LieAlgebras[SimpleLieAlgebraProperties] - provide a table of properties for any real simple Lie algebra
Calling Sequences
SimpleLieAlgebraProperties(alg)
Parameters
alg - a name or string, the name of a real simple Lie algebra created using SimpleLieAlgebraData
Description
Examples
The DifferentialGeometry package provides two different approaches for studying simple and semi-simple Lie algebras. If a semi-simple Lie algebra arises, for example, as the symmetries of some geometric objects (metric, connections, differential equations) then there is an extensive set of commands for analyzing the structure of this algebra. These commands include CartanSubalgebra, CartanMatrix, CartanMatrixToStandardForm, Killing, PositiveRoots, SimpleRoots, RootSpaceDecomposition, Cartan Decomposition. If one wishes to work with a specific real simple Lie algebra, then the structure equations are available with the command SimpleLieAlgebraData. Many structural properties of the simple Lie algebras has been tabulated and are available using the procedure SimpleLieAlgebraProperties.
The procedure SimpleLieAlgebraProperties returns a table whose indices specify the properties that are available for the given algebra. Let 𝔤 be a simple Lie algebra of dimension n and rank m with Cartan subalgebra h, root space decomposition 𝔤 = 𝔥 ⊕ ⨁α ∈ Δr Rα , and restricted root space decomposition 𝔤 = 𝔤0 ⊕ ⨁α ∈ ΔSα .
The following properties are computed.
"CartanDecomposition" : 2 lists of vectors k and p; 𝔤 = 𝔨 ⊕𝔭, where t is a subalgebra, p a subspace, [t, p] ⊆ p and [p, p] ⊆ t. The Killing form is negative-definite on t and positive-definite on p. )
Cartan Decomposition
"CartanInvolution" : a transformation Θ : g → g withΘ2 =Id and such that the symmetry bilinear form BΘx,y = −x,Θy is positive-definite.) CartanInvolution
"CartanMatrix" : an m×m matrix, the standard Cartan matrix for the root type of the Lie algebra. CartanMatrix
"CartanSubalgebra" : a list of m vectors. A Cartan subalgebra h is a nilpotent subalgebra whose normalizer in g is itself, that is, nor𝔥 = 𝔥 . The Cartan subalgebras for the classic matrix algebras are diagonal matrices. A basis is chosen such that the roots consist of integers or pure imaginary numbers (with integer coefficients). CartanSubalgebra,
"CartanSubalgebraDecomposition" : 2 lists of vectors spanning the Cartan subalgebra h. The Killing form is negative-definite on the first list and positive-definite on the second list. ♣
"IwasawaDecomposition" : 3 lists of vectors 𝔨, 𝔞, 𝔫 such that 𝔤 = 𝔨 ⊕𝔞⊕𝔫 , where k is a compact semi-simple subalgebra; 𝔞 is abelian, and n nilpotent. The Killing form is positive-definite on 𝔞.♣
"KillingMatrix" : n×n symmetric, non-degenerate matrix. Killing
"NegativeRootSpaces" : a table, the indices are the roots α ∈Δ− (as lists) and the entries are vectors defining the root spaces Rα . RootSpaceDecomposition
"NegativeRoots" : a list of column vectors defining the negative roots Δ−. A root is negative if its first non-zero component is k or kI , where k is a negative integer.
"PositiveRootSpaces" : a table, the indices are the roots α ∈Δ+ (as lists) and the entries are vectors defining the root spaces Rα . RootSpaceDecomposition
"PositiveRoots" : a list of column vectors defining the positive roots Δ+. A root is positive if its first non-zero component is k or kI , where k is a positive integer. PositiveRoots
"RestrictedPositiveRoots" : a table, the indices are the restricted positive roots α ∈Δr+ (as lists) and the entries are lists of vectors defining the root spaces Sα .%♣
"RestrictedRootSpaceDecomposition" : a table, the indices are the roots α ∈Δr (as lists) and the entries are lists of vectors defining the restricted root spaces Sα .%♣
"RestrictedSimpleRoots" : a list of column vectors, giving the restricted simple roots Δr0.♦♣
"RootSpaceDecomposition" : a table, the indices are the roots α ∈Δ (as lists) and the entries are vectors defining the root spaces Rα . RootSpaceDecomposition
"SimpleRootSpaces" : a table, the indices are the simple roots α ∈Δ0(as lists) and the entries are vectors defining the root spaces Rα .
"SimpleRoots" : a list of column vectors Δ0 defining the simple roots. Every positive root is a linear combination of the simple roots with positive integer coefficients. SimpleRoots
♣: Not computed for compact Lie algebras, that is, if the Killing form is negative-definite.
