DeepLearning
ConvolutionLayer
create convolution layer
DeconvolutionLayer
create deconvolution layer
Calling Sequence
Parameters
Options
Description
Details
Examples
Compatibility
ConvolutionLayer(filters,kernelsize,opts)
DeconvolutionLayer(filters,kernelsize,opts)
filter
-
positive integer
kernelsize
list of positive integers
opts
(optional) one or more keyword options described below
inputshape : list of integers or the symbol auto
Shape of the input Tensor, not including the batch axis.
With the default value auto, the shape is inferred. If inference is not possible, an error is issued.
This option need only be specified when this layer is the first in a Sequential model.
ConvolutionLayer(filters,kernelsize,opts) creates a convolutional neural network layer with filter filter and kernel size kernelsize.
DeconvolutionLayer(filters,kernelsize,opts) creates a deconvolutional neural network layer with filter filter and kernel size kernelsize.
This function is part of the DeepLearning package, so it can be used in the short form Convolution(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[ConvolutionLayer](..).
The implementation of ConvolutionLayer uses tf.keras.layers.Conv1D, tf.keras.layers.Conv2D, and tf.keras.layers.Conv3D from the TensorFlow Python API.
The implementation of DeconvolutionLayer uses tf.keras.layers.Conv1DTranspose, tf.keras.layers.Conv2DConv1DTranspose, and tf.keras.layers.Conv3DConv1DTranspose from the TensorFlow Python API.
Consult the TensorFlow Python API documentation for tf.keras.layers for more information.
with⁡DeepLearning
AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros
model≔Sequential⁡ConvolutionLayer⁡2,3,activation=relu
model≔DeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7fcab9e08a10>
model:-Compile⁡
The DeepLearning[ConvolutionLayer] and DeepLearning[DeconvolutionLayer] commands were introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
DeepLearning Overview
Download Help Document