DEtools,regularsp - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DEtools

  

regularsp

  

compute the regular singular points of a second order non-autonomous linear ODE

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

regularsp(des, ivar, dvar)

Parameters

des

-

second order linear ordinary differential equation or its list form

ivar

-

indicates the independent variable when des is a list with the ODE coefficients

dvar

-

indicates the dependent variable, required only when des is an ODE and the dependent variable is not obvious

Description

• 

Important: The regularsp command has been deprecated.  Use the superseding command DEtools[singularities], which computes both the regular and irregular singular points, instead.

• 

The regularsp command determines the regular singular points of a given second order linear ordinary differential equation. The ODE could be given as a standard differential equation or as a list with the ODE coefficients (see DEtools[convertAlg]). Given a linear ODE of the form

 p(x) y''(x) + q(x) y'(x) + r(x) y(x) = 0,  p(x) <> 0,  p'(x) <> 0

  

a point alpha is considered to be a regular singular point if

1) alpha is a singular point,

2) limit( (x-alpha)*q(x)/p(x), x=alpha ) = 0 and

   limit( (x-alpha)^2*r(x)/p(x), x=alpha ) = 0.

• 

The results are returned in a list.  In the event that no regular singular points are found, an empty list is returned.

Examples

Important: The regularsp command has been deprecated.  Use the superseding command DEtools[singularities], which computes both the regular and irregular singular points, instead.

withDEtools&colon;

An ordinary differential equation (ODE)

ODEdiffyx&comma;x&comma;x=αx1+βx+γx2+δx12+λ2yx

ODE&DifferentialD;2&DifferentialD;x2yx=αx1+βx+γx2+δx12+λ2yx

(1)

regularspODE

0&comma;1

(2)

singularitiesODE

regular=0&comma;1,irregular=

(3)

The coefficient list form

coefs21x2x+1&comma;0&comma;100x2x12&colon;

regularspcoefs&comma;x

0&comma;1&comma;

(4)

singularitiescoefs&comma;x

regular=0&comma;1&comma;,irregular=

(5)

You can convert convert an ODE to the coefficient list form using DEtools[convertAlg] form

ODE2x2+5x3diffyx&comma;x&comma;x+5xx2diffyx&comma;x+1x+xyx=0

ODE5x3+2x2&DifferentialD;2&DifferentialD;x2yx+x2+5x&DifferentialD;&DifferentialD;xyx+1x+xyx=0

(6)

LconvertAlgODE&comma;yx

L1x+x&comma;x2+5x&comma;5x3+2x2&comma;0

(7)

regularspL&comma;x

25&comma;

(8)

singularitiesL&comma;x

regular=25&comma;,irregular=0

(9)

See Also

DEtools

DEtools[convertAlg]

DEtools[indicialeq]

DEtools[singularities]