LieAlgebras[AlgebraData] - find the structure equations for a real algebra defined by a list of matrices and a multiplication procedure
Calling Sequences
AlgebraData(A, mu, algname)
Parameters
A - a list of square matrices, with entries which are real numbers, complex numbers or vectors in an algebra.
mu - a 2 argument procedure defining a multiplication rule for the matrices A.
algname - an unassigned name or string
Description
Examples
Let A = A1, A2, ..., AN be a list of square matrices with entries which are real numbers ℝ, complex numbers ℂ or vectors in an algebra 𝔸 . In most applications, the algebra 𝔸 is one that can be created by the AlgebraLibraryData command such as the quaternions, octonions, or a Clifford algebra. The matrices A must be linearly independent over ℝ. The multiplication procedure must return a matrix μAi,Aj which is a real linear combination of the matrices in A, μ Ai,Aj = Cijk Ak.. The algebra defined in this manner need not be commutative, skew-commutative or associative.
The command AlgebraData returns the algebra data structure specified by the structure constants Cijk which can be subsequently initialized with DGsetup.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
For the first example, we simply take A to be the standard basis for the vector space of 2 × 2 matrices and let μ be the usual matrix product.
A≔Matrix⁡1,0,0,0,Matrix⁡0,1,0,0,Matrix⁡0,0,1,0,Matrix⁡0,0,0,1
μ1≔a,b↦a·b
μ1:=a,b→a.b
The AlgebraData commands produces the usual multiplication table for 2 × 2 matrices (Here e1 denotes the first matrix in the list A, e2 the second, and so on).
AD1≔AlgebraData⁡A,μ1,alg1
AD1:=e12=e1,e1.e2=e2,e2.e3=e1,e2.e4=e2,e3.e1=e3,e3.e2=e4,e4.e3=e3,e42=e4
DGsetup⁡AD1
algebra name: alg1
This algebra is non-commutative but associative.
Query⁡alg1,Commutative
false
Query⁡alg1,Associative
true
Example 2.
Again let A be the standard basis for the vector space of 2 × 2 matrices and but now let μ be the Jordan product ( a ∘b = 12ab+ ba.
μ3≔JordanProduct
μ3:=DifferentialGeometry:-LieAlgebras:-JordanProduct
The structure equations for this Jordan algebra are:
AD2≔AlgebraData⁡A,μ3,alg2
AD2:=e12=e1,e1.e2=12⁢e2,e1.e3=12⁢e3,e2.e1=12⁢e2,e2.e3=12⁢e1+12⁢e4,e2.e4=12⁢e2,e3.e1=12⁢e3,e3.e2=12⁢e1+12⁢e4,e3.e4=12⁢e3,e4.e2=12⁢e2,e4.e3=12⁢e3,e42=e4
DGsetup⁡AD2
algebra name: alg2
This time the algebra is commutative but not associative.
Query⁡alg2,Commutative
Query⁡alg2,Associative
Example 3.
Now let μ be the matrix commutator.
μ3≔a,b↦a·b−b·a
μ3:=a,b→a.b−b.a
Now the structure equations
AD3≔AlgebraData⁡A,μ3,alg3
AD3:=e1.e2=e2,e1.e3=−e3,e2.e1=−e2,e2.e3=e1−e4,e2.e4=e2,e3.e1=e3,e3.e2=−e1+e4,e3.e4=−e3,e4.e2=−e2,e4.e3=e3
coincide with the structure equations for the Lie algebra of 2 ×2 matrices.
LD≔LieAlgebraData⁡A,Liealg3
LD:=e1,e2=e2,e1,e3=−e3,e2,e3=e1−e4,e2,e4=e2,e3,e4=−e3
Note that in (2.12) both products e1⋅e3 and e3⋅e1 must be specified but in (2.13) only the product e1, e3 is calculated and stored.
Example 4.
In this example we shall calculate the structure equations for the Jordan algebra of 3 × 3 matrices over the quaternions ℚ. First we create the quaternions with AlgebraLibraryData.
AD4a≔AlgebraLibraryData⁡Quaternions,Qn
AD4a:=e12=e1,e1.e2=e2,e1.e3=e3,e1.e4=e4,e2.e1=e2,e22=−e1,e2.e3=e4,e2.e4=−e3,e3.e1=e3,e3.e2=−e4,e32=−e1,e3.e4=e2,e4.e1=e4,e4.e2=e3,e4.e3=−e2,e42=−e1
DGsetup⁡AD4a
algebra name: Qn
We use JordanMatrices to generate a basis for the space of 3 ×3 Hermitian matrices with entries in ℚn.
J≔JordanMatrices⁡3,Qn
We find the structure equations for this 15-dimensional algebra, initialize the algebra, and display the structure equations in the form of a multiplication table.
AD4≔AlgebraData⁡J,JordanProduct,J3Qn:
DGsetup⁡AD4
algebra name: J3Qn
interface⁡rtablesize=17
10
MultiplicationTable⁡AlgebraTable
See Also
DifferentialGeometry
LieAlgebras
AlgebraLibraryData
AlgebraInverse
AlgebraNorm
JordanMatrices
JordanProduct
LieAlgebraData
MultiplicationTable
Download Help Document