MatrixSubalgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[MatrixSubalgebra] - find the subalgebra of a Lie algebra which preserves a collection of tensors or subspaces of tensors

Calling Sequences

     MatrixSubalgebra(rho, Inv)

     MatrixSubalgebra(alg, M, Inv)

     MatrixSubalgebra(alg, Gamma, Inv)

     MatrixSubalgebra(alg1, Inv)

Parameters

     rho     - a representation of a Lie algebra

      Inv     - a list, where each element is a tensor or a list of tensors

      alg     - a name or a string, the name of an initialized Lie algebra 𝔤 

     M       - a list of square matrices defining a Lie algebra, with the same structure equations as 𝔤 

     Gamma   - a list of vector fields defining a Lie algebra, with the same structure equations as 𝔤  

     alg1    - a name or a string, the name of an initialized Lie algebra 𝔤 , which has been created by the command SimpleLieAlgebraData

 

 

Description

Examples

Description

• 

Let V  be a vector space and φ: V  V   a linear transformation (not necessarily invertible).  Let T  be a type (1,1) tensor on V.   Then the (1,1) tensor   φ  T   is defined by

φ  TX, α =  TφX, alpha  TX ,φ*alpha, where X V  and α V *.  

If φij and  Tji  are the components of φ and T  with respect to a basis ei  for V (and dual basis ϵi for V*), then φ  Tji  = φjk Tki    φki Tjk  .

• 

This formula extends in the natural way to define  φ  T   for any tensor T.   One says that T  is φinvariant if  φ  T = 0.

• 

Let g be a Lie algebra and let ρ: 𝔤  glV be a representation of V.  The set a = {x 𝔤 |  ρx T= 0 } is a subalgebra of g.  Likewise, if T is a subspace of tensors, then the set b = {x 𝔤 |  ρx T  𝒯  for all  T  𝒯} is also a subalgebra of g.

• 

The command MatrixSubalgebra  allows one to make subalgebras via this general construction.  The argument Inv  is a list  where each element is a tensor or a list of  tensors. For example, if  Inv = R,  S, T  then MatrixSubalgebra  calculates the subalgebra consisting of  x 𝔤  such that  ρx R= 0,   ρx S span S, T,    ρx T  span S, T.

• 

When a Lie algebra is created with the command SimpleLieAlgebraData, its standard matrix representation is encoded in the Lie algebra data structure for that algebra. For such algebras, the construction of subalgebras via invariant tensors can be performed without explicitly specifying a representation.

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We construct the Lie algebras so3 and  so(3)⊕so(2)  as subalgebras of so(5). First, here are the 5×5 skew-symmetric matrices which define so5.

 

AmapMatrix,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0

 

Calculate the structure equations and initialize.

LDLieAlgebraDataA,so5

LD:=e1,e2=e5,e1,e3=e6,e1,e4=e7,e1,e5=e2,e1,e6=e3,e1,e7=e4,e2,e3=e8,e2,e4=e9,e2,e5=e1,e2,e8=e3,e2,e9=e4,e3,e4=e10,e3,e6=e1,e3,e8=e2,e3,e10=e4,e4,e7=e1,e4,e9=e2,e4,e10=e3,e5,e6=e8,e5,e7=e9,e5,e8=e6,e5,e9=e7,e6,e7=e10,e6,e8=e5,e6,e10=e7,e7,e9=e5,e7,e10=e6,e8,e9=e10,e8,e10=e9,e9,e10=e8

(2.1)

lprint%

_DG([["LieAlgebra", so5, [10, table( [ ] )]], [[[1, 2, 5], 1], [[1, 3, 6], 1], [[1, 4, 7], 1], [[1, 5, 2], -1], [[1, 6, 3], -1], [[1, 7, 4], -1], [[2, 3, 8], 1], [[2, 4, 9], 1], [[2, 5, 1], 1], [[2, 8, 3], -1], [[2, 9, 4], -1], [[3, 4, 10], 1], [[3, 6, 1], 1], [[3, 8, 2], 1], [[3, 10, 4], -1], [[4, 7, 1], 1], [[4, 9, 2], 1], [[4, 10, 3], 1], [[5, 6, 8], 1], [[5, 7, 9], 1], [[5, 8, 6], -1], [[5, 9, 7], -1], [[6, 7, 10], 1], [[6, 8, 5], 1], [[6, 10, 7], -1], [[7, 9, 5], 1], [[7, 10, 6], 1], [[8, 9, 10], 1], [[8, 10, 9], -1], [[9, 10, 8], 1]]])

DGsetupLD

Lie algebra: so5

(2.2)

 

Define the representation space V.  We shall define the invariant tensors we need on V.

so5 > 

DGsetupx1,x2,x3,x4,x5,V

frame name: V

(2.3)

 

The standard inclusion of so3in so5 is given as the subalgebra of matrices which fix the vectors Dx4  and  Dx5 .

