Tensor[NullTetrad] - construct a null tetrad from an orthonormal tetrad or from a solder form and a spinor basis
Tensor[OrthonormalTetrad] - construct an orthonormal tetrad from a null tetrad
Calling Sequences
NullTetrad(OrthTetrad)
NullTetrad(σ ,SpinBasis)
OrthonormalTetrad(NullTetrad)
Parameters
OrthTetrad - a list of 4 vectors defining an orthonormal tetrad with respect to a metric g with signature 1, −1, −1, −1
σ - a solder form with index type ["con", " cov", "cov"]
SpinBasis - a list of 2 rank 1 spinors, with spinor inner product = 1
NullTetrad - a list of 4 vectors defining a null tetrad with respect to a Lorentzian metric g with signature 1,−1,−1,−1
Description
Examples
See Also
Let g be a metric on a 4-dimensional manifold with signature 1,−1,−1,−1. A list of 4 vectors Et,Ex,Ey,Ez defines an orthonormal tetrad if
gEt,Et=1, gEx,Ex=gEy,Ey=gEz,Ez=−1,
and all other inner products vanish. A list of 4 vectors L,N,M,M‾ defines a null tetrad if L and N are real, M‾ is the complex conjugate of M,
gL,N=1, gM,M‾=−1,
and all other inner products vanish. In particular, the vectors L,N,M,M‾ are all null vectors.
Given an orthonormal tetrad OrthTetrad = Et,Ex,Ey,Ez, the command NullTetrad(OrthTetrad) constructs the null tetrad given by
L=12Et+Ez, N=12Et − Ez, M=12Ex+iEy, M‾=12Ex−iEy .
Let sigma be a solder form (index type ["con", " cov", "cov"]), with components σAA'i ,for the metric g. Let οA and ιB be rank 1, unprimed spinors with εABοAιB=1. Let ο‾ and ι‾ be their conjugates (see ConjugateSpinor). Then the following vectors
Li=σAA'iοA ο‾A', Ni=σAA'iιA ι‾A', Mi=σAA'iοAι‾A', M‾ i=σAA'iιAο‾A'
define a null tetrad. This null tetrad is computed with the second calling sequence NullTetrad(sigma, [ο, ι]).
Given a null tetrad NullTetrad =[L,N,M,M]‾, the command OrthonormalTetrad(NullTetrad) constructs the orthonormal tetrad defined by
Et=12L+N, Ex=12M+M‾, Ey=1i2M− M‾, Ez=12L−N
The command DGGramSchmidt can also be used to construct an orthonormal tetrad.
The command GRQuery can be used to check that a given tetrad is a null tetrad or an orthonormal tetrad.
These commands are part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullTetrad(...) or OrthonormalTetrad(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. They can always be used in the long form DifferentialGeometry:-Tensor:-NullTetrad or DifferentialGeometry:-Tensor:-OrthonormalTetrad.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create manifold M with coordinates t,x,y,z.
DGsetup⁡t,x,y,z,M
frame name: M
Define a spacetime metric g on M with signature 1,−1,−1,−1.
g≔evalDG⁡dt&tdt−dx&tdx−dy&tdy−dz&tdz
g:=dt⁢dt−dx⁢dx−dy⁢dy−dz⁢dz
Define an orthonormal tetrad F on M with respect to the metric g. Verify using the command GRQuery.
F≔D_t,D_x,D_y,D_z
F:=D_t,D_x,D_y,D_z
GRQuery⁡F,g,OrthonormalTetrad
true
Use the orthonormal tetrad F to construct a null tetrad NT.
NT≔NullTetrad⁡F
NT:=22⁢D_t+22⁢D_z,22⁢D_t−22⁢D_z,22⁢D_x+I2⁢2⁢D_y,22⁢D_x−I2⁢2⁢D_y
Verify this result using the command GRQuery.
GRQuery⁡NT,g,NullTetrad
It is a simple matter to check directly, using the TensorInnerProduct command, that NT is a null tetrad,
TensorInnerProduct⁡g,NT,NT
Example 2.
We use spinors to create a null tetrad. First create a vector bundle E→M with base coordinates t,x,y,z and fiber coordinates z1, z2, w1, w2.
DGsetup⁡t,x,y,z,z1,z2,w1,w2,E
frame name: E
Define a spacetime metric g2 on M with signature 1,−1,−1,−1.
g2≔evalDG⁡dt&tdt−dx&tdx−dy&tdy−dz&tdz
g2:=dt⁢dt−dx⁢dx−dy⁢dy−dz⁢dz
Define an orthonormal frame F2 on M with respect to the metric g2.
F2≔D_t,D_x,D_y,D_z
F2:=D_t,D_x,D_y,D_z
Compute the solder form σ defined by the orthonormal frame F2.
σ≔SolderForm⁡F2,indextype=con,cov,cov
σ:=22⁢D_t⁢dz1⁢dw1+22⁢D_t⁢dz2⁢dw2+22⁢D_x⁢dz1⁢dw2+22⁢D_x⁢dz2⁢dw1+I2⁢2⁢D_y⁢dz1⁢dw2−I2⁢2⁢D_y⁢dz2⁢dw1+22⁢D_z⁢dz1⁢dw1−22⁢D_z⁢dz2⁢dw2
Define a pair of rank 1 spinors ο and ι. Check that their spinor inner product is 1. Construct the corresponding null tetrad, N2.
ο≔evalDG⁡D_z1+2⁢D_z2
ο:=D_z1+2⁢D_z2
ι≔evalDG⁡2⁢D_z1+5⁢D_z2
ι:=2⁢D_z1+5⁢D_z2
SpinorInnerProduct⁡ο,ι
1
N2≔NullTetrad⁡σ,ο,ι
N2:=5⁢22⁢D_t+2⁢2⁢D_x−3⁢22⁢D_z,29⁢22⁢D_t+10⁢2⁢D_x−21⁢22⁢D_z,6⁢2⁢D_t+9⁢22⁢D_x+I2⁢2⁢D_y−4⁢2⁢D_z,6⁢2⁢D_t+9⁢22⁢D_x−I2⁢2⁢D_y−4⁢2⁢D_z
TensorInnerProduct⁡g2,N2,N2
Example 3.
Convert the null tetrad N2 constructed in Example 2 to an orthonormal tetrad T.
T≔OrthonormalTetrad⁡N2
T:=17⁢D_t+12⁢D_x−12⁢D_z,12⁢D_t+9⁢D_x−8⁢D_z,D_y,−12⁢D_t−8⁢D_x+9⁢D_z
Check the result.
TensorInnerProduct⁡g2,T,T
DifferentialGeometry, Tensor, ConjugateSpinor, DGGramSchmidt, GRQuery, SolderForm, SpinorInnerProduct, TensorInnerProduct
Download Help Document