Tensor[GRQuery] - check various geometric properties of fields on a spacetime
Calling Sequences
GRQuery(arg1, arg2, ..., keyword)
Parameters
arg1 - (optional) other arguments
keyword - keyword string
Description
Examples
See Also
The GRQuery command can be used to check various properties of metrics and other tensor and spinor fields defined on a spacetime manifold. Admissible keyword strings are "NullTetrad", "OrthonormalFrame", "OrthonormalCoframe", "OrthonormalTetrad", "PrincipalNullDirection" "RecurrentTensor".
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form GRQuery(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-GRQuery.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
Let g be a metric on a 4-dimensional manifold with signature 1,−1,−1,−1. A list of 4 vectors E1,E2,E3,E4 defines an orthonormal tetrad if
gE1,E1=1, gE2,E2=gE3,E3=gE4,E4=−1.
and all other inner products vanish. The command GRQuery, with the keyword "OrthonormalTetrad", can be used to check that a list of 4 vectors defines an orthonormal tetrad.
First create manifold M with coordinates t,x,y,z.
DGsetup⁡t,x,y,z,M
frame name: M
Define a spacetime metric g on M.
g≔evalDG⁡dt&tdt−dx&tdx−dy&tdy−dz&tdz
g:=dt⁢dt−dx⁢dx−dy⁢dy−dz⁢dz
Define a tetrad F1 on M. Verify that F1 is an orthonormal tetrad with respect to the metric g.
F1≔D_t,D_x,D_y,D_z
F1:=D_t,D_x,D_y,D_z
GRQuery⁡F1,g,OrthonormalTetrad
true
Note that the same vectors, listed in a different order, do not necessarily define an orthonormal tetrad.
F2≔D_x,D_y,D_z,D_t
F2:=D_x,D_y,D_z,D_t
GRQuery⁡F2,g,OrthonormalTetrad
false
Example 2.
A list of 4 vectors L, N, M, M‾ defines a (complex) null tetrad if M‾ is the complex conjugate of M,
gL,N=1, gM, M‾=−1,
and all other inner products vanish. In particular, the vectors L, N, M, M‾ are all null vectors. The command GRQuery, with the keyword "NullTetrad", can be used to check that a list of 4 vectors defines a null tetrad.
N≔evalDG⁡12⁢212⁢D_t+12⁢212⁢D_z,12⁢212⁢D_t−12⁢212⁢D_z,12⁢212⁢D_x+12⁢I⁢212⁢D_y,12⁢212⁢D_x−12⁢I⁢212⁢D_y
N:=22⁢D_t+22⁢D_z,22⁢D_t−22⁢D_z,22⁢D_x+I2⁢2⁢D_y,22⁢D_x−I2⁢2⁢D_y
GRQuery⁡N,g,NullTetrad
Example 3.
To check that a given frame or co-frame is orthonormal in other dimensions or with different metric signatures, the keywords "OrthonormalFrame", "OrthonormalCoframe" are used.
First create a 3-manifold M with coordinates x,y,z.
DGsetup⁡x,y,z,M
Define a Riemannian metric g on M.
g3≔evalDG⁡dx&tdx+dy&tdy+dz&tdz
g3:=dx⁢dx+dy⁢dy+dz⁢dz
Define a frame F3 on M with respect to the metric g. Verify that F3 is an orthonormal frame.
F3≔D_x,D_y,D_z
F3:=D_x,D_y,D_z
GRQuery⁡F3,g3,OrthonormalFrame
Define a co-frame Ω3 with respect to the metric g. Verify that Ω3 is an orthonormal co-frame.
Ω3≔dx,dy,dz
Ω3:=dx,dy,dz
GRQuery⁡Ω3,g3,OrthonormalCoframe
One can use an optional 3rd argument, a square matrix A, to specify the orthogonality relations to be verified - if F=E1, E2,...,En, then GRQuery(F, g, A, "OrthonormalFrame") returns true if gEi,Ej=Aij . For example:
g3≔evalDG⁡2⁢dx&sdy+dz&tdz
g3:=dx⁢dy+dy⁢dx+dz⁢dz
A≔Matrix⁡0,1,0,1,0,0,0,0,1
GRQuery⁡F3,g3,A,OrthonormalFrame
Example 4.
The keyword argument "PrincipalNullDirection" will test to see if a given vector is a principal null direction for a given metric. The Weyl tensor of the metric is a required argument.
g4≔DifferentialGeometry:-evalDG⁡dx&tdx+dy&tdy+12⁢exp⁡2⁢x⁢dz&tdz−dt+exp⁡x⁢dz&sdt+exp⁡x⁢dz
g4:=−dt⁢dt−ⅇx⁢dt⁢dz+dx⁢dx+dy⁢dy−ⅇx⁢dz⁢dt−12⁢ⅇ2⁢x⁢dz⁢dz
W4≔WeylTensor⁡g4:
The metric g4 is of Petrov type D and therefore admits two independent principal null directions.
PND1≔evalDG⁡D_t−D_y
PND1:=D_t−D_y
GRQuery⁡PND1,g4,W4,PrincipalNullDirection
PND2≔evalDG⁡D_t+D_y
PND2:=D_t+D_y
Example 5.
The keyword argument "RecurrentTensor" will test to see if a given tensor is a recurrent tensor with respect to a given metric or connection. If true, then the associated eigen-form is also returned.
g5≔evalDG⁡t2⁢dx&tdx−x2⁢dy&tdy+dz&tdz+dt&sdx
g5:=12⁢dt⁢dx+12⁢dx⁢dt+t2⁢dx⁢dx−x2⁢dy⁢dy+dz⁢dz
T≔evalDG⁡dx&tdy−dy&tdx+dx&tdzx
T:=dx⁢dy+dx⁢dzx−dy⁢dx
GRQuery⁡T,g5,RecurrentTensor
true,2⁢t⁢x−1⁢dxx
DifferentialGeometry, Tensor, DGGramSchmidt, NullTetrad, PetrovType, PrincipalNullDirections, OrthonormalTetrad, RecurrentTensors, SpinorInnerProduct, SolderForm, TensorInnerProduct
Download Help Document