RicciTensor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[RicciTensor] - calculate the Ricci tensor of a linear connection on the tangent bundle

Calling Sequences

     RicciTensor(g)

     RicciTensor(R)

Parameters

   g    - the metric tensor on the tangent bundle of a manifold

   R    - the curvature tensor of a connection on the tangent bundle of a manifold

 

Description

Examples

See Also

Description

• 

Let C be a connection on the tangent bundle of a manifold M with a curvature tensor C. The Ricci tensor R is the contraction of C over the 1st and 3rd indices. In terms of index notation, Rij=R  ihjh .

• 

With the first calling sequence, the Ricci tensor for the Christoffel connection of the metric g is computed. With the second calling sequence, the Ricci tensor is computed directly from the given curvature tensor.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RicciTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-RicciTensor.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a 3-dimensional manifold M and define a connection on the tangent space of M.

DGsetupx,y,z,M

frame name: M

(2.1)
M > 

C1Connectionx2D_x&tdx&tdyy2D_x&tdy&tdy+yzD_x&tdz&tdy

C1:=x2D_xdxdyy2D_xdydy+yzD_xdzdy

(2.2)

 

Calculate the curvature tensor.

M > 

R1CurvatureTensorC1

R1:=2xD_xdxdxdy2xD_xdxdydxyD_xdzdydz+yD_xdzdzdy

(2.3)

 

Calculate the Ricci tensor. Note that in general the Ricci tensor is not symmetric.

M > 

Ric1RicciTensorR1

Ric1:=2xdxdy

(2.4)

 

Example 2.

Define a frame on M and use this frame to specify a connection on the tangent space of M.

M > 

DGsetupx,y,z,M

frame name: M

(2.5)
M > 

FRFrameDatax2ydx,zxdy,xydz,M1:

M > 

DGsetupFR

frame name: M1

(2.6)
M1 > 

C2ConnectionE2&tΘ1&tΘ2

C2:=E2Θ1Θ2

(2.7)

 

Calculate the curvature tensor.

M1 > 

R2CurvatureTensorC2

R2:=yE2Θ1Θ1Θ2x3+yE2Θ1Θ2Θ1x3E2Θ1Θ2Θ3zxy+E2Θ1Θ3Θ2zxy

(2.8)

 

Calculate the Ricci tensor.

M1 > 

Ric2RicciTensorR2

Ric2:=yΘ1Θ1x3Θ1Θ3zxy

(2.9)

 

Example 3.

In this example we calculate the Ricci tensor for a metric and note that in this case the Ricci tensor is symmetric.

M1 > 

DGsetupx,y,z,M

frame name: M

(2.10)
M > 

gevalDGydx&tdx+zdy&tdy+dz&tdz

g:=dxdxy+dydyz+dzdz

(2.11)

 

Calculate the Ricci tensor for the metric directly.

M > 

Ric3RicciTensorg

Ric3:=14dxdxyz+14y2+zdydyy2z+14dydzyz+14dzdyyz+14dzdzz2

(2.12)

See Also

DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CovariantDerivative, Physics[D_], CurvatureTensor, Physics[Riemann], DGinfo, DirectionalCovariantDerivative, SectionalCurvature, RicciScalar, Physics[Ricci]