V > 

Inv1D_x4,D_x5

Inv1:=D_x4,D_x5

(2.4)
V > 

MatrixSubalgebraso5,A,Inv1

e1,e2,e5

(2.5)

 

Comparing with the matrices in A, we see this is precisely the subalgebra so3 we want.

V > 

A1,A2,A5

 

We can define so3 so2 in so5 as the subalgebra which preserves the subspaces spanned by [Dx1, Dx2 , Dx5 ] and Dx4 , Dx5.  

 

so5 > 

Inv2,Inv3D_x1,D_x2,D_x3,D_x4,D_x5

Inv2,Inv3:=D_x1,D_x2,D_x3,D_x4,D_x5

(2.6)

MatrixSubalgebraso5,A,Inv2,Inv3

e1,e2,e5,e10

(2.7)

 

Example 2.

The computation of Example 1 can be done with the other calling sequences.

 

1. With a representation.

so5 > 

ρRepresentationso5,V,A

so5 > 

MatrixSubalgebraρ,Inv1

e1,e2,e5

(2.8)

 

2. With a Lie algebra of vector fields.

V > 

GammaevalDGx2D_x1x1D_x2,x3D_x1x1D_x3,x4D_x1x1D_x4,x5D_x1x1D_x5,x3D_x2x2D_x3,x4D_x2x2D_x4,x5D_x2x2D_x5,x4D_x3x3D_x4,x5D_x3x3D_x5,x5D_x4x4D_x5

Γ:=x2D_x1x1D_x2,x3D_x1x1D_x3,x4D_x1x1D_x4,x5D_x1x1D_x5,x3D_x2x2D_x3,x4D_x2x2D_x4,x5D_x2x2D_x5,x4D_x3x3D_x4,x5D_x3x3D_x5,x5D_x4x4D_x5

(2.9)
V > 

MatrixSubalgebraso5,Gamma,Inv1

e1,e2,e5

(2.10)

 

3. With a Lie algebra constructed using the procedure SimpleLieAlgebraData .

so5 > 

LD1SimpleLieAlgebraDataso(5),alg1

LD1:=e1,e2=e5,e1,e3=e6,e1,e4=e7,e1,e5=e2,e1,e6=e3,e1,e7=e4,e2,e3=e8,e2,e4=e9,e2,e5=e1,e2,e8=e3,e2,e9=e4,e3,e4=e10,e3,e6=e1,e3,e8=e2,e3,e10=e4,e4,e7=e1,e4,e9=e2,e4,e10=e3,e5,e6=e8,e5,e7=e9,e5,e8=e6,e5,e9=e7,e6,e7=e10,e6,e8=e5,e6,e10=e7,e7,e9=e5,e7,e10=e6,e8,e9=e10,e8,e10=e9,e9,e10=e8

(2.11)
so5 > 

DGsetupLD1

Lie algebra: alg1

(2.12)
alg > 

MatrixSubalgebraalg1,Inv1

e1,e2,e5

(2.13)

 

Example 3.

Calculate the subalgebra of gl6 consisting of 2×2 block upper triangular matrices. First initialize the Lie algebra of all 6×6 matrices. The labels 'E' and 'theta' must be unassigned names.

LDSimpleLieAlgebraDatagl(6),gl6,labelformat=gl,labels=E,θ:

DGsetupLD:

 

Define the representation space.

DGsetupx1,x2,x3,x4,x5,x6,V6

frame name: V6

(2.14)

 

The matrices we want preserve the following subspaces of V.

