Tensor[KillingTensors] - calculate the Killing tensors of a specified rank for a given metric or connection
Calling Sequences
KillingTensors(g, p options)
KillingTensors(C, p options)
Parameters
g - a covariant metric tensor on a manifold M
p - a positive integer
C - an affine connection on a manifold M
options - any of the following keywords arguments: ansatz, unknowns, auxiliaryequations, coefficientvariables, parameters, output
Description
Examples
Let ▿denote covariant differentiation with respect to the given metric g or connection C.A covariant symmetric tensor field T of rank p is called a Killing tensor if ▿(iTjk... l) = 0.
The program KillingTensors generates the defining 1st order partial differential equations for a Killing tensor of rank p and uses pdsolve to find the solution to these equations. An empty list is returned if there are no Killing tensors. If pdsolve is unable to solve these equations, NULL is returned.
The keyword argument coefficientvariables = x1, x2, ... , xk allows the user to specify the coefficient functions in the Killing tensor T as functions of the variables x1, x2, ... , xk .
The exact form of the Killing tensor T can be specified with the keyword argument ansatz = T. For example, if the coordinates on the underlying manifold are x, y, z and T1, T2 are defined symmetric tensors, then one may solve for Killing tensors of the form T = fy, zT1 + gy,zT2 . In this situation the unknown functions must be explicitly specified with the keyword argument unknowns, for example, unknowns = fy,z, gy,z.
When using the keyword argument ansatz, additional algebraic or differential conditions may be imposed upon the unknowns using the keyword argument auxiliaryequations = EqList. Here EqList is a list of the auxiliary equations to be added to the Killing tensor equations.
If the metric g or connection C depends upon a number of unspecified parameters (either constants or functions), then the keyword argument parameters= ParList,where ParList is the list of parameters, will invoke case-splitting with respect to these parameters. Special values of the parameters, where either the number or the explicit form of the Killing tensors changes, are calculated.
With keyword argument output = pde,the defining partial differential equations for the Killing tensors are returned. The option output = general returns the general Killing tensor in terms of a number of arbitrary constants _C1, _C2 ... . The option output = list returns a list of tensors which form a basis for the solution space. The default value of this keyword argument is output = list.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KillingTensors(...) only after executing the commands with(DifferentialGeometry), with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-KillingTensors(...).
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
Find the Killing tensors of the metric g to order 3. This metric appears in Darboux, Theorie Generale des Surfaces III, page 81.
DGsetup⁡x,y,M
frame name: M
g1≔evalDG⁡1y⁢dx&tdx+1x⁢dy&tdy
g1:=dx⁢dxy+dy⁢dyx
K1≔KillingTensors⁡g1,1
K2≔KillingTensors⁡g1,2
K2:=dx⁢dxy+dy⁢dyx
K3≔KillingTensors⁡g1,3
K3:=−dx⁢dx⁢dxy3+dy⁢dy⁢dyx3
Example 2.
We use the keyword argument coefficientvariables to find the rank 3 Killing tensors for the metric g2 which are functions of y alone.
DGsetup⁡x,y,z,M
g2≔evalDG⁡dx&tdx+dy&tdy+x⁢dz&tdz
g2:=dz⁢dz⁢x+dx⁢dx+dy⁢dy
KillingTensors⁡g2,3,coefficientvariables=y
dy⁢dy⁢dy
Example 3.
We use the keyword arguments ansatz and unknowns to find the rank 2 Killing tensors for the metric g3 which are independent of dy .
g3≔evalDG⁡dx&tdx+dy&tdy+x⁢dz&tdz
g3:=dx⁢dx+dy⁢dy+x⁢dz⁢dz
T≔evalDG⁡A⁡x,y,z⁢dx&tdx+B⁡x,y,z⁢dx&sdz+C⁡x,y,z⁢dz&tdz
T:=A⁡x,y,z⁢dx⁢dx+B⁡x,y,z2⁢dx⁢dz+B⁡x,y,z2⁢dz⁢dx+C⁡x,y,z⁢dz⁢dz
KillingTensors⁡g3,2,ansatz=T,unknowns=A⁡x,y,z,B⁡x,y,z,C⁡x,y,z
dx⁢dx+x⁢dz⁢dz,x2⁢dz⁢dz
Example 4.
