LieAlgebras[ParabolicSubalgebra] - find the parabolic subalgebra defined by a set of simple roots or a set of restricted simple roots
LieAlgebras[ParabolicSubalgebraRoots] - find the simple roots which generate a parabolic subalgebra
Calling Sequences
ParabolicSubalgebra(Σ, T1)
ParabolicSubalgebra(Σ , T2, method="non-compact")
ParabolicSubalgebraRoots(ParAlg, T2)
ParabolicSubalgebraRoots(ParAlg, T2, method="non-compact")
Parameters
Σ - a list or set of column vectors, defining a subset of simple roots
T1 - a table, with indices that include "RootSpaceDecomposition", "CartanSubalgebra", "SimpleRoots", and "PositiveRoots"
T2 - a table, with indices that include "RestrictedRootSpaceDecomposition", "CartanSubalgebraDecomposition", "RestrictedSimpleRoots" and "RestrictedPositiveRoots"
ParAlg - a list of vectors in a Lie algebra, defining a parabolic subalgebra
Description
Examples
Let g be a semi-simple Lie algebra. A Borel subalgebra b is any maximal solvable subalgebra. A parabolic subalgebra p is any subalgebra containing a Borel subalgebra b. Alternatively, a subalgebra p is parabolic if its nilradical is the orthogonal complement of p with respect to the Killing form B.
Let h be an Cartan subalgebra and 𝔤 = 𝔥 ⊕⨁α ∈Δ+Rα the associated root space decomposition. Let Δ+ be a choice of positive roots and let Δ0 ⊆ Δ+ be a set of simple roots. The subalgebra 𝔟 = 𝔥 ⊕⨁α ∈ΔRα is called the standard Borel subalgebra associated to h and any parabolic subalgebra containing it is called a standard parabolic subalgebra. (One could replace the summation over the positive roots by one over the negative roots.)α ∈ Δ+
Given a standard parabolic subalgebra p , let Φ𝔭 0 = {α ∈Δ0 | R−α ⊆ 𝔭 }. This set of simple roots completely specifies the parabolic subalgebra p. Conversely, given a set of simple roots Φ0, let Φ ={ α ∈Δ+ | α is a linear combination of the roots in Φ0 } and set 𝔭 Φ0= 𝔥 ⊕⨁α ∈ΦRα . Then 𝔭Φ0 is a standard parabolic subalgebra.
For the parabolic subalgebras of a real semi-simple Lie algebra the situation is essentially the same except that one must consider the restricted root space decomposition 𝔤 = Z𝔞⊕ ⨁α ∈ΔSα relative to a maximal Abelian subalgebra a on which the Killing form is positive-definite.
Let Σ be a subset of the simple roots Δ0 and set Φ0 = Δ0/Σ. The command ParabolicSubalgebra returns the standard parabolic subalgebra 𝔭Φ0. The command ParabolicSubalgebraRoots returns the list of simple roots Σ .
With the keyword argument method = "non-compact", a real parabolic subalgebra is calculated.
With Σ = Δ0,the standard Borel subalgebra is returned.
If the Lie algebra is created from the command SimpleLieAlgebraData , then the table obtained from the command SimpleLieAlgebraProperties can be used as the second argument T1 or T2.
The command Query/"ParabolicSubalgebra" will test if a given subalgebra of a semi-simple Lie algebra is parabolic.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
We calculate the parabolic subalgebras for sl4. We use the command SimpleLieAlgebraData to initialize the Lie algebra.
LD≔SimpleLieAlgebraData⁡sl(4),sl4,labelformat=gl,labels=E,ω:
DGsetup⁡LD
Lie algebra: sl4
We use the command SimpleLieAlgebraProperties to obtain the Cartan subalgebra, root space decomposition etc.