V6 > 

InvD_x1,D_x2,D_x1,D_x2,D_x3,D_x4

Inv:=D_x1,D_x2,D_x1,D_x2,D_x3,D_x4

(2.15)
V6 > 

AMatrixSubalgebragl6,Inv

A:=E11,E12,E13,E14,E15,E16,E21,E22,E23,E24,E25,E26,E33,E34,E35,E36,E43,E44,E45,E46,E55,E56,E65,E66

(2.16)

 

We can see what matrices these correspond to in several ways.  One method is to first form a general linear combination X of the vectors in A.

gl6 > 

XDGzipseqai,i=1..24,A,plus

X:=a1E11+a2E12+a3E13+a4E14+a5E15+a6E16+a7E21+a8E22+a9E23+a10E24+a11E25+a12E26+a13E33+a14E34+a15E35+a16E36+a17E43+a18E44+a19E45+a20E46+a21E55+a22E56+a23E65+a24E66

(2.17)

 

Now calculate the matrix associated to X  in the standard representation.

gl6 > 

StandardRepresentationgl6,X

 

Example 4.

In this example we calculate the intersection so8sp8, ℝ.  These are the skew-symmetric 8×8 matrices which also preserve a non-degenerate 2-form. Then we show that this intersection is isomorphic to u4.  First we initialize the Lie algebra for so8.  The labels 'R' and 'sigma' must be unassigned names.

gl6 > 

LDSimpleLieAlgebraDataso(8),so8,labelformat=gl,labels=R,σ:

gl6 > 

DGsetupLD

Lie algebra: so8

(2.18)

 

Now define an 8-dimensional representation space V and a 2-form Ω  on V.

so8 > 

DGsetupx1,x2,x3,x4,x5,x6,x7,x8,V8

frame name: V8

(2.19)
V8 > 

ΩevalDGdx1&wdx5+dx2&wdx6+dx3&wdx7+dx4&wdx8

Ω:=dx1dx5+dx2dx6+dx3dx7+dx4dx8

(2.20)

 

Find the subalgebra of so8 which preserves this 2-form.

V8 > 

HMatrixSubalgebraso8,Ω

H:=R12+R56,R13+R57,R14+R58,R15,R16+R25,R17+R35,R18+R45,R23+R67,R24+R68,R26,R27+R36,R28+R46,R34+R78,R37,R38+R47,R48

(2.21)

 

Here are the explicit matrices.

so8 > 

Mmap2StandardRepresentation,so8,H

 

Check that the matrices belong to so8.

so8 > 

QueryM,so(8),MatrixAlgebra

true

(2.22)

 

Check that the matrices belong to sp8,ℝ.

so8 > 

QueryM,sp(8, R),MatrixAlgebra

true

(2.23)

 

The isomorphism to u4 is given by  ΦABCD = A + I B,  where  A, B, C, D are 4×4 matrices.  We use the command SubMatrix  to construct this map.

so8 > 

ΦXLinearAlgebra:−SubMatrixX,1..4,1..4+ILinearAlgebra:−SubMatrixX,5..8,1..4

Φ:=X→LinearAlgebra:-SubMatrixX,1..4,1..4+ILinearAlgebra:-SubMatrixX,5..8,1..4

(2.24)
so8 > 

NmapΦ,M

 

Check that each of these matrices belong to u4.

so8 > 

QueryN,u(4),MatrixAlgebra

true

(2.25)

 

Finally, we see that the structure equations for these two matrix algebras are identical.

so8 > 

LieAlgebraDataM,alg1

e1,e2=e8,e1,e3=e9,e1,e4=e5,e1,e5=2e4+2e10,e1,e6=e11,e1,e7=e12,e1,e8=e2,e1,e9=e3,e1,e10=e5,e1,e11=e6,e1,e12=e7,e2,e3=e13,e2,e4=e6,e2,e5=e11,e2,e6=2e4+2e14,e2,e7=e15,e2,e8=e1,e2,e11=e5,e2,e13=e3,e2,e14=e6,e2,e15=e7,e3,e4=e7,e3,e5=e12,e3,e6=e15,e3,e7=2e4+2e16,e3,e9=e1,e3,e12=e5,e3,e13=e2,e3,e15=e6,e3,e16=e7,e4,e5=e1,e4,e6=e2,e4,e7=e3,e5,e6=e8,e5,e7=e9,e5,e8=e6,e5,e9=e7,e5,e10=e1,e5,e11=e2,e5,e12=e3,e6,e7=e13,e6,e8=e5,e6,e11=e1,e6,e13=e7,e6,e14=e2,e6,e15=e3,e7,e9=e5,e7,e12=e1,e7,e13=e6,e7,e15=e2,e7,e16=e3,e8,e9=e13,e8,e10=e11,e8,e11=2e10+2e14,e8,e12=e15,e8,e13=e9,e8,e14=e11,e8,e15=e12,e9,e10=e12,e9,e11=e15,e9,e12=2e10+2e16,e9,e13=e8,e9,e15=e11,e9,e16=e12,e10,e11=e8,e10,e12=e9,e11,e12=e13,e11,e13=e12,e11,e14=e8,e11,e15=e9,e12,e13=e11,e12,e15=e8,e12,e16=e9,e13,e14=e15,e13,e15=2e14+2e16,e13,e16=e15,e14,e15=e13,e15,e16=e13