We use the keyword arguments ansatz, unknowns and auxiliaryequations find the rank 2 Killing tensors for the metric g4 which are invariant under rotations in the x y plane.
g4≔evalDG⁡dx&tdx+dy&tdy+x2+y2⁢dz&tdz
g4:=dx⁢dx+dy⁢dy+x2+y2⁢dz⁢dz
We use the commands GenerateSymmmetricTensors and DGzip to construct the general rank 2 symmetric tensor T on M.
T0≔GenerateSymmetricTensors⁡dx,dy,dz,2
T0:=dx⁢dx,12⁢dx⁢dy+12⁢dy⁢dx,12⁢dx⁢dz+12⁢dz⁢dx,dy⁢dy,12⁢dy⁢dz+12⁢dz⁢dy,dz⁢dz
vars≔A1,A2,A3,A4,A5,A6⁡x,y,z
vars:=A1⁡x,y,z,A2⁡x,y,z,A3⁡x,y,z,A4⁡x,y,z,A5⁡x,y,z,A6⁡x,y,z
T≔DGzip⁡vars,T0,plus
T:=A1⁡x,y,z⁢dx⁢dx+A2⁡x,y,z2⁢dx⁢dy+A3⁡x,y,z2⁢dx⁢dz+A2⁡x,y,z2⁢dy⁢dx+A4⁡x,y,z⁢dy⁢dy+A5⁡x,y,z2⁢dy⁢dz+A3⁡x,y,z2⁢dz⁢dx+A5⁡x,y,z2⁢dz⁢dy+A6⁡x,y,z⁢dz⁢dz
The vector field X is the infinitesimal generator for rotations in the x y plane.
X≔evalDG⁡y⁢D_x−x⁢D_y
X:=y⁢D_x−x⁢D_y
We use the commands LieDerivative and DGinfo to find the conditions SymmetryEq under which T is rotationally invariant.
LD≔LieDerivative⁡X,T:
SymmetryEq≔Tools:-DGinfo⁡LD,CoefficientSet
SymmetryEq:=y⁢∂∂x⁢A6⁡x,y,z−x⁢∂∂y⁢A6⁡x,y,z,−A2⁡x,y,z+y⁢∂∂x⁢A1⁡x,y,z−x⁢∂∂y⁢A1⁡x,y,z,A2⁡x,y,z+y⁢∂∂x⁢A4⁡x,y,z−x⁢∂∂y⁢A4⁡x,y,z,12⁢A3⁡x,y,z+12⁢y⁢∂∂x⁢A5⁡x,y,z−12⁢x⁢∂∂y⁢A5⁡x,y,z,−12⁢A5⁡x,y,z+12⁢y⁢∂∂x⁢A3⁡x,y,z−12⁢x⁢∂∂y⁢A3⁡x,y,z,−A4⁡x,y,z+A1⁡x,y,z+12⁢y⁢∂∂x⁢A2⁡x,y,z−12⁢x⁢∂∂y⁢A2⁡x,y,z
We find that that there are 4 rotationally invariant, rank 2 Killing tensors for the metric g4.
InvKT≔KillingTensors⁡g4,ansatz=T,unknowns=vars,auxiliaryequations=SymmetryEq
InvKT:=−12⁢dx⁢dx−12⁢dy⁢dy−x22+y22⁢dz⁢dz,x2+y22⁢dz⁢dz,−y⁢x2+y22⁢dx⁢dz+x⁢x2+y22⁢dy⁢dz−y⁢x2+y22⁢dz⁢dx+x⁢x2+y22⁢dz⁢dy,y2⁢dx⁢dx−y⁢x⁢dx⁢dy−y⁢x⁢dy⁢dx+x2⁢dy⁢dy
nops⁡InvKT
4
Example 5.
