KroneckerDelta - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[KroneckerDelta] - find the Kronecker delta tensor of rank r

Calling Sequences

     KroneckerDelta(spatialType, r, fr)

Parameters

   spatialType  - a string, either "bas" or "vrt"

   r            - a non-negative integer

   fr           - (optional) the name of a defined frame

 

Description

Examples

Description

• 

The Kronecker delta tensor K of rank r is the type rr tensor which is defined as follows. Let I be the type 11 tensor whose components in any coordinate system are given by the identity matrix, that is, for any vector field IX=X. Then K is obtained from the r-fold tensor product of I fully skew-symmetrizing over all the covariant indices.

• 

The command KroneckerDelta(spatialType, r) returns the rank r Kronecker delta tensor K of the type specified by indexType in the current frame unless the frame is explicitly specified.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KroneckerDelta(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-KroneckerDelta.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

We create a 3 dimensional manifold M with coordinates x,y,z.

DGsetupx,y,z,M:

 

Define the 3 different Kronecker delta tensors on M.

M > 

K1KroneckerDeltabas,1

K1:=D_xdx+D_ydy+D_zdz

(2.1)
M > 

K2KroneckerDeltabas,2

K2:=D_xD_ydxdyD_xD_ydydx+D_xD_zdxdzD_xD_zdzdxD_yD_xdxdy+D_yD_xdydx+D_yD_zdydzD_yD_zdzdyD_zD_xdxdz+D_zD_xdzdxD_zD_ydydz+D_zD_ydzdy

(2.2)
M > 

K3KroneckerDeltabas,3

K3:=D_zD_xD_ydxdzdy+D_zD_xD_ydxdydzD_yD_zD_xdzdydx+D_zD_yD_xdzdydx+D_yD_zD_xdzdxdy+D_yD_zD_xdydzdxD_yD_zD_xdydxdzD_yD_zD_xdxdzdy+D_yD_zD_xdxdydzD_zD_yD_xdzdxdy+D_yD_xD_zdzdydxD_yD_xD_zdzdxdyD_yD_xD_zdydzdxD_zD_yD_xdydzdx+D_yD_xD_zdydxdz+D_yD_xD_zdxdzdyD_yD_xD_zdxdydz+D_xD_zD_ydzdydxD_xD_zD_ydzdxdy+D_zD_yD_xdydxdzD_xD_zD_ydydzdx+D_xD_zD_ydydxdz+D_xD_zD_ydxdzdy+D_zD_yD_xdxdzdyD_xD_zD_ydxdydzD_xD_yD_zdzdydx+D_xD_yD_zdzdxdy+D_xD_yD_zdydzdxD_zD_yD_xdxdydzD_xD_yD_zdydxdzD_xD_yD_zdxdzdy+D_xD_yD_zdxdydzD_zD_xD_ydzdydx+D_zD_xD_ydzdxdy+D_zD_xD_ydydzdxD_zD_xD_ydydxdz

(2.3)

 

We check that the contraction of K3 gives a multiple of K2 and that the contraction of K2 gives a multiple of K1.

M > 

ContractIndicesK3,3,6&minusK2

0D_xD_xdxdx

(2.4)
M > 

ContractIndicesK2,2,4&minus2&multK1

0D_xdx

(2.5)

 

We check that K2 can be constructed from K1K1 by rearranging the indices and by skew-symmetrization.

M > 

T0RearrangeIndicesK1&tensorK1,1,3,2,4

T0D_xD_xdxdx+D_xD_ydxdy+D_xD_zdxdz+D_yD_xdydx+D_yD_ydydy+D_yD_zdydz+D_zD_xdzdx+D_zD_ydzdy+D_zD_zdzdz

(2.6)
M > 

T2&multSymmetrizeIndicesT0,1,2,SkewSymmetric

TD_xD_ydxdyD_xD_ydydx+D_xD_zdxdzD_xD_zdzdxD_yD_xdxdy+D_yD_xdydx+D_yD_zdydzD_yD_zdzdyD_zD_xdxdz+D_zD_xdzdxD_zD_ydydz+D_zD_ydzdy

(2.7)
M > 

T&minusK2

0D_xD_xdxdx

(2.8)

 

Example 2.

We create a 2 dimensional vector bundle over E with fiber coordinates p,q.

M > 

DGsetupx,y,z,p,q,E

frame name: E

(2.9)

 

Define the possible Kronecker delta tensors on the fibers of E.

E > 

K1KroneckerDeltavrt,1

K1D_pdp+D_qdq

(2.10)
E > 

K2KroneckerDeltavrt,2

K2D_pD_qdpdqD_pD_qdqdpD_qD_pdpdq+D_qD_pdqdp

(2.11)

See Also

DifferentialGeometry

Tensor

ContractIndices

RearrangeIndices

SymmetrizeIndices

PermutationSymbol

Physics[LeviCivita]

Physics[KroneckerDelta]