(2.26)
so8 > 

LieAlgebraDataN,alg2,method=real

e1,e2=e8,e1,e3=e9,e1,e4=e5,e1,e5=2e4+2e10,e1,e6=e11,e1,e7=e12,e1,e8=e2,e1,e9=e3,e1,e10=e5,e1,e11=e6,e1,e12=e7,e2,e3=e13,e2,e4=e6,e2,e5=e11,e2,e6=2e4+2e14,e2,e7=e15,e2,e8=e1,e2,e11=e5,e2,e13=e3,e2,e14=e6,e2,e15=e7,e3,e4=e7,e3,e5=e12,e3,e6=e15,e3,e7=2e4+2e16,e3,e9=e1,e3,e12=e5,e3,e13=e2,e3,e15=e6,e3,e16=e7,e4,e5=e1,e4,e6=e2,e4,e7=e3,e5,e6=e8,e5,e7=e9,e5,e8=e6,e5,e9=e7,e5,e10=e1,e5,e11=e2,e5,e12=e3,e6,e7=e13,e6,e8=e5,e6,e11=e1,e6,e13=e7,e6,e14=e2,e6,e15=e3,e7,e9=e5,e7,e12=e1,e7,e13=e6,e7,e15=e2,e7,e16=e3,e8,e9=e13,e8,e10=e11,e8,e11=2e10+2e14,e8,e12=e15,e8,e13=e9,e8,e14=e11,e8,e15=e12,e9,e10=e12,e9,e11=e15,e9,e12=2e10+2e16,e9,e13=e8,e9,e15=e11,e9,e16=e12,e10,e11=e8,e10,e12=e9,e11,e12=e13,e11,e13=e12,e11,e14=e8,e11,e15=e9,e12,e13=e11,e12,e15=e8,e12,e16=e9,e13,e14=e15,e13,e15=2e14+2e16,e13,e16=e15,e14,e15=e13,e15,e16=e13

(2.27)

 

 

Example 5.

The compact real form of the exceptional Lie algebra g2 as the subalgebra of  so7can be computed using the command MatrixAlgebras. First we initialize the Lie algebra  so7.

so7 > 

RemoveFrameso8:

