DifferentialGeometry/LieAlgebras/Query/Ideal - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/Ideal

Query[Ideal] - check if a subalgebra defines an ideal in a Lie algebra

Calling Sequences

     Query(S, "Ideal")

     Query(S, parm, "Ideal")

Parameters

     S       -  a list of independent vectors which defines a basis for subalgebra in a Lie algebra 𝔤 

     parm    - (optional) a set of parameters appearing in the list of vectors S; it is assumed that the set of vectors S is well-defined when the parameters vanish

 

Description 

Examples

Description 

• 

 A list of vectors S  in a Lie algebra 𝔤 is a basis for an ideal in 𝔤  if x, y span(S) for all x  S and y 𝔤 .

• 

Query(S, "Ideal") returns true if the subalgebra S defines an ideal and false otherwise.

• 

Query(S, parm, "Ideal") returns a sequence TF, Eq, Soln, IdealList.  Here TF is true if Maple finds parameter values for which S is an ideal and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for S to be an ideal; Soln is the list of solutions to the equations Eq; and IdealList is the list of ideals obtained from the parameter values given by the different solutions in Soln.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First initialize a Lie algebra; then define some subalgebras S1, S2, S3 and check to see if they are ideals.

Alg > 

L_DGLieAlgebra,Alg,4,1,4,1,0,2,3,1,1,2,4,2,1,3,4,3,1

L:=e2,e3=e1,e2,e4=e2,e3,e4=e3

(2.1)
Alg > 

DGsetupL:

Alg > 

S1e1,e2

S1:=e1,e2

(2.2)
Alg > 

QueryS1,Ideal

true

(2.3)
Alg > 

S2e3,e4

S2:=e3,e4

(2.4)
Alg > 

QueryS2,Ideal

false

(2.5)

 

The subalgebra S3depends on a parameter a1.  We find which parameter values make S3 an ideal.

Alg > 

S3evalDGe2,e1+a1e4:

Alg > 

TF,EQ,SOLN,IdealListQueryS3,a1,a2,Ideal

TF,EQ,SOLN,IdealListtrue,0,a1,a1,a1=0,a2=a2,e2,e1

(2.6)

 

The following equations must hold for S3 to be an ideal (each expression must vanish).

Alg > 

EQ

0,a1,a1

(2.7)
Alg > 

S4IdealList1

S4e2,e1

(2.8)
Alg > 

QueryS4,Ideal

true

(2.9)

See Also

DifferentialGeometry

LieAlgebras

Query