Tensor[NPBianchiIdentities] - calculate the Newman-Penrose version of the Bianchi identities
Calling Sequences
NPBianchiIdentities(SpinCoeff, RicciCoeff, WeylCoeff, Idlist, NTetrad, ConjCoord)
Parameters
SpinCoeff - a table, the Newman Penrose spin coefficients
RicciCoeff - a table, the Newman Penrose Ricci coefficients
WeylCoeff - a table, the Newman Penrose Weyl coefficients
Idlist - a list of strings, the Bianchi identities to be computed
NTetrad - (optional) a list of 4 vectors defining a null tetrad
ConjCoord - (optional) keyword argument conjugatecoordinates = CC, where CC is a list of lists specifying conjugate coordinates
Description
Examples
sSee Also
The Newman-Penrose Bianchi identities are a set of 11 equations which encode the usual differential Bianchi identities for the curvature tensor in terms of the NP spin coefficients and the NP curvature scalars. The relative simplicity of the Newman-Penrose Bianchi identities underscores the importance of this formalism.
Given the tetrad, the spin-coefficients and the curvature scalars, the command NPBianchiIdentities will calculate a specified list of the Bianchi identities.
The index set for the table SpinCoeff must be {"mu", "nu", "pi", "rho", "tau", "alpha", "beta", "epsilon", "gamma", "kappa", "lambda", "sigma"}.
The index set for the table RicciCoeff must be {"Lambda", "Phi00", "Phi01", "Phi02", "Phi11", "Phi12", "Phi22"}.
The index set for the table WeylCoeff must be {"Psi0", "Psi1", "Psi2", "Psi3", "Psi4"}.
The equation list Idlist is a list of letters, chosen from {"a", "b", ..., "k"} or {"all"}.
If the current frame is defined by a null tetrad, then the 5th argument NTetrad is not required.
See Details for Ricci and Bianchi Identities for a complete list of the Newman-Penrose Bianchi Identities.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NPBianchiIdentities(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NPBianchiIdentities.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
Define a manifold S with coordinates t,x,y,z.
DGsetup⁡t,x,y,z,S
frame name: S
Define a metric g.
g≔evalDG⁡x2⁢dt&tdt−y2⁢dx&tdx−z2⁢dy&tdy−t2⁢dz&tdz
g:=x2⁢dt⁢dt−y2⁢dx⁢dx−z2⁢dy⁢dy−t2⁢dz⁢dz
Define a null tetrad NTetrad for the metric g. Verify that this is a null tetrad using GRQuery.
NTetrad≔evalDG⁡12⁢212x⁢D_t+12⁢212t⁢D_z,12⁢212x⁢D_t−12⁢212t⁢D_z,12⁢212y⁢D_x+12⁢I⁢212z⁢D_y,12⁢212y⁢D_x−12⁢I⁢212z⁢D_y
NTetrad:=22⁢x⁢D_t+22⁢t⁢D_z,22⁢x⁢D_t−22⁢t⁢D_z,22⁢y⁢D_x+I2⁢2z⁢D_y,22⁢y⁢D_x−I2⁢2z⁢D_y
GRQuery⁡NTetrad,g,NullTetrad
true
Calculate the NP spin coefficients defined by the null tetrad NTetrad.
SpinCoeff≔NPSpinCoefficients⁡NTetrad
SpinCoeff:=tableepsilon=14⁢2t⁢x,mu=−14⁢2t⁢z,nu=14⁢2x⁢y,rho=−14⁢2t⁢z,lambda=14⁢2t⁢z,tau=−14⁢2x⁢y,beta=14⁢I⁢2z⁢y,gamma=−14⁢2t⁢x,alpha=14⁢I⁢2z⁢y,pi=14⁢2x⁢y,kappa=−14⁢2x⁢y,sigma=14⁢2t⁢z
Calculate the Newman-Penrose curvature scalars.
RS,WS≔NPCurvatureScalars⁡SpinCoeff,NTetrad
RS,WS:=tablePhi12=−14⁢I⁢x2−z2y⁢t⁢x2⁢z2,Phi01=14⁢I⁢x2+z2y⁢t⁢x2⁢z2,Phi22=−12⁢x⁢t2⁢z,Phi00=12⁢x⁢t2⁢z,Phi11=0,Lambda=0,Phi02=12⁢Iz⁢x⁢y2,tablePsi4=12⁢I⁢t2+y2x⁢t2⁢z⁢y2,Psi1=−14⁢I⁢x2−z2y⁢t⁢x2⁢z2,Psi0=−12⁢I⁢t2+y2x⁢t2⁢z⁢y2,Psi2=0,Psi3=−14⁢I⁢x2−z2y⁢t⁢x2⁢z2
Compute Bianchi identity "c" and verify that it is satisfied.
Eqc≔NPBianchiIdentities⁡SpinCoeff,RS,WS,c,NTetrad
Eqc:=−12⁢2⁢−12⁢Ix⁢y⁢t⁢z2−2⁢−14⁢I⁢x2+14⁢z2y⁢t⁢x3⁢z2y−12⁢I⁢2⁢−14⁢I⁢x2+14⁢z2z3⁢y2⁢t⁢x2−12⁢2x2⁢t3⁢z+14⁢2t3⁢z2⁢x−12⁢2⁢12⁢Ix⁢y⁢t⁢z2−2⁢14⁢I⁢x2+14⁢z2y⁢t⁢x3⁢z2y−12⁢I⁢2⁢14⁢I⁢x2+14⁢z2z3⁢y2⁢t⁢x2=18⁢2⁢I⁢t2+y2t3⁢z2⁢x⁢y2−12⁢14⁢2x⁢y−14⁢I⁢2z⁢y⁢I⁢x2−z2y⁢t⁢x2⁢z2−18⁢2⁢I⁢x2−z2x3⁢y2⁢t⁢z2+12⁢−2t⁢x+14⁢2t⁢zx⁢t2⁢z−12⁢14⁢I⁢2z⁢y−14⁢2x⁢y⁢I⁢x2+z2y⁢t⁢x2⁢z2+12⁢2⁢−14⁢I⁢x2+14⁢z2x3⁢y2⁢t⁢z2+18⁢I⁢2t⁢z2⁢x⁢y2
simplify⁡lhs⁡Eqc1−rhs⁡Eqc1
0
DifferentialGeometry, Tensor, NPDirectionalDerivatives, NPSpinCoefficients, NPCurvatureScalars, Physics[Riemann], NPRicciIdentities, Physics[Ricci]
Download Help Document