gl6 > 

LDSimpleLieAlgebraDataso(7),so7,labelformat=gl,labels=R,σ

LD:=e1,e2=e7,e1,e3=e8,e1,e4=e9,e1,e5=e10,e1,e6=e11,e1,e7=e2,e1,e8=e3,e1,e9=e4,e1,e10=e5,e1,e11=e6,e2,e3=e12,e2,e4=e13,e2,e5=e14,e2,e6=e15,e2,e7=e1,e2,e12=e3,e2,e13=e4,e2,e14=e5,e2,e15=e6,e3,e4=e16,e3,e5=e17,e3,e6=e18,e3,e8=e1,e3,e12=e2,e3,e16=e4,e3,e17=e5,e3,e18=e6,e4,e5=e19,e4,e6=e20,e4,e9=e1,e4,e13=e2,e4,e16=e3,e4,e19=e5,e4,e20=e6,e5,e6=e21,e5,e10=e1,e5,e14=e2,e5,e17=e3,e5,e19=e4,e5,e21=e6,e6,e11=e1,e6,e15=e2,e6,e18=e3,e6,e20=e4,e6,e21=e5,e7,e8=e12,e7,e9=e13,e7,e10=e14,e7,e11=e15,e7,e12=e8,e7,e13=e9,e7,e14=e10,e7,e15=e11,e8,e9=e16,e8,e10=e17,e8,e11=e18,e8,e12=e7,e8,e16=e9,e8,e17=e10,e8,e18=e11,e9,e10=e19,e9,e11=e20,e9,e13=e7,e9,e16=e8,e9,e19=e10,e9,e20=e11,e10,e11=e21,e10,e14=e7,e10,e17=e8,e10,e19=e9,e10,e21=e11,e11,e15=e7,e11,e18=e8,e11,e20=e9,e11,e21=e10,e12,e13=e16,e12,e14=e17,e12,e15=e18,e12,e16=e13,e12,e17=e14,e12,e18=e15,e13,e14=e19,e13,e15=e20,e13,e16=e12,e13,e19=e14,e13,e20=e15,e14,e15=e21,e14,e17=e12,e14,e19=e13,e14,e21=e15,e15,e18=e12,e15,e20=e13,e15,e21=e14,e16,e17=e19,e16,e18=e20,e16,e19=e17,e16,e20=e18,e17,e18=e21,e17,e19=e16,e17,e21=e18,e18,e20=e16,e18,e21=e17,e19,e20=e21,e19,e21=e20,e20,e21=e19,R12,R13,R14,R15,R16,R17,R23,R24,R25,R26,R27,R34,R35,R36,R37,R45,R46,R47,R56,R57,R67,σ12,σ13,σ14,σ15,σ16,σ17,σ23,σ24,σ25,σ26,σ27,σ34,σ35,σ36,σ37,σ45,σ46,σ47,σ56,σ57,σ67

(2.28)
gl6 > 

DGsetupLD

Lie algebra: so7

(2.29)

 

Now define a7-dimensional representation space V and a 3-form Φ  on V.

so8 > 

DGsetupx1,x2,x3,x4,x5,x6,x7,V7

frame name: V7

(2.30)
V7 > 

σ1evalDGdx1&wdx3dx2&wdx4

σ1:=dx1dx3dx2dx4

(2.31)
V7 > 

σ2evalDGdx1&wdx4+dx2&wdx3

σ2:=dx1dx4+dx2dx3

(2.32)
V7 > 

σ3evalDGdx1&wdx2+dx3&wdx4

σ3:=dx1dx2+dx3dx4

(2.33)
so8 > 

ΦevalDGσ1&wdx5σ2&wdx6+σ3&wdx7+dx5&wdx6&wdx7

Φ:=dx1dx2dx7+dx1dx3dx5dx1dx4dx6dx2dx3dx6dx2dx4dx5+dx3dx4dx7+dx5dx6dx7

(2.34)

 

Calculate the subalgebra of  so7 which leaves the 3-form Φ invariant.

V8 > 

G2MatrixSubalgebraso7,Φ

G2:=R12R56,R13R67,R14R57,R15+R47,R16+R37,R17R45,R23R57,R24+R67,R25+R37,R26R47,R27+R46,R34R56,R35+R46,R36R45

(2.35)

 

Here are the explicit matrices.

so8 > 

M2map2StandardRepresentation,so7,G2

 

The Lie algebra defined by either the vectors G2 or the matrices M2  is a 14-dimensional Lie algebra with negative-definite Killing form and 2-dimensional Cartan subalgebra.

LD2LieAlgebraDataG2,g2:

so7 > 

DGsetupLD2

Lie algebra: g2

(2.36)
so7 > 

LinearAlgebra:-IsDefiniteKilling

true

(2.37)
g2 > 

CartanSubalgebra

e1,e4e10

(2.38)

 

Example 6.

The split real form of the exceptional Lie algebra g2 as the subalgebra of so(4, 3)  is similarly computed.

so7 > 

RemoveFrameso7

8

(2.39)
gl6 > 

LDSimpleLieAlgebraDataso(4, 3),so43,version=2,labelformat=gl,labels=R,σ:

gl6 > 

DGsetupLD

Lie algebra: so43

(2.40)

 

Now define a 7-dimensional representation space V and a 3-form Φ  on V.

so8 > 

DGsetupx1,x2,x3,x4,x5,x6,x7,V7

frame name: V7

(2.41)
V7 > 

σ1evalDGdx1&wdx3dx2&wdx4

σ1:=dx1dx3dx2dx4

(2.42)
V7 > 

σ2evalDGdx1&wdx4+dx2&wdx3

σ2:=dx1dx4+dx2dx3

(2.43)
V7 > 

σ3evalDGdx1&wdx2+dx3&wdx4

σ3:=dx1dx2+dx3dx4

(2.44)
so8 > 

ΦevalDGσ1&wdx5σ2&wdx6+σ3&wdx7dx5&wdx6&wdx7

Φ:=dx1dx2dx7+dx1dx3dx5dx1dx4dx6dx2dx3dx6dx2dx4dx5+dx3dx4dx7dx5dx6dx7

(2.45)

 

Calculate the subalgebra of so7 which  leaves the 3-form Φ invariant.

