DifferentialGeometry/LieAlgebras/Query/CartanDecomposition - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/CartanDecomposition

Query[CartanDecomposition] - check that two subspaces in a Lie algebra define a Cartan decomposition.

Calling Sequences

     Query(T, P, CartanDecomposition)

Parameters

     T   - a list of vectors, defining a subalgebra of a Lie algebra on which the Killing form is negative-definite.

      P   - a list of vectors, defining a subspace of a Lie algebra on which the Killing form is positive-definite

     

 

Description

Examples

Description

• 

Let g be a semi-simple real Lie algebra. Then g is called compact if the Killing form  ,  of g is negative-definite, otherwise  g is called non-compact.  

• 

A Cartan decomposition is a vector space decomposition g = tp , where [i] t is a subalgebra, [ii] p is a subspace, [iii] [t, p] ⊆ p, [iv] [p, p] ⊆ t, [v] the Killing form is negative-definite on t and [vi] Killing form is positive-definite on p.  

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We check to see if some decompositions of sl2 are Cartan decompositions. Initialize the Lie algebra sl2.

LDLieAlgebraDatah,x=2x,h,y=2y,x,y=h,h,x,y,sl2

LD:=e1,e2=2e2,e1,e3=2e3,e2,e3=e1

(2.1)

DGsetupLD

Lie algebra: sl2

(2.2)

 

The decomposition T1, P1 gives a Cartan decomposition.

T1,P1evalDGe2e3,evalDGe1,e2+e3

T1,P1:=e2e3,e1,e2+e3

(2.3)

QueryT1,P1,CartanDecomposition

true

(2.4)

 

The decomposition T2,  P2 gives a symmetric pair but not a Cartan decomposition.

T2,P2evalDGe2+e3,evalDGe1,e2e3

T2,P2:=e2+e3,e1,e2e3

(2.5)

QueryT2,P2,CartanDecomposition

false

(2.6)
sl2 > 

QueryT2,P2,SymmetricPair

true

(2.7)
sl2 > 

KillingP2

See Also

DifferentialGeometry

CartanInvolution

Killing

Query[SymmetricPair]

Query[ReductivePair]