P≔SimpleLieAlgebraProperties⁡sl4:
Here are the properties we need:
CSA≔PCartanSubalgebra
CSA:=E11,E22,E33
RSD≔eval⁡PRootSpaceDecomposition
RSD:=table1,−1,0=E12,−1,1,0=E21,−2,−1,−1=E41,1,2,1=E24,1,0,−1=E13,−1,−1,−2=E43,0,1,−1=E23,1,1,2=E34,−1,0,1=E31,−1,−2,−1=E42,2,1,1=E14,0,−1,1=E32
SR≔PSimpleRoots
PR≔PPositiveRoots
The possible subsets of the simple roots are:
Σ≔,SR1..1,SR2..2,SR3..3,SR1..2,SR2..3,SR1,SR3,SR
The possible parabolic subalgebras of sl4 are therefore:
Σ1,ParabolicSubalgebra⁡Σ1,P
,E11,E22,E33,E12,E13,E14,E21,E23,E24,E31,E32,E34,E41,E42,E43
Σ2,ParabolicSubalgebra⁡Σ2,P
Σ3,ParabolicSubalgebra⁡Σ3,P
Σ4,ParabolicSubalgebra⁡Σ4,P
Σ5,ParabolicSubalgebra⁡Σ5,P
Σ6,ParabolicSubalgebra⁡Σ6,P
Σ7,ParabolicSubalgebra⁡Σ7,P
Σ8,ParabolicSubalgebra⁡Σ8,P
The Query command can be used to check that these subalgebras are parabolic subalgebra.
PS7≔ParabolicSubalgebra⁡Σ7,P
PS7:=E11,E22,E33,E12,E13,E14,E23,E24,E32,E34
Query⁡PS7,Parabolic
true
With the command ParabolicSubalgebraRoots, we can find the simple roots used to create the parabolic algebra PS7.
ParabolicSubalgebraRoots⁡PS7,P
Example 2.
We calculate (real) parabolic subalgebras for so6,3. We use the command SimpleLieAlgebraData to initialize the Lie algebra.
LD2≔SimpleLieAlgebraData⁡so(5,3),so53,labelformat=gl,labels=R,θ:
DGsetup⁡LD2
Lie algebra: so53
We use the command SimpleLieAlgebraProperties to calculate the restricted root space decomposition and the restricted simple roots.
P≔SimpleLieAlgebraProperties⁡so53:
RRSD≔eval⁡PRestrictedRootSpaceDecomposition
RRSD:=table0,0,1=R37,R38,1,−1,0=R12,0,−1,0=R57,R58,1,0,1=R16,−1,1,0=R21,0,0,−1=R67,R68,1,1,0=R15,0,1,1=R26,−1,0,0=R47,R48,1,0,−1=R13,1,0,0=R17,R18,−1,−1,0=R42,0,1,−1=R23,−1,0,−1=R43,0,1,0=R27,R28,−1,0,1=R31,0,−1,1=R32,0,−1,−1=R53
RSR≔PRestrictedSimpleRoots
The possible subsets of restricted simple roots are:
Σ≔RSR,RSR1..2,RSR2..3,RSR1,RSR3,RSR1..1,RSR2..2,RSR3..3,
The parabolic subalgebras defined by these sets of restricted roots are:
Σ1,ParabolicSubalgebra⁡Σ1,P,method=non-compact
Σ2,ParabolicSubalgebra⁡Σ2,P,method=non-compact
Σ3,ParabolicSubalgebra⁡Σ3,P,method=non-compact
Σ4,ParabolicSubalgebra⁡Σ4,P,method=non-compact
Σ5,ParabolicSubalgebra⁡Σ5,P,method=non-compact
Σ6,ParabolicSubalgebra⁡Σ6,P,method=non-compact
Σ7,ParabolicSubalgebra⁡Σ7,P,method=non-compact
Σ8,ParabolicSubalgebra⁡Σ8,P,method=non-compact
,R11,R12,R13,R21,R22,R23,R31,R32,R33,R15,R16,R26,R42,R43,R53,R17,R18,R27,R28,R37,R38,R47,R48,R57,R58,R67,R68,R78
Check that the subalgebra defined by is parabolic.
PS5≔ParabolicSubalgebra⁡Σ5,P,method=non-compact
PS5:=R11,R12,R13,R22,R23,R32,R33,R15,R16,R26,R53,R17,R18,R27,R28,R37,R38,R57,R58,R67,R68,R78
Query⁡PS5,Parabolic
Find the restricted roots used to define PS5 .
ParabolicSubalgebraRoots⁡PS5,P,method=non-compact
See Also
DifferentialGeometry
CartanSubalgebra
Killing
LieAlgebras
PositiveRoots,
SimpleRoots
RootSpaceDecomposition
RestrictedRootSpaceDecomposition
QuadraticFormSignature
SimpleLieAlgebraData
SimpleLieAlgebraProperties
Download Help Document