V8 > 

G2MatrixSubalgebraso43,Φ

G2:=R12R56,R13R67,R14R57,R23R57,R24+R67,R34R56,R15+R47,R16+R37,R17R45,R25+R37,R26R47,R27+R46,R35+R46,R36R45

(2.46)

 

Here are the explicit matrices.

so8 > 

M2map2StandardRepresentation,so43,G2

 

The Lie algebra defined by either the vectors G2 or the matrices M2  is a 14-dimensional Lie algebra.

V7 > 

LD6LieAlgebraDataG2,g2S

LD6:=e1,e2=e4,e1,e3=e5,e1,e4=e2,e1,e5=e3,e1,e7=e8+e10,e1,e8=e7+e11,e1,e9=e12,e1,e10=e7e11,e1,e11=e8+e10,e1,e12=e9,e1,e13=e14,e1,e14=e13,e2,e3=e6,e2,e4=e1,e2,e6=e3,e2,e7=e13,e2,e8=2e9+2e14,e2,e9=e8,e2,e10=e9+e14,e2,e11=e12,e2,e12=e11,e2,e13=e7,e2,e14=e8,e3,e5=e1,e3,e6=e2,e3,e7=2e9,e3,e8=e13,e3,e9=2e7,e3,e10=e12+e13,e3,e11=e9,e3,e12=e8+e10,e3,e13=e8,e3,e14=e7,e4,e5=e6,e4,e6=e5,e4,e7=e9,e4,e8=e12+e13,e4,e9=e7,e4,e10=2e12+2e13,e4,e11=e14,e4,e12=e10,e4,e13=e10,e4,e14=e11,e5,e6=e4,e5,e7=e12,e5,e8=e9e14,e5,e9=e8+e10,e5,e10=e14,e5,e11=2e12,e5,e12=2e11,e5,e13=e11,e5,e14=e10,e6,e7=e8,e6,e8=e7,e6,e9=e13,e6,e10=e11,e6,e11=e10,e6,e12=e14,e6,e13=2e14,e6,e14=2e13,e7,e8=e6,e7,e9=2e3,e7,e10=e1+e6,e7,e12=e5,e7,e13=e2,e7,e14=e3,e8,e9=e2,e8,e11=e1+e6,e8,e12=e3+e4,e8,e13=e3,e8,e14=e2,e9,e10=e2e5,e9,e11=e3,e9,e12=e1,e9,e13=e6,e10,e11=e6,e10,e12=e4,e10,e13=e4,e10,e14=e5,e11,e12=2e5,e11,e13=e5,e11,e14=e4,e12,e14=e6,e13,e14=2e6

(2.47)
so7 > 

DGsetupLD6

Lie algebra: g2S

(2.48)
g2S > 

BKillingForm

B:=8θ1θ68θ7θ11+16θ8θ8+8θ5θ216θ5θ5+8θ8θ10+16θ9θ9+16θ12θ12+8θ12θ1316θ1θ18θ4θ316θ4θ4+8θ9θ14+8θ10θ8+16θ10θ108θ11θ7+16θ11θ11+8θ13θ12+16θ13θ1316θ3θ38θ3θ4+8θ14θ9+16θ14θ1416θ2θ2+8θ2θ58θ6θ116θ6θ6+16θ7θ7

(2.49)
g2S > 

Tensor:-QuadraticFormSignatureB

e7,e7+2e11,e8,e82e10,e9,e92e14,e12,e122e13,e1,e12e6,e2,e2+2e5,e3,e32e4,

(2.50)
g2S > 

mapnops,%

8,6,0

(2.51)

See Also

DifferentialGeometry

CartanSubalgebra

Killing

Query[MatrixAlgebra]

Representation

SimpleLieAlgebraData

StandardRepresentation