% : Not computed for split-real forms, that is, if the root space decomposition is real.
For split-real forms the standard Borel sub-algebra (see ParabolicSubalgebra) is also given.
Many of these properties of simple and semi-simple Lie algebras can be checked with the Query command.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1
We obtain the structural properties for the Lie algebra sl4. This is the split real form for Lie algebras of root type A. First, we use the command SimpleLieAlgebraData to initialize this Lie algebra.
LD≔SimpleLieAlgebraData⁡sl(4),sl4,labelformat=gl,labels=E,ω:
DGsetup⁡LD
Lie algebra: sl4
We use the command SimpleLieAlgebraProperties to obtain the properties of the Lie algebra sl4.
Properties≔SimpleLieAlgebraProperties⁡sl4:
Here are the indices for the table Properties.
Ind≔indices⁡Properties
Ind:=CartanInvolution,CartanDecomposition,SimpleRoots,NegativeRootSpaces,CartanSubalgebra,BorelSubalgebra,NegativeRoots,PositiveRootSpaces,CartanMatrix,RootSpaceDecomposition,PositiveRoots,SimpleRootSpaces,KillingForm
It is convenient to use the map and op commands to display the indices as a list of strings.
Ind≔sort⁡map⁡op,indices⁡Properties
Ind:=BorelSubalgebra,CartanDecomposition,CartanInvolution,CartanMatrix,CartanSubalgebra,KillingForm,NegativeRootSpaces,NegativeRoots,PositiveRootSpaces,PositiveRoots,RootSpaceDecomposition,SimpleRootSpaces,SimpleRoots
Here are some of the individual properties for the Lie algebra sl3.
CSA≔PropertiesCartanSubalgebra
CSA:=E11,E22,E33
RT≔eval⁡PropertiesRootSpaceDecomposition
RT:=table2,1,1=E14,1,0,−1=E13,−1,0,1=E31,0,1,−1=E23,1,1,2=E34,1,−1,0=E12,−1,−2,−1=E42,−1,−1,−2=E43,1,2,1=E24,−1,1,0=E21,0,−1,1=E32,−2,−1,−1=E41
The command LieAlgebraRoots lists the roots associated to this root space decomposition. Note that the roots are all real.
LieAlgebraRoots⁡RT
Note that the first non-zero component of each positive root is positive and that the first non-zero component of each negative root is negative.
PR≔PropertiesPositiveRoots
NR≔PropertiesNegativeRoots
It is easy to check that positive roots are positive linear combinations of the simple roots.
ST≔PropertiesSimpleRoots
CD≔PropertiesCartanDecomposition
CD:=E12−E21,E23−E32,E34−E43,E13−E31,E24−E42,E14−E41,E11,E22,E33,E12+E21,E23+E32,E34+E43,E13+E31,E24+E42,E14+E41
We check that the Killing form is positive-definite on the first list of vectors CD[1] and negative-definitive on the second list of vectors.
Killing⁡CD1
Killing⁡CD2
Example 2
We obtain the structural properties for the Lie algebra su4. This is the compact form for Lie algebras of root type A. First, we use the command SimpleLieAlgebraData to initialize this Lie algebra.
LD≔SimpleLieAlgebraData⁡su(4),su4,labelformat=gl,labels=U,θ:
Lie algebra: su4
We use the command SimpleLieAlgebraProperties to obtain the properties of the Lie algebra su4.
Properties≔SimpleLieAlgebraProperties⁡su4:
Ind:=CartanMatrix,CartanSubalgebra,CartanSubalgebraDecomposition,NegativeRootSpaces,NegativeRoots,PositiveRootSpaces,PositiveRoots,RootSpaceDecomposition,SimpleRootSpaces,SimpleRoots
Here are some of the individual properties for the Lie algebra su4.
CSA:=Ui11,Ui22,Ui33
RT:=table−I,0,I=U13+I⁢Ui13,I,2⁢I,I=U24−I⁢Ui24,0,−I,I=U23+I⁢Ui23,0,I,−I=U23−I⁢Ui23,−2⁢I,−I,−I=U14+I⁢Ui14,I,−I,0=U12−I⁢Ui12,2⁢I,I,I=U14−I⁢Ui14,I,I,2⁢I=U34−I⁢Ui34,−I,−I,−2⁢I=U34+I⁢Ui34,−I,−2⁢I,−I=U24+I⁢Ui24,−I,I,0=U12+I⁢Ui12,I,0,−I=U13−I⁢Ui13
The roots are all pure imaginary numbers so that this is indeed the compact form.
