DEtools
odeadvisor
classify ODE and suggest solution methods
Calling Sequence
Parameters
Description
Examples
References
odeadvisor(ODE)
odeadvisor(ODE, y(x), [type1, type2, ...], help)
ODE
-
ordinary differential equation
y(x)
indeterminate function (necessary when not obvious)
type1, type2, ...
(optional) subset of ODE classification types to be checked
help
(optional) request the display of a help page based on textbook advice for solving the given ODE (see dsolve, references).
Given an ODE, the odeadvisor command's main goal is to classify it according to standard text books (see dsolve,references), and to display a help page including related information for solving it (when the word help is given as an extra argument). The help pages include examples and Maple input lines, along with some advice, allowing you to adapt them to your problem. These help pages are also available by entering ?odeadvisor,<TYPE>; where <TYPE> is one of:
First order ODEs
Abel,
Abel2A,
Abel2C,
Bernoulli,
Chini,
Clairaut,
dAlembert,
exact,
fully_exact_linear,
homogeneous,
homogeneousB,
homogeneousC,
homogeneousD,
homogeneousG,
linear,
patterns,
quadrature,
rational,
Riccati,
separable,
sym_implicit
In the page for "patterns" there is a discussion of the following ODE patterns:
y=g⁡y⁢' ,
x=g⁡y⁢' ,
0=G⁡x,y⁢' ,
0=G⁡y,y⁢' ,
y=G⁡x,y⁢' ,
x=G⁡y,y⁢'
There is also a related parametric solving scheme.
Second order ODEs
Bessel,
Duffing,
ellipsoidal,
elliptic,
Emden,
erf,
exact_linear,
exact_nonlinear,
Gegenbauer,
Halm,
Hermite,
Jacobi,
Lagerstrom,
Laguerre,
Lienard,
Liouville,
linear_ODEs,
linear_sym,
missing,
Painleve,
reducible,
sym_Fx,
Titchmarsh,
Van_der_Pol
High order ODEs
linear_ODEs
When used without extra arguments, the odeadvisor command attempts to classify the given ODE into one or more of the types above, returning a list with the types matched by the ODE. The matching of the types is checked sequentially, and odeadvisor might return more than one type; otherwise, the first matching of a pattern interrupts the process and a classification is returned.
As an option, you can specify that odeadvisor should check only a sublist of the types mentioned above, by giving the sublist as an extra argument.
This function is part of the DEtools package, and so it can be used in the form odeadvisor(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[odeadvisor](..).
Kamke's ODE 97
with⁡DEtools:
ODE≔x⁢diff⁡y⁡x,x+a⁢y⁡x2−y⁡x+b⁢x2
ODE≔x⁢ⅆⅆxy⁡x+a⁢y⁡x2−y⁡x+b⁢x2
odeadvisor⁡ODE
_homogeneous,class D,_rational,_Riccati
Kamke's ODE 223
ODE≔2⁢y⁡x−x⁢diff⁡y⁡x,x−y⁡x−2⁢x
ODE≔2⁢y⁡x−x⁢ⅆⅆxy⁡x−y⁡x−2⁢x
_homogeneous,class A,_exact,_rational,_Abel,2nd type,class A
odeadvisor⁡ODE,homogeneous,Abel
_homogeneous,class A,_Abel,2nd type,class A
Some second order ODEs
ODE≔x2⁢diff⁡y⁡x,x,x+x⁢diff⁡y⁡x,x−x2+n2⁢y⁡x
ODE≔x2⁢ⅆ2ⅆx2y⁡x+x⁢ⅆⅆxy⁡x−n2+x2⁢y⁡x
_Bessel,_modified
ODE≔diff⁡x⁢1−x2⁢diff⁡y⁡x,x,x−x⁢y⁡x=0
ODE≔−x2+1⁢ⅆⅆxy⁡x−2⁢x2⁢ⅆⅆxy⁡x+x⁢−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢y⁡x=0
_elliptic,_class_I
ODE≔diff⁡y⁡x,x,x⁢x⁢1−x=g−a+1⁢x⁢diff⁡y⁡x,x+n⁢a+n⁢y⁡x
ODE≔ⅆ2ⅆx2y⁡x⁢x⁢1−x=g−a+1⁢x⁢ⅆⅆxy⁡x+n⁢a+n⁢y⁡x
_Jacobi
The odeadvisor command also recognizes some patterns in high order ODEs
ODE≔diff⁡y⁡x,x,x,x+D⁡g⁡y⁡x⁢diff⁡y⁡x,x3+2⁢g⁡y⁡x⁢diff⁡y⁡x,x⁢diff⁡y⁡x,x,x+diff⁡f⁡x,x⁢diff⁡y⁡x,x+f⁡x⁢diff⁡y⁡x,x,x=0
ODE≔ⅆ3ⅆx3y⁡x+D⁡g⁡y⁡x⁢ⅆⅆxy⁡x3+2⁢g⁡y⁡x⁢ⅆⅆxy⁡x⁢ⅆ2ⅆx2y⁡x+ⅆⅆxf⁡x⁢ⅆⅆxy⁡x+f⁡x⁢ⅆ2ⅆx2y⁡x=0
odeadvisor⁡ODE,y⁡x
_3rd_order,_exact,_nonlinear,_3rd_order,_reducible,_mu_y2
ODE≔diff⁡y⁡x,`$`⁡x,4+diff⁡y⁡x,x4⁢exp⁡y⁡x+5⁢exp⁡y⁡x⁢diff⁡y⁡x,x2⁢diff⁡y⁡x,x,x+2⁢exp⁡y⁡x⁢diff⁡y⁡x,x,x2+2⁢exp⁡y⁡x⁢diff⁡y⁡x,x⁢diff⁡y⁡x,`$`⁡x,3+diff⁡f⁡x,x,x⁢diff⁡y⁡x,x+2⁢diff⁡f⁡x,x⁢diff⁡y⁡x,x,x+f⁡x⁢diff⁡y⁡x,`$`⁡x,3=0
ODE≔ⅆ4ⅆx4y⁡x+ⅆⅆxy⁡x4⁢ⅇy⁡x+5⁢ⅇy⁡x⁢ⅆⅆxy⁡x2⁢ⅆ2ⅆx2y⁡x+2⁢ⅇy⁡x⁢ⅆ2ⅆx2y⁡x2+2⁢ⅇy⁡x⁢ⅆⅆxy⁡x⁢ⅆ3ⅆx3y⁡x+ⅆ2ⅆx2f⁡x⁢ⅆⅆxy⁡x+2⁢ⅆⅆxf⁡x⁢ⅆ2ⅆx2y⁡x+f⁡x⁢ⅆ3ⅆx3y⁡x=0
_high_order,_exact,_nonlinear
Cheb-Terrab, E.S.; Duarte, L.G.S.; and da Mota, L.A.C.P. "Computer Algebra Solving of First Order ODEs Using Symmetry Methods." Computer Physics Communications. Vol. 101. (1997): 254.
Kamke, E. Differentialgleichungen: Losungsmethoden und Losungen. New York: Chelsea Publishing Company, 1959.
Zwillinger, D. Handbook of Differential Equations. 2d ed. Orlando, Florida: Academic Press, 1992.
See Also
dsolve
odeadvisor,types
PDEtools
Download Help Document