DifferentialGeometry/Tensor/BelRobinson - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/BelRobinson

Tensor[BelRobinson] - calculate the Bel-Robinson tensor

Calling Sequences

     BelRobinson(g, W, indexlist)

Parameters

   g         - a metric tensor on a 4-dimensional manifold

   W         - (optional) the Weyl tensor of the metric g

   indexlist - (optional) the keyword argument indexlist = ind, where ind is a list of 4 index types "con" or "cov"

 

Description

Examples

See Also

Description

• 

The Bel-Robinson tensor Bijhk is a covariant rank 4 tensor defined in terms of the Weyl tensor Wijhk on a 4-dimensional manifold by (see, for example, Penrose and Rindler Vol. 1)

Bijhk=14WilhmWj   k  l   m12gijWlmhn+gilWmjhn+ gimWjlhnW    klm  n.

The Bel-Robinson tensor is totally symmetric: Bijhk=Bjihk=Bhjik=Bkjhi . The Bel-Robinson tensor is trace-free: gijBijhk=0. If gij is an Einstein metric, that is, Rij=Λgij (where Rij is the Ricci tensor for the metric gij and Λ is a constant), then the covariant divergence of Bel-Robinson vanishes: gil l Bijhk=0.  Here l denotes the covariant derivative with respect to the Christoffel connection for gij.

• 

The keyword argument indexlist = ind allows the user to specify the index structure for the Bel-Robinson tensor. For example, with indexlist = ["con", "con", "con", "con"], the contravariant form Bijhk is returned. The default output is the purely covariant form (as above).

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BelRobinson(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-BelRobinson.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a 4-dimensional manifold M and define a metric gon M. The metric shown below is a homogenous Einstein metric (see (12.34) in Stephani, Kramer et al).

DGsetupx,y,z,u,M

frame name: M

(2.1)
M > 

gevalDGexpzdx&tdx+exp2zdy&tdy+dx&sdu3Λdz&tdz

g:=ⅇzdxdx+ⅇ2z2dxdu+ⅇ2zdydy3Λdzdz+ⅇ2z2dudx

(2.2)

 

Calculate the Bel-Robinson tensor for the metric g.  The result is clearly a symmetric tensor.

M > 

BBelRobinsong

B:=Λ2ⅇ2z4dxdxdxdx

(2.3)

 

Use the optional keyword argument indexlist to calculate the contravariant form of the Bel-Robinson tensor.

M > 

B1BelRobinsong,indexlist=con,con,con,con

B1:=4ⅇ10zΛ2D_uD_uD_uD_u

(2.4)

 

The tensor B is trace-free.

hInverseMetricg

h:=2ⅇ2zD_xD_u+ⅇ2zD_yD_yΛ3D_zD_z+2ⅇ2zD_uD_x4ⅇ5zD_uD_u

(2.5)

ContractIndicesh,B,1,1,2,2

0dxdx

(2.6)

 

The covariant divergence of the tensor B1 vanishes.  To check this, first calculate the Christoffel connection C for the metric g and then calculate the covariant derivative of B1.

CChristoffelg

C:=D_xdxdzD_xdzdxD_ydydzD_ydzdy+Λⅇz6D_zdxdxΛⅇ2z6D_zdxduΛⅇ2z3D_zdydyΛⅇ2z6D_zdudx+3ⅇ3zD_udxdz+3ⅇ3zD_udzdxD_udzduD_ududz

(2.7)

nablaB1CovariantDerivativeB1,C

nablaB1:=2Λ3ⅇ8z3D_zD_uD_uD_udx2Λ3ⅇ8z3D_uD_zD_uD_udx2Λ3ⅇ8z3D_uD_uD_zD_udx2Λ3ⅇ8z3D_uD_uD_uD_zdx+24ⅇ10zΛ2D_uD_uD_uD_udz

(2.8)

DivergenceContractIndicesnablaB1,1,5

Divergence:=0D_xD_xD_x

(2.9)

 

The divergence of the Bel-Robinson tensor is not automatically zero; the divergence vanishes when the metric g is an Einstein metric.  To check this, compute the Ricci tensor of g.

RRicciTensorg

R:=Λⅇzdxdx+Λⅇ2z2dxdu+Λⅇ2zdydy3dzdz+Λⅇ2z2dudx

(2.10)
M > 

evalDGRΛg

0dxdx

(2.11)

 

The Weyl tensor, if already calculated, can be used to quickly compute the Bel-Robinson tensor.

WWeylTensorg

W:=Λⅇz2dxdydxdy+Λⅇz2dxdydydx3ⅇz2dxdzdxdz+3ⅇz2dxdzdzdx+Λⅇz2dydxdxdyΛⅇz2dydxdydx+3ⅇz2dzdxdxdz3ⅇz2dzdxdzdx

(2.12)

BelRobinsong,W

Λ2ⅇ2z4dxdxdxdx

(2.13)

See Also

DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, CurvatureTensor, RicciTensor, WeylTensor