The first non-zero coefficient of I in each positive root is positive.
Example 3
We obtain the structural properties for the Lie algebra su2,2. First, we use the command SimpleLieAlgebraData to initialize this Lie algebra.
LD≔SimpleLieAlgebraData⁡su(2, 2),su22,labelformat=gl,labels=V,σ:
Lie algebra: su22
We use the command SimpleLieAlgebraProperties to obtain the properties of the Lie algebra su2,2.
Properties≔SimpleLieAlgebraProperties⁡su22:
Ind:=CartanDecomposition,CartanInvolution,CartanMatrix,CartanSubalgebra,CartanSubalgebraDecomposition,IwasawaDecomposition,NegativeRootSpaces,NegativeRoots,PositiveRootSpaces,PositiveRoots,RestrictedPositiveRoots,RestrictedRootSpaceDecomposition,RestrictedSimpleRoots,RootSpaceDecomposition,SimpleRootSpaces,SimpleRoots
Here are some of the individual properties for the Lie algebra su2, 2.
PropertiesCartanSubalgebra
V11,V22,Vi11
eval⁡PropertiesRootSpaceDecomposition
table1,−1,−2⁢I=V12−I⁢Vi12,0,2,0=Vi24,1,1,−2⁢I=V14+I⁢Vi14,1,1,2⁢I=V14−I⁢Vi14,−1,1,2⁢I=V21−I⁢Vi21,−1,−1,−2⁢I=V32+I⁢Vi32,−1,−1,2⁢I=V32−I⁢Vi32,−1,1,−2⁢I=V21+I⁢Vi21,0,−2,0=Vi42,1,−1,2⁢I=V12+I⁢Vi12,2,0,0=Vi13,−2,0,0=Vi31
Note that first two components of the roots are real and the third component is pure imaginary.
PropertiesPositiveRoots
PropertiesSimpleRoots
Since the root vectors are neither real nor pure imaginary, we have a restricted root space decomposition.
RRSD≔eval⁡PropertiesRestrictedRootSpaceDecomposition
RRSD:=table1,−1=V12,Vi12,2,0=Vi13,0,−2=Vi42,0,2=Vi24,−1,1=V21,Vi21,1,1=V14,Vi14,−2,0=Vi31,−1,−1=V32,Vi32
The restricted roots are the projections of the roots which yield real vectors. Since the restricted root [1,1] is the projection of the 2 roots [1, 1, 2I] and [1, 1, -2I], the restricted root space for [1,1] is 2-dimensional. Note also that while the root spaces are defined over C, the restricted root space are real subspaces of su2,2.
PropertiesRestrictedPositiveRoots
PropertiesRestrictedSimpleRoots
PropertiesCartanSubalgebraDecomposition
Vi11,V11,V22
K,P≔PropertiesCartanDecomposition
K,P:=−V21+V12,Vi21+Vi12,V32+V14,Vi32+Vi14,Vi42+Vi24,Vi31+Vi13,Vi11,V21+V12,−Vi21+Vi12,−V32+V14,−Vi32+Vi14,−Vi42+Vi24,−Vi31+Vi13,V22,V11
PropertiesCartanInvolution
Vi11,Vi11,V11,−V11,V22,−V22,V21,−V12,V32,V14,V12,−V21,V14,V32,Vi31,Vi13,Vi42,Vi24,Vi21,Vi12,Vi32,Vi14,Vi12,Vi21,Vi13,Vi31,Vi24,Vi42,Vi14,Vi32
K,A,N≔PropertiesIwasawaDecomposition
K,A,N:=−V21+V12,Vi21+Vi12,V32+V14,Vi32+Vi14,Vi42+Vi24,Vi31+Vi13,Vi11,V11,V22,V12,Vi12,Vi13,Vi24,V14,Vi14
Let's us check the properties of this KAN decomposition. The first list of vectors defines a subalgebra with negative-definite Killing form.
Query⁡K,Subalgebra
true
Killing⁡K
The second list of vectors defines an abelian subalgebra.
Query⁡A,Abelian
The third list of vectors defines a nilpotent Lie algebra.
Query⁡A,Nilpotent
See Also
DifferentialGeometry
LieAlgebras
CartanDecomposition
CartanInvolution
CartanMatrix
CartanMatrixToStandardForm
CartanSubalgebra
PositiveRoots
RootSpaceDecomposition
RestrictedRootSpaceDecomposition
SimpleRoots
Download Help Document