DeepLearning
GatedRecurrentUnitLayer
create GRU layer
Calling Sequence
Parameters
Options
Description
Details
Examples
Compatibility
GatedRecurrentUnitLayer(units,opts)
GRULayer(units,opts)
units
-
positive integer
opts
(optional) one or more keyword options described below
inputshape : list of integers or the symbol auto
Shape of the input Tensor, not including the batch axis.
With the default value auto, the shape is inferred. If inference is not possible, an error is issued.
This option need only be specified when this layer is the first in a Sequential model.
GatedRecurrentUnitLayer(units,opts) creates a gated recurrent unit (GRU) neural network layer with units units.
GRULayer(units,opts) is equivalent to GatedRecurrentUnitLayer(units,opts).
This function is part of the DeepLearning package, so it can be used in the short form GatedRecurrentUnitLayer(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[GatedRecurrentUnitLayer](..).
The implementation of GRULayer uses tf.keras.layers.GRU from the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.layers.GRU for more information.
with⁡DeepLearning
AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros
model≔Sequential⁡EmbeddingLayer⁡1000,64,GRULayer⁡128,DenseLayer⁡10
model≔DeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7f02f40d8910>
model:-Compile⁡
The DeepLearning[GatedRecurrentUnitLayer] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
DeepLearning Overview
Download Help Document