We wish to determine the rank 2 Killing tensors for the metric g5 =zm +1 dx dx +1zm +1 dy dy + dz dz for varying values of m,excluding the case m=0. Because the parameter m does not appear as a rational function in g5, it is helpful to re-write the metric as g5=az +1 dx dx +1az+1 dy dy + dz dz , where azsatisfies the differential equation z a'z = m az.
g5≔evalDG⁡a⁡z+1⁢dx&tdx+1a⁡z+1⁢dy&tdy+dz&tdz
g5:=a⁡z+1⁢dx⁢dx+dy⁢dya⁡z+1+dz⁢dz
KT≔KillingTensors⁡g5,2,parameters=m,a⁡z,auxiliaryequations=m≠0,a⁡z≠0,z⁢diff⁡a⁡z,z=m⁢a⁡z:
With the keyword argument parameters, the command KillingTensors returns a sequence of lists of Killing tensors and, as the last element of the sequence, the possible exceptional parameter values. For this example, the exceptional values of m are:
Cases≔KT−1
Cases:=m=1,a⁡z=_C1⁢z,m=_C1,a⁡z=z_C1⁢_C2
We see there are 2 cases.
Case 1. m = 1
KT1
_C1⁢z+1⁢dx⁢dx+_C1⁢z⁢dy⁢dy_C1⁢z+12+dz⁢dz,dy⁢dy_C1⁢z+12,12⁢dx⁢dy+12⁢dy⁢dx,_C1⁢z+12⁢dx⁢dx
Case 2. m = C1 (the generic case)
KT3
m=1,a⁡z=_C1⁢z,m=_C1,a⁡z=z_C1⁢_C2
Example 6.
With the keyword argument output = "pde", the defining partial differential equations for the Killing tensor are returned.
g6≔evalDG⁡dx&tdx+dy&tdy+x⁢dz&tdz
g6:=dz⁢dz⁢x+dx⁢dx+dy⁢dy
T≔evalDG⁡A⁡x,y⁢dx&tdx+B⁡x,y⁢dy&tdy
T:=A⁡x,y⁢dx⁢dx+B⁡x,y⁢dy⁢dy
KillingTensors⁡g6,ansatz=T,unknowns=A⁡x,y,B⁡x,y
dy⁢dy
KillingTensors⁡g6,ansatz=T,unknowns=A⁡x,y,B⁡x,y,output=pde
0,13⁢A⁡x,y,13⁢∂∂y⁢A⁡x,y,13⁢∂∂x⁢B⁡x,y,∂∂x⁢A⁡x,y,∂∂y⁢B⁡x,y
Example 7.
We compute the Killing tensors for a connection. We use the keyword argument output = "general" to obtain the result as a single tensor depending on constants _C1, _C2, ... .
C≔Connection⁡y⁢D_y&tdx&tdy+D_y&tdy&tdx
C:=D_y⁢dx⁢dy⁢y+D_y⁢dx⁢dy⁢y
KillingTensors⁡C,2,output=general
_C1⁢y4+_C2⁢y2+_C3⁢dx⁢dx+_C1⁢y2+12⁢_C2⁢dx⁢dy+_C1⁢y2+12⁢_C2⁢dy⁢dx+_C1⁢dy⁢dy
Example 8.
The following metric g8 appears in the PhD thesis of R. P. Delong. We are able to explicitly compute all Killing tensors to order 4. The explicit lists are very long and so we simply display the number of Killing tensors at each order.
g8≔evalDG⁡x⁢dx&sdy+x⁢dz&tdz
g8:=12⁢x⁢dx⁢dy+12⁢x⁢dy⁢dx+x⁢dz⁢dz
K1≔KillingTensors⁡g8,1:
K2≔KillingTensors⁡g8,2:
K3≔KillingTensors⁡g8,3:
K4≔KillingTensors⁡g8,4:
nops⁡K1,nops⁡K2,nops⁡K3,nops⁡K4
4,14,32,69
See Also
DifferentialGeometry
Tensor
KillingVectors
KillingYanoTensors
KillingSpinors
Download Help Document