1

(1)

solmatrixDEA,t

solⅇtt32BesselI35,2t525ⅇtt32BesselK35,2t525ⅇtBesselI25,2t525tⅇtBesselK25,2t525t,00

(2)

Matrix of arbitrary coefficients

CMatrix2,1:

Verification of solution

Fevalmsol1&*C+sol2:rhevalmA&*F:

simplifynormaldiffF1,1,trh1,1,symbolic

0

(3)

simplifynormaldiffF2,1,trh2,1,symbolic

0

(4)

Nonhomogeneous system of two variables with constant coefficients

AMatrix2,2,1,1,0,1;BMatrix2,1,tk,tl

A1101

Btktl

(5)

solmatrixDEA,B,t

solⅇtⅇtt0ⅇt,ⅇt2tl2WhittakerMl2,l2+12,tkl+ktl2+1WhittakerMl2,l2+12,tⅇt2+ⅇt2tk2WhittakerMk2,k2+12,tlⅇt2tl2WhittakerMl2,l2+12,tkⅇt2tl2WhittakerMl2,l2+12,tl+tl+1kl+tl2+1WhittakerMl2,l2+12,tⅇt2+ⅇt2tk2WhittakerMk2,k2+12,tⅇt2tl2WhittakerMl2,l2+12,t+tl+1k+tl+1l+tl+1k+1l+1ⅇt2tl2WhittakerMl2+1,l2+12,tl2+tl2+1ⅇt2WhittakerMl2+1,l2+12,tl+ⅇt2tk2WhittakerMk2+1,k2+12,tl2ⅇt2tl2WhittakerMl2+1,l2+12,tl+tl+1l2tl+1lt+tl2+1WhittakerMl2,l2+12,tⅇt2+tl2+1ⅇt2WhittakerMl2+1,l2+12,t+ⅇt2tk2WhittakerMk2+1,k2+12,tⅇt2tl2WhittakerMl2+1,l2+12,ttklt+2tl+1ltl+1ttkt+tl+1l+1t

(6)

Verification of solution

Fevalmsol1&*C+sol2:rhevalmA&*F+B:

simplifynormaldiffF1,1,trh1,1,symbolic

0

(7)

simplifynormaldiffF2,1,trh2,1,symbolic

0

(8)

Nonconstant homogeneous system with unknown coefficients

AMatrix2,2,1,0,1,ft

A101ft

(9)

solmatrixDEA,t

solftDESolⅆ2ⅆt2_Ytⅆⅆt_Ytftⅆⅆt_Yt_Ytⅆⅆtft+ft_Yt,_Yt+ⅆⅆtDESolⅆ2ⅆt2_Ytⅆⅆt_Ytftⅆⅆt_Yt_Ytⅆⅆtft+ft_Yt,_YtDESolⅆ2ⅆt2_Ytⅆⅆt_Ytftⅆⅆt_Yt_Ytⅆⅆtft+ft_Yt,_Yt,00

(10)

General nonhomogeneous system of two variables with constant coefficients

AMatrix2,2,a,b,c,d

Aabcd

(11)

BMatrix2,1,ft,gt

Bftgt

(12)

solmatrixDEA,B,t

solⅇad+a22ad+4bc+d2t2ⅇa+d+a22ad+4bc+d2t2ⅇad+a22ad+4bc+d2t2d+a+a22ad+4bc+d22bⅇa+d+a22ad+4bc+d2t2da+a22ad+4bc+d22b,ftd+ⅆⅆtft+bgtⅇa+d+a22ad+4bc+d2t2ⅆtⅇa+d+a22ad+4bc+d2t2ftd+ⅆⅆtft+bgtⅇad+a22ad+4bc+d2t2ⅆtⅇad+a22ad+4bc+d2t2a22ad+4bc+d22ⅇad+a22ad+4bc+d2t2ⅇad+a22ad+4bc+d2t2gtb2ⅇad+a22ad+4bc+d2t2ⅇad+a22ad+4bc+d2t2ftd2ⅇa+d+a22ad+4bc+d2t2ⅇa+d+a22ad+4bc+d2t2gtb+2ⅇa+d+a22ad+4bc+d2t2ⅇa+d+a22ad+4bc+d2t2ftd+2ⅇad+a22ad+4bc+d2t2ⅇad+a22ad+4bc+d2t2ⅆⅆtft2ⅇa+d+a22ad+4bc+d2t2ⅇa+d+a22ad+4bc+d2t2ⅆⅆtftftd+ⅆⅆtft+bgtⅇa+d+a22ad+4bc+d2t2ⅆtⅇa+d+a22ad+4bc+d2t2a22ad+4bc+d2+ftd+ⅆⅆtft+bgtⅇa+d+a22ad+4bc+d2t2ⅆtⅇa+d+a22ad+4bc+d2t2aftd+ⅆⅆtft+bgtⅇa+d+a22ad+4bc+d2t2ⅆtⅇa+d+a22ad+4bc+d2t2dftd+ⅆⅆtft+bgtⅇad+a22ad+4bc+d2t2ⅆtⅇad+a22ad+4bc+d2t2a22ad+4bc+d2ftd+ⅆⅆtft+bgtⅇad+a22ad+4bc+d2t2ⅆtⅇad+a22ad+4bc+d2t2a+ftd+ⅆⅆtft+bgtⅇad+a22ad+4bc+d2t2ⅆtⅇad+a22ad+4bc+d2t2d+2fta22ad+4bc+d22ba22ad+4bc+d2

(13)

solmatrixDEA,t,method=matrixexp

sola22ad+4bc+d2ⅇa+d+a22ad+4bc+d2t2+aⅇa+d+a22ad+4bc+d2t2dⅇa+d+a22ad+4bc+d2t2+a22ad+4bc+d2ⅇad+a22ad+4bc+d2t2aⅇad+a22ad+4bc+d2t2+dⅇad+a22ad+4bc+d2t22a22ad+4bc+d2bⅇa+d+a22ad+4bc+d2t2ⅇad+a22ad+4bc+d2t2a22ad+4bc+d2cⅇa+d+a22ad+4bc+d2t2ⅇad+a22ad+4bc+d2t2a22ad+4bc+d2a22ad+4bc+d2ⅇa+d+a22ad+4bc+d2t2aⅇa+d+a22ad+4bc+d2t2+dⅇa+d+a22ad+4bc+d2t2+a22ad+4bc+d2ⅇad+a22ad+4bc+d2t2+aⅇad+a22ad+4bc+d2t2dⅇad+a22ad+4bc+d2t22a22ad+4bc+d2,00

(14)

Finding a polynomial solution

MMatrix6,6,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,2,2x,0,0,1,0,x2,0,2x,0,0,1,0,x2,2,0,0,0

M01000000110000001022x0010x202x0010x2−2000

(15)

solmatrixDEM,x,solution=polynomial

sol01x0000010001xx2000−1xx20000−12x0002xx2x32000,000000

(16)

See Also

DEtools

dsolve

LinearFunctionalSystems[PolynomialSolution]

LinearFunctionalSystems